ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

OIKONOMIKO
NMANENIETHMIO
AOHNON

School of Information Sciences and Technology
Department of Informatics

Athens, Greece

Bachelor Thesis
in

Computer Science

Leveraging Retrieval-Augmented Generation for
Student Support: A Document-Centric QA
System for the AUEB Informatics Studies Guide

Nikos Mitsakis

Supervisors: Prof. lon Androutsopoulos

Department of Informatics

Athens University of Economics and Business

Assoc. Prof. Themos Stafylakis

Department of Informatics

Athens University of Economics and Business

July 2025

Nikos Mitsakis

Leveraging Retrieval-Augmented Generation for Student Support: A Document-Centric QA
System for the AUEB Informatics Studies Guide

July 2025

Supervisors: Prof. Ion Androutsopoulos, Associate Prof. Themos Stafylakis

Athens University of Economics and Business
School of Information Sciences and Technology
Department of Informatics

Information Processing Laboratory,

Natural Language Processing Group

Athens, Greece

Abstract

This thesis examines the design, development, and evaluation of a Retrieval-Augmented
Generation (RAG) system specifically designed to support undergraduate students in the
Department of Informatics at the Athens University of Economics and Business (AUEB).
The central objective is to create a cost-effective yet high-quality Al assistant capable
of answering studies guide-related questions, ensuring that all responses are explicitly
grounded in the latest edition of the department’s official Studies Guide. To achieve this,
the system ingests the newest version of the Studies Guide. It represents its contents at
three levels of granularity: chunks (bodies of text corresponding to paragraphs or groups
of paragraphs on a specific topic, based on the document’s structure), sentences (extracted
by sentence tokenizing each chunk), and propositions (decontextualized factual statements
synthetically generated from the chunks). The retrieval architecture explores traditional
lexical search (BM25), dense vector search, and a hybrid ensemble retriever to maximize
retrieval coverage and relevance. Question-answering capabilities are assessed using both
real-world and synthetic QA pairs, with the generation module leveraging self-hosted
state-of-the-art large language models (LLMs). The thesis conducts a comprehensive
evaluation across all document granularities and retrieval configurations, employing both
classical information retrieval metrics and more modern LLM-based evaluation. Results
demonstrate the feasibility of delivering a factual, responsive, and modular assistant using
modest computational resources. The thesis further discusses the limitations and potential
extensions of the approach, aiming to provide a blueprint for deploying similar RAG-based

assistants in other academic settings.

Keywords
Retrieval-Augmented Generation; Information Retrieval; Question Answering; Large Lan-

guage Models; Natural Language Processing; Document Indexing; Prompt Engineering.

[Teptindm

H napodoa mruyiann epyacio eEetdlel To oxedioopod, tnv avamtuén xat tnv a€loAoynon
evOg ovoThpatog ToToL Retrieval-Augmented Generation (RAG), eldwé diopoppwpévou
WOTE Vo LITOGTNPLLEL TOVG TPOTTLYLAKOVG PoltnTég Tov Tunpartog IIAnpogopiung Tov
Ouwovopweot Havemotnuiov Adnvev (OITA). O xevtpudg otd)0g eival 1 Snpovpyio evog
OWOVOIKA TTPOGLTOD AAGL LYNATG ToLdTN TG Pondo Tex VTG VONUOG VNG, tavol va
QTTOVTA O€ EPWTNOELG TTOL OXETILOVTOL HE TIG OTTOVES TOVG, StaoParilovTag 6TL OAEG oL
QITAVTHOELG VOl TEXPNPLOHEVES ATTOXAELTTNG Paoel TNG TedevTaiag éxdoong Tov emion-
pov Odnyo6 Emovdodv tov Turpatog. I'iae To 6%0md AV To, TO GVO T EVOWHATHOVEL TNV TTLO
npocpaty éudoot Tov Odnyol ETovdMV, AVATAPLETOVTOG TO TTEPLEXOHEVO TOV OE Tpia
Sropopetind emimedo: ta chunks (Tprpoto #eWévou TOL AVTLETOLYODV GE TPy pPiPovg
1 opddeg mapaypipwv pe Péor T Sopr| TOL eYYPAPOU), TIG TPOTAGELS (TTOV TTPOoRVITTOLY
ortd Tov Tepalopd Twv chunks oe enpépoug TPOTAGELS) KO TIG ATTOTTACLOLWHEVES TTPO-
thoelg (dnAdoelg yeyovotwy mov maphyovtal cuvdetind ortd ta chunks, wg avtdvopeg
mAnpogopiec). H apyitentoviur] avautnong eetdlel mapadooionés texvinég Ae€iung
avalntnong (BM25), muxvh Stavuopotixr ovalntnor kot évoy v pidind pnyovicpd ovox-
TNOMNG, OOTE VA ETMLTUYYAVETOL 1) HEYLOTT SLVOLTY) XAAVYT) KO CUVAPELX ATTOTEAEGHATWV.
O duvartotnteg amavinong epwtnudtwv afloloyovvto pe Baor (ebyn epwto- amovty-
OEWV TTOV TPOEPYOVTUL TOGO amd mpaypatnd 660 xow amd ocvvdetind dedopéva, ok-
LOTTOLOVTHG oVYXpova peydha yhAwoowd povtéda (LLMs). H epyacia mpoayportomolel
entevr) akloAOynoT oe OAO TOL ETTLTTES O AVOUITOLPAGTACTG TOV EYYPAPOL HaiL Yot OAeG TLG St-
QUPOPETIHES SLOUOPPDOTELG ALVAKTIOTG, XPNOLHLOTOLOVTOG TOGO UAAGIUEG HETPLHES VK-
TNoNG TANPOPOPLOV OG0 Kot pedddovg avtopatng a€lordynong Paciopéveg oe LLMs. Ta
aroTeAEGpATO ATTOSEEDOLY OTL eivat e@Tr) 1) SnpLovpYic EVOG AELOTTLETOV, YPHYOPOL
naL gvéAeTov Pondon, alomoLOVTOG OYETUA TTEPLOPLOPEVOLG VITOAOYLOTIHODS TOPOUG.
Télog, 1 epyacio avopépPeL TOVS TEPLOPLOPUOVG KoL TG SLVNTINES ETLEUTACELS TNG TTPO-
TELVOUEVTG TTPOCEYYLOTG, HE OTOYO VA TAPEXEL £V TTPOTLITO YLOL TNV AVAITTTLET TTaLPOPOLWV

Bondwv timov RAG ot oe Al axadnpoind mhaicio.

Acknowledgements

I would like to sincerely thank my supervisor, Prof. Ion Androutsopoulos, for his invaluable
guidance, detailed feedback, and meaningful insights throughout the development of this
thesis. His mentorship, extensive knowledge, and continuous support have profoundly
shaped both the direction and depth of this work.

I am also deeply grateful to my co-supervisor, Prof. Themos Stafylakis, for his constructive
feedback and insightful suggestions, which significantly contributed to the quality and

refinement of this thesis.

A special and heartfelt thank you goes to Chris Vlachos, PhD student at AUEB, for his
unwavering patience, availability, and openness to all my questions. His clear explanations
and constant support provided clarity and confidence at every step of the research and

implementation process.

I am also very grateful to Elisavet Palogiannidi for her presence in my thesis meetings, her
genuine interest in my project, and her willingness to offer help in any way possible. Her

support and encouragement are deeply appreciated.

Last but certainly not least, I would like to sincerely thank my family and friends for their

continuous support and patience throughout my year-long research journey. Without

their presence, encouragement, and understanding, none of this would have been possible.

Their unwavering belief in me provided the strength and motivation to persevere during

the most challenging moments, and for that I am deeply grateful.

Vii

Contents

Abstract v
Acknowledgements vii
1 Introduction 1
1.1 Motivation and Problem Statement 2

1.2 Thesis Structure 3

2 Background and Related Work 5
2.1 Background 5
2.1.1 Retrieval Augmented Generation 5

2.1.2 Sparse Lexical Retrieval withBM25 10

2.1.3 Dense Semantic Retrieval with Sentence-BERT 12

2.14 Hybrid Retrieval and Rank Fusion 14

2.1.5 Generative Model Characteristics 16

22 RelatedWork L 18
2.2.1 Significance of Retrieval Granularity 18

2.2.2 Synthetic Data Generation 19

2.23 LLM-as-Judge Evaluation 20

2.24 Institutional RAG Assistants 21

3 Document Ingestion 23
3.1 Studies Guide Preprocessing and Chunk-Based Indexing 23
3.1.1 IndexinginNumbers 29

3.1.2 Benefits and Limitations of Chunk-Level Document Representation 31

3.1.3 Motivation for Alternative Retrieval Granularities 32

3.2 Sentence-Level Document Representation 32
3.2.1 Sentence Extraction Methodology 32

3.2.2 Rationale and Implementation Details 32

3.2.3 Benefits and Limitations of Sentence-Level Document Representation 35

3.2.4 Motivation for an Alternative Granularity 36

3.3 Proposition-Level Document Representation 37
3.3.1 Decontextualization Prompt and Methodology 37

3.3.2 Strengths and Limitations of Proposition-Level Document Repre-

sentation 40

34

Retrieval Granularities: ProsandCons

QA Pairs Dataset Creation

4.1

4.2

4.3

4.4

Synthetic Question Answer Generation
41.1 Splitting Chunks to Random Subsets
41.2 Why Random Subsets? L.
413 InstructionPrompt
Sentence and Proposition QA Alignment
42.1 Sentence-Level Annotation
4.2.2 Proposition-Level Annotation
Real-World QA Collection
431 Collection Process
43.2 Manual Annotation L L.
433 Aligning Annotations Across Granularities.
Comparative Analysis of the QA Datasets
44.1 SyntheticQASets.,
442 Real-worldQASets
443 Impactof LLM Quality

System Design and Implementation

51 RetrieverSetup. o oL
51.1 BM25Retriever o
5.1.2 VectorStore Retriever
5.1.3 Ensemble Retriever

52 GeneratorSetup
5.2.1 GPU Memory Management through Quantization
5.2.2 Generation Configuration.
523 SystemPrompt L

53 QueryFlow.
5.3.1 Offline Phase: Corpus Indexing, and System Configuration
5.3.2 Online Phase: Evidence Retrieval and Response Generation

Evaluation

6.1 Retrieval Evaluation
6.1.1 Retrieval Metrics
6.1.2 Evaluation Framework
6.1.3 Retrieval Evaluation Results per Granularity
6.1.4 Summary of Observations

6.2 Generation Evaluation

6.2.1 Traditional Generation Evaluation Metrics
6.2.2 LLM-based Generation Evaluation Metrics
6.2.3 Generation Evaluation Results per Granularity

6.2.4 Summary of Observations

43
43
43
44
45
46
47
48
51
52
52
52
53
54
55
55

57
57
58
58
59
60
60
61
61
62
62
63

7 Conclusions
7.1 Conclusions
7.2 Limitations
7.3 FutureWork

Bibliography

A Prompt Templates

A.1 Decontextualized Proposition Creation

A2 QA Pairs Generation

A3 QA Pairs Annotation Sentence Annotation

A.4 QA Pairs Proposition Annotation
A5 System Prompt for AUEBbot . . .
A.6 LLM-based Generation Evaluation

List of Acronyms
List of Figures

List of Tables

85
85
85
86

87

95
95
96
97
99
100
100

102

104

107

Xi

Introduction

Recent advancements in Artificial Intelligence (AI) and Natural Language Processing
(NLP) have fundamentally transformed the way information is accessed and utilized. A
significant development in this domain is the emergence of intelligent conversational
agents—often referred to as chatbots or virtual assistants—that leverage the capabilities
of Large Language Models (LLMs). These systems are increasingly employed across
diverse application domains, ranging from customer service automation to specialized
educational support. Despite their broad applicability, building highly capable assistants
often requires substantial computational resources and extensive training data, posing

challenges particularly in contexts with limited resources.

In the academic environment, particularly at the undergraduate level, students frequently
encounter scenarios where timely access to accurate and context-specific information is
vital for their academic progression and overall educational experience. Across universities,
undergraduates routinely rely on department Studies Guides, which serve as authoritative
resources for curriculum structures, course syllabi, academic policies, and administrative
procedures. Yet, the sheer breadth and organizational complexity of these documents
can present considerable obstacles to effective information retrieval, often resulting in
frustration and inefficiency. Addressing this widespread issue, the present thesis proposes
a generalizable pipeline for the development of a conversational assistant designed to
support undergraduate students in navigating their academic requirements. Although
the implementation and evaluation focus on the Studies Guide of the Department of
Informatics at the Athens University of Economics and Business (AUEB) as a representative
case study, the methodology, system architecture, and insights are intended to be broadly
applicable across diverse institutional contexts. By grounding all responses in up-to-date,
institutionally sanctioned documentation, the proposed assistant aims to enhance student
autonomy and facilitate more informed decision-making throughout the course of their
studies. Furthermore, depending on the scope and nature of the ingested documents,
the system could be extended to support not only enrolled students but also university
personnel seeking administrative information, as well as prospective students exploring

academic programs and requirements to inform their application decisions.

Motivated by these considerations, this thesis introduces AUEBbot, an assistant specifically

designed to serve the information needs of undergraduate students at the Department

2

of Informatics at AUEB!. The primary objective of the assistant is to facilitate intuitive
and efficient access to relevant, accurate, and up-to-date information derived exclusively
from the official Studies Guide. By employing a Retrieval-Augmented Generation (RAG)
architecture, the assistant integrates advanced NLP techniques for preprocessing textual
content, extracting meaningful document representations at various granularities, and
efficiently retrieving contextually relevant information. The retrieved information is then
synthesized into precise natural-language responses through state-of-the-art generative

Al technologies.

This thesis thoroughly explores the various methodological stages involved in developing
such an assistant. These stages encompass the preprocessing and representation of the
Studies Guide content at the chunk, sentence, and proposition (concise, self-contained
factual units) levels, the generation and curation of both synthetic and real-world question-
answer datasets to benchmark system performance, detailed architectural design decisions
underpinning the retrieval and generation processes, and rigorous evaluation employing
both quantitative and qualitative metrics. Special emphasis is placed on examining the
practical trade-offs between system performance and computational efficiency, particularly

within the resource constraints typical of an undergraduate research environment.

1.1 Motivation and Problem Statement

Undergraduate students at the Department of Informatics at AUEB, frequently need reliable
access to information about curriculum planning, faculty contacts, university facilities,
regulations, and administrative procedures. However, the existing search process relies
heavily on fragmented sources such as PDF files, spreadsheets, or direct emails to various

department secretariats, an approach that is often outdated, inefficient, and frustrating.

The motivation stems from the realization that students deserve a modern, centralized
platform where they can easily ask questions and receive actionable answers in an engaging,
conversational format. The proposed system would allow students to ask about campus

services, curriculum structure, and administrative processes.

Aiming to fill this need in student services, this thesis aims to develop a lightweight,
domain-specific RAG-powered assistant that bridges the information gap in AUEB’s current

ecosystem.

!All the code is publicly available on GitHub here: ht tps: //github.com/NIKOMAHOS/rag_bot_
AUEB

Chapter 1 Introduction

https://github.com/NIKOMAHOS/rag_bot_AUEB
https://github.com/NIKOMAHOS/rag_bot_AUEB

The proposed system aims to:

« Centralize access to official AUEB content, with the present version limited to
the Studies Guide and future expansions envisaged to cover faculty information,

campus facilities, and administrative procedures.
+ Provide verifiable answers, grounded in up-to-date univeristy documentation.
« Deliver results in an accessible and engaging conversational interface.

« Maintain low resource consumption, enabling deployment on modest infrastruc-

ture such as university servers or inexpensive cloud instances.

The overarching problem statement is therefore: "How can one design and implement a
lightweight, transparent, and resource-efficient RAG-based virtual assistant that meets
the real-world information-seeking needs of AUEB students while ensuring answers are

accurate, verifiable, and engaging?"

1.2 Thesis Structure

This thesis is structured into 7 main chapters (including this one), outlined as follows:

Chapter 2 introduces the necessary background material and reviews related work in
RAG, institutional chatbot pipelines, document chunking techniques, LLMs, synthetic data

generation, and information retrieval.

Chapter 3 focuses on the ingestion and preprocessing of the AUEB Studies Guide, the sole
knowledge base used in this work. It details the methodology used to extract semantically
coherent paragraph-level chunks from the document, followed by their transformation
into sentence-level and fully decontextualized proposition-level units. The benefits and
tradeoffs of each granularity are discussed in the context of downstream retrieval and

generation.

Chapter 4 explains the creation of Question Answer (QA) data for evaluation. It describes
the synthetic generation of QA pairs at all three granularities using structured prompting

techniques, as well as the small-scale collection of real-world student queries.

Chapter 5 describes the core assistant system design. It outlines the three retrieval setups

that we experimented with: BM25-based sparse retrieval, dense vector search via FAISS,

1.2 Thesis Structure

4

and Hybrid retrieval through reciprocal rank fusion (RRF). It also discusses the prompt

engineering and LLM configuration used for answer generation.

Chapter 6 outlines the methodology and experimental setup used to evaluate the system.
It compares performance across all three document granularities, using both real and
synthetically generated QA pairs and different retrievers. Results for both retrieval and

response generation are presented and analyzed.

Chapter 7 concludes the thesis by summarizing its contributions, outlining limitations,
and proposing future work directions. These include expanding the document collection,
experimenting with other advanced retrieval tactics, deploying the assistant for practical

use by AUEB students, and getting real-user feedback.

Appendix A contains auxiliary resources, including prompt templates used in different

stages of the pipeline.

Chapter 1 Introduction

Background and Related Work

Retrieval-Augmented Generation (RAG) has emerged as a significant approach in address-
ing the limitations of traditional Large Language Models (LLMs), which are trained on vast
corpora and rely entirely on their internal representations of knowledge, making them
susceptible to issues like hallucinations, which is when the models generate plausible but
incorrect information. These models cannot efficiently update their knowledge without
retraining, making them less practical for dynamic, knowledge-intensive tasks where
accurate and contextually grounded outputs are essential [GRS24]. This chapter, among
other things, provides a background and explores related work in the domain of RAG
systems, with a specific focus on their applicability as institutional assistants, like smart

assistants for universities.

2.1 Background

2.1.1 Retrieval Augmented Generation

RAG has been cemented as a powerful, reliable, and relatively low-cost technique to
enhance LLMs by conditioning their generation on external evidence retrieved at inference
time [Sha25]. This approach enables LLMs to incorporate data from external knowledge
bases, significantly enhancing the accuracy and credibility of generated content. RAG
is particularly useful for knowledge-intensive tasks, allowing for continuous knowledge
updates and the integration of domain-specific information in the LLM response [Lew+20;
Gao+24a]. RAG synergistically merges the intrinsic knowledge of LLMs with the vast,
dynamic repositories of external knowledge bases. Since its introduction, RAG has been
widely adopted as a key technology for advancing chatbots and improving the suitability
of LLMs for real-world applications [Gao+24al].

User Query Prompt —_— @

g —> Response

A

Document Retrieved
Store Documents

Fig. 2.1.: The main idea behind a RAG pipeline. The system retrieves relevant documents from a
document store to supplement the user prompt, enabling the generator (LLM) to produce
grounded responses.

A typical RAG system generally consists of three core stages: indexing, retrieval, and

generation [Gao+24a].

Indexing involves several interconnected steps, beginning with the extraction and prepro-
cessing of raw data from various input formats, including plain text, structured documents,
code, and tables, into a uniform textual representation. Given that each LLM has a specific
context window, which defines the maximum number of tokens it can process, this textual
data is typically segmented into smaller, semantically meaningful units through a process

known as chunking.

Chunking is critical to mitigating the well-documented "Lost in the Middle" phenomenon,
where LLMs tend to disproportionately attend to the beginning and end of lengthy texts,
neglecting the middle segments [Liu+23]. Effective chunking strategies, therefore, strive to
produce segments that comfortably fit within the model’s context window while preserving
semantic coherence and completeness. The choice between fixed-length chunking, struc-
tured chunking based on document headers and subheaders, or alternative segmentation
methods heavily depends on the specific characteristics of the input data and the intended

application of the RAG system.

After chunking, these textual segments are encoded into suitable representations, com-
monly as sparse vectors using traditional lexical methods (e.g., BM25), dense embeddings
leveraging neural encoders (e.g., SBERT [RG19]), or other variants such as learned sparse
embeddings (e.g., SPLADE [FPC21]) and multi-vector models (e.g., CoIBERT [KZ20]),
which support token-level matching via late interaction—that is, they encode each token
separately and compute relevance by matching each query token to the highest-scoring

document token. Unlike dual-encoder models such as SBERT, which encode each segment

6 Chapter 2 Background and Related Work

as a single fixed vector—typically via pooling across tokens—and thus compute similar-
ity holistically, these late-interaction models preserve fine-grained semantic interactions
across tokens. These encoded representations are then stored in databases optimized
for efficient retrieval during inference. Depending on factors such as data complexity,
scale, and the specific relationships within data chunks, the indexing phase might utilize
traditional vector stores or graph databases. Graph databases, in particular, allow the
encoding and querying of complex interrelations among indexed chunks, thus facilitating
richer semantic retrieval and enhancing the RAG system’s ability to provide contextually

accurate and interconnected responses.

URLs Documents _,Gxtractiog —_ Pqunklnga_,(Encodingj—V(Storing —_
with metadata)
3

Data f API 5
base

Fig. 2.2.: Overview of a typical indexing process.

Cindex)
=

N —
——

Retrieval: Upon receiving a user query, the RAG system employs the same text encoding
method used during indexing to transform the query into an appropriate text representation
for the retriever. Then, all the saved chunk representations are compared to the user query
representation and ranked from the top to less similar. The K most similar chunks are
then added to the prompt as relevant context to help the model in the answer generation
phase [Gao+24a].

Generation: During the generation phase, the query posed by the user and the documents
retrieved from previous steps are synthesized into a coherent prompt provided to an LLM.
The LLM subsequently generates a response, potentially utilizing its intrinsic parametric
knowledge or strictly adhering to the information from the retrieved documents, depending
on the instructions included in the prompt. In conversational systems, dialogue history
may also be incorporated into the prompt to support coherent multi-turn interactions
[Gao+24a].

The above three phases establish the Naive RAG paradigm, which represents the earliest
methodology and a standard starting point of the development process of a RAG system
[Gao+24a]. It involves a singular retrieval step followed by generation, which is typically
insufficient for complex problems requiring multi-step reasoning, as it provides a limited
scope of information, and it may even reduce answer generation accuracy if the retrieved

context is irrelevant.[Yor+24; Sha25; Gao+24a].

The RAG paradigm has continued to evolve, advancing with each new framework intro-

duced. Advanced RAG introduces specific improvements to overcome the limitations of

2.1 Background

Fig. 2.3.: Overview of the Naive RAG paradigm (figure reconstructed by the author from Gao et al.

8

O
[

User Query

‘-

Documents

' l

RN

Prompt Frozen LLM

A 4

(Output)

Naive RAG

[Gao+24a]).

Naive RAG, primarily focusing on enhancing retrieval quality through pre-retrieval and

post-retrieval strategies.

Pre-Retrieval techniques include the following:

Query Rewriting seeks to reformulate the user’s original query into a more effective
search input by resolving ambiguity, coreference, ellipsis and aligning the query to the
retrieval system’s vocabulary. In conversational settings, this can involve rewriting incom-
plete questions into self-contained forms [Wu+22]. More recent RAG-oriented approaches
frame query rewriting as a learnable module inserted before retrieval. For example, the
Rewrite—Retrieve-Read paradigm uses a lightweight rewriter (e.g., a small LLM) to generate
a reformulated query that aligns better with both the retriever and the LLM reader (a
frozen LLM that comprehends the question together with the retrieved info to produce an
answer) and can be fine-tuned via reinforcement learning to maximize downstream QA

performance [Ma+23].

Query Expansion augments the rewritten or original query by injecting additional terms
that are semantically related, such as synonyms, hypernyms, or statistically co-occurring
words, to mitigate vocabulary mismatches [CR12]. Traditional methods include pseudo-

relevance feedback and thesaurus-based augmentations, whereas modern techniques
exploit embeddings or LLMs to propose context-aware expansion terms [Jag+23; Nas+21].

This process often yields gains in recall and occasionally precision [AD19].

Query Routing (also termed dynamic retrieval selection) determines which retrieval
subsystem(s) should handle a given query. In hybrid retrieval architectures, one may use

a lightweight classifier or metadata matcher to route queries to a sparse retriever, dense

Chapter 2 Background and Related Work

retriever, or even domain-specific index segments. This way, each query is handled by the

most suitable retriever [Gao+24a].

These three pre-retrieval techniques are complementary: rewriting improves query clarity,
expansion increases recall, and routing selects the most appropriate retriever(s). Together,
they significantly improve the quality of the candidate set entering the main retrieval

phase.

Post-Retrieval techniques include the following:
Reranking is a refinement step performed after the initial document retrieval, where
another model, often a cross-encoder [PMM24] of some kind, is tasked to reassess and

reorder the retrieved candidates by their actual relevance to the query [NC19; Nog+20].

Fusion methods aim to further improve retrieval quality by combining or aggregating
the results of multiple retrieval strategies or queries. In advanced RAG systems, fusion
refers to techniques where retrieved document lists from different retrievers or query
formulations are merged and re-ranked to produce a single, more comprehensive set of
candidates. Rank fusion approaches, and specifically the Reciprocal Rank Fusion (RRF)

method, are discussed in greater detail in Section 2.1.4

Context Compression (or Contextual Compression) condenses the retrieved docu-
ments, ensuring that only the most relevant information is passed to the language model.
By summarizing or filtering content based on the user query, it reduces token usage, cuts

inference time, and limits noise, without sacrificing response quality [Ver24].

Building upon Advanced RAG, the Modular RAG paradigm restructures the pipeline
by decomposing it into discrete, interchangeable modules and operators. Instead of a
rigid retrieve—generate chain, systems can dynamically orchestrate components such as
routing, rewriting, retrieval, fusion, and generation into flexible workflows that support
conditional branching, iterative loops, or parallel execution [Gao+24a; Gao+24b]. As
illustrated in Figure 2.5, these architectures operate more like “LEGO-style” frameworks:
modules such as ROUTING, SEARCH, REWRITE, RETRIEVE, RERANK, FUSION, and PREDICT can
be recombined to implement diverse patterns. These include linear flows as in Naive RAG,
enhanced flows with reranking (Advanced RAG), or demonstration-augmented search
flows, such as DSP, which stands for Demonstrate—Search—Predict and is a pattern in
which the system first demonstrates by prompting the LLM with examples or few-shot
context, then performs a search using the LLM’s output or query context, and finally
predicts the answer based on the retrieved information. Another notable pattern is the
iterative retrieval-generation loops pattern, such as ITER-RETGEN, in which retrieval and
generation are interleaved in a loop: each generation step produces intermediate output,
which is used to perform more focused retrieval, progressively refining the context. This

loop continues for a predefined number of iterations or until convergence. One more

2.1 Background

8 Qyj [@9@

User Quer Documents
Pre-Retri A 4
re-Retrieval j
« Query Rewriting Indexing
« Query Expansion
-+ Query Routing
v v

Retrieval j
Post-Retrieval

- Reranking

« Fusion

« Context Compression

v
<

Prompt Frozen LLM

A 4

Output]

Advanced RAG

Y Y @

Fig. 2.4.: Overview of the Advanced RAG paradigm (figure reconstructed by the author from Gao et al.
[Gao+24a]).

example of adapted behaviour that is enabled by this modularity is that the orchestration
layer may route queries to different retrieval subsystems depending on metadata or query
type [Gao+24a; Gao+24b]. By framing RAG as a configurable graph of operators, Modular
RAG offers increased flexibility, enabling task-specific pipelines, easy experimentation,
and the evolution of new retrieval and generation patterns beyond the limitations of prior

paradigms [Gao+24b].

Retrieval Strategies

In RAG, retrieval is achieved by calculating the similarity between the representation of
the question and document chunks. This representation is usually created from a sparse

retriever or a dense retriever.

2.1.2 Sparse Lexical Retrieval with BM25

BM25, which stands for Best Match 25, is a widely used retrieval model that, like any
retriever, ranks documents based on their relevance to a given query, and it forms the
backbone of many modern Information Retrieval (IR) systems [RZ09]. Unlike simple term
frequency-based approaches, BM25 accounts for term saturation (diminishing returns
for repeated term occurrences), document length normalization, and inverse document

frequency, making it robust and effective across various text corpora.

10 Chapter 2 Background and Related Work

Modules

: el Read - :

Patterns
Demonstrate
v \4
Retrieve K l
Retrieve Read
} ‘ X
l Retrieve
Read v v
Naive RAG Advanced RAG DSP ITER-RETGEN
Modular RAG

Fig. 2.5.: Overview of the Modular RAG paradigm (figure reconstructed by the author from Gao et al.
[Gao+24a)).

Formally, the BM25 score for a document D given a query () is defined as:

(@, D)- (ki + 1)
BM25(D, Q) = IDF(q;) - 2.1
Q) q% @ Flai D)+ k1 (1=b+b- L2 1

where f(q;, D) is the term frequency of query term ¢; in document D, | D)| is the document
length, avgdl is the average document length in the corpus, and ki, b are tunable hy-
perparameters controlling term frequency scaling and length normalization, respectively.

IDF(q;) denotes the inverse document frequency, typically calculated as

N —n(g)+0.5
n(gi) + 0.5

IDF(¢;) = log +1, (2.2)
where N is the total number of documents in the corpus and n(qg;) is the number of
documents containing term g;, thereby emphasizing terms that are relatively rare in the

collection.

BM25 has been extensively adopted due to its lexical matching capability, which efficiently
narrows down a large document set to a manageable subset of potentially relevant passages

or chunks.

2.1 Background 11

12

Overall, BM25 remains a foundational component in modern RAG systems, serving as both
a reliable baseline and a tactic to boost the performance of multiple retriever (commonly
referred to as mixed or hybrid retrieval) setups, by providing precise lexical keyword-
based matching that captures exact term overlap, thus complementing dense retrieval that

focuses on semantic similarity with fine-grained relevance [Kuz+20; WZZ21].

2.1.3 Dense Semantic Retrieval with Sentence-BERT

Dense retrieval models represent a significant advance in information retrieval for RAG.
Among the most widely adopted models in this space is Sentence-BERT (SBERT), intro-
duced by [RG19]. SBERT is a modification of the classic BERT architecture that Devlin et al.
[Dev+19], specifically designed to generate semantically meaningful sentence embeddings,
enabling efficient and accurate similarity search, clustering, and large-scale information

retrieval.

Standard BERT-based models for sentence-pair tasks use a cross-encoder architecture,
where both sentences are fed together into the transformer, and their similarity is predicted.
While highly effective for many supervised tasks, this approach is computationally infeasi-
ble for large-scale retrieval, as it requires running the transformer for every possible pair.
In contrast, SBERT employs a siamese (two identical networks with shared weights) or
triplet network structure to derive semantically meaningful sentence embeddings. During
training, SBERT uses pairs or triplets of sentences, depending on the chosen architecture,
to learn sentence embeddings such that sentences with similar meanings are closer in the
embedding space [RG19].

In more detail, the siamese structure works by taking two sentences, encoding them in-
dividually into embeddings using the shared SBERT model, and then applying a pooling
operation to obtain fixed-sized embeddings. These embeddings are compared using a
similarity measure (typically cosine similarity) to quantify the degree of conceptual align-
ment between the input sentences. The SBERT model is then fine-tuned using objective
functions (classification, regression, and triplet objective functions) designed to directly

optimize semantic similarity [RG19].

Because each document or sentence is encoded into an embedding vector independently
of the query, this process needs to be done only once for a given corpus of documents.
After this encoding, the embeddings can be reused across multiple queries, significantly
reducing computational overhead during retrieval compared to traditional cross-encoder
architectures that must process each sentence pair individually every time a query is

made.

Chapter 2 Background and Related Work

Formally, given a query g and a candidate document or passage d, both are independently

encoded as vectors using a shared SBERT model:

u = SBERT(q), v = SBERT(d) (2.3)

The relevance score between ¢ and d is then computed by various similarity metrics, with

cosine similarity being a common choice:

Score(q,d) = cos(u,v) = vy

= Tallvl @4

[_11 1]

!

cosine-sim(u, v)

/\

u v
Pooling Pooling
BERT BERT
Sentence A Sentence B

Fig. 2.6.: Overview of the SBERT architecture (figure reconstructed by the author from Reimers and
Gurevych [RG19]).

This, coupled with vector databases such as FAISS? [JDJ21], allows for fast and accurate
similarity search and retrieval. A vector database is a type of database that stores data as
high-dimensional vectors, typically produced by embedding functions (such as SBERT),

making them particularly suitable for managing large-scale semantic search operations.

Compared to approaches that rely on simpler embedding strategies, such as using the CLS
(which stands for Classify) token, which encodes a general representation of the entire
input sequence, SBERT significantly improves semantic coherence by explicitly training
embeddings to reflect sentence-level meaning. The CLS token in standard BERT models is
a special token used to aggregate the entire input sequence representation, yet it may not
always capture nuanced sentence-level semantics effectively. In contrast, SBERT directly
optimizes embeddings for sentence-level semantic tasks, thus dramatically improving the

semantic coherence of the embedding space.

2FAISS stands for Facebook Al Similarity Search.

2.1 Background 13

Empirical results have consistently demonstrated that SBERT outperforms previous unsu-
pervised and supervised sentence embedding methods across a range of semantic textual
similarity and transfer tasks [RG19]. Notably, the time required for semantic search over a
corpus of 10,000 sentences decreases from hours (with traditional BERT cross-encoders) to
mere seconds using SBERT [RG19].

2.1.4 Hybrid Retrieval and Rank Fusion

Hybrid Retrieval refers to the integration of different retrieval techniques into a single
search pipeline. A major challenge in IR and RAG pipelines is that no single retrieval
model—whether sparse (BM25), dense (embedding-based), or otherwise—consistently
dominates across all query types and domains. Sparse and dense retrievers capture different
notions of relevance: sparse models excel at matching exact keywords and rare entities,
while dense models leverage semantic representations to bridge lexical gaps and handle
paraphrasing or concept matching [MGG25; Sha+24]. However, each approach exhibits
limitations when applied in isolation, especially in complex, knowledge-intensive settings
where both lexical fidelity and semantic coverage are important. The goal behind hybrid
retrieval setups is to capitalize on the strengths of both. Practically, a hybrid system will
issue both dense and sparse vector searches in parallel and then combine the results in a

single unified ranking,.

Exact Search

A o —a
p {\@/} Exact Representation
> r—— >
Sparse Vectors ‘—D{ Index Text ‘—b

—D{ Hybrid Results H Ranked Results
—P{ Index Vectors

- - 0
S—rr Similar Representation

Semantic Search

Retrieve by Keyword

Dense Vectors

—P‘ Retrieve Similar

Fig. 2.7.: Intuitive Overview of a hybrid retrieval setup, leveraging both lexical and semantic search
(figure reconstructed by the author from this website: https: //www. couchbase.com/
blog/hybrid-search/.

Rank fusion methods are a family of techniques, used within hybrid retrieval setups, that
merge the outputs (i.e., ranked document lists) of multiple, frequently diverse retrievers into
one coherent ranking. The central motivation is to leverage the complementary strengths
of different retrievers, thereby boosting recall, increasing robustness, and reducing the risk

of missing relevant documents due to the blind spots of any individual retriever [Kuz+20;

14 Chapter 2 Background and Related Work

https://www.couchbase.com/blog/hybrid-search/
https://www.couchbase.com/blog/hybrid-search/

Sha25; Gao+24a). Notably, empirical studies have demonstrated that hybrid retrieval, such
as combining BM25 with neural retrievers, consistently achieves higher recall and mean
average precision (see Section 6.1.1 for more information) than either approach alone,
with improvements remaining robust across a range of queries and retrieval depths. In the
context of RAG, these improvements in retrieval recall and ranking translate directly to
better factual grounding, higher answer consistency, and reduced hallucination rates in

generated outputs [Kuz+20; Sha25].

Among various fusion strategies, Reciprocal Rank Fusion (RRF) has emerged as a simple
yet highly effective method for merging ranked lists from different retrieval systems. RRF
requires no training and operates purely on the rank positions of retrieved documents,
making it robust and model-agnostic [CCB09; MGG25]. The RRF score for a document d

across a set of retrieval runs R is calculated as:

1

RRFscore(d) = Z)

re€ER

(2.5)

where 7(d) denotes the rank position of d in retriever 7’s list of ranked documents (with
unranked documents assigned an infinite rank), and c is a smoothing constant, typically
set to 60. This formulation assigns higher scores to documents ranked highly by any
individual system, and particularly favors documents that are ranked highly by more than
one retriever, so that items appearing near the top of several lists receive substantially
higher aggregate scores than those ranked highly by only a single retriever [CCB09;
MGG?25]. This way, RRF encourages both consensus (i.e., retrieval depth), by up-weighting
documents highly ranked by multiple retrievers, and cross-retriever coverage (i.e., retrieval
diversity), by ensuring that unique high-quality documents from any individual list are

still considered for the final ranking.

A common extension of RRF incorporates trainable weights to prioritize one retrieval
signal over another. In this variant, each retriever’s contribution is scaled by a predefined
weight, allowing the system designer to emphasize, for example, dense semantic rankings

over BM25 or vice versa. The weighted RRF score for document d is calculated as:

WeightedRRF(d) = > wy. -
r€ER

o (2.6)
c+r(d)

where w, is the weight assigned to retriever r, r(d) is the rank of d in r’s list of ranked
documents, and c is again a smoothing constant (typically set to 60). This weighted
extension allows for fine-tuning the influence of each retrieval signal according to task-
specific needs, and has been shown to improve performance in hybrid and even multi-modal

retrieval scenarios [Sam+25].

2.1 Background

15

16

Unlike alternative fusion methods (e.g., CombMNZ [FS93] or Condorcet voting [MA02]),
RRF does not depend on calibrated scores or require global rank normalization. Exper-
imental results across a wide range of TREC® and benchmark datasets show that RRF
consistently outperforms both individual retrieval systems and other unsupervised fusion
approaches [CCB09; MGG25]. In Advanced RAG pipelines, applying RRF to combine
sparse and dense retriever outputs not only improves top k recall but also reduces LLM
hallucination rates by ensuring that the most contextually relevant documents, whether

retrieved by sparse or dense means, are surfaced for answer generation [MGG25].

In summary, reciprocal rank fusion provides an efficient, interpretable, and empirically
validated mechanism to ensemble multiple retrieval signals in modern RAG architectures,

supporting more accurate, robust, and trustworthy question-answering systems.

Generation Step

In RAG, the generation step is the final stage where the LLM synthesizes the user query
together with the retrieved context to produce the answer. This phase is critical, as it
directly determines the factual accuracy, fluency, and overall usefulness of the system’s
output. Depending on the prompting strategy, the model may strictly adhere to the
retrieved evidence, combine it with its own parametric knowledge for reasoning, or

balance between the two.

2.1.5 Generative Model Characteristics

In the RAG paradigm, the generative component plays a pivotal role by synthesizing final
answers conditioned on retrieved context. The LLaMA* family of models, and especially
the LLaMA 3 family of models, exhibit several architectural and methodological choices

that render them particularly effective for tasks such as Question-Answering [Lla24].

First, LLaMA 3 models are trained on a rigorously curated, filtered, and deduplicated
corpus of approximately 15 trillion multilingual tokens, including substantial quantities of
code, mathematical, and reasoning data. Such scale and diversity result in strong general-
ization capabilities, robustness to diverse query formulations, and reliable performance in
knowledge-intensive and multi-lingual settings. Additionally, targeted and domain-specific
“annealing” phases during pre-training, where the learning rate is linearly reduced to 0

over the final 40 million tokens, high-quality reasoning and code data are upsampled, and

*TREC (Text REtrieval Conference) is an ongoing, annual evaluation workshop series organized by the
U.S. National Institute of Standards and Technology (NIST). TREC serves as a foundational platform for
collaborative, pre-competitive benchmarking in IR, offering reusable test collections and an open forum
for rigorous system comparison. You can find out more at https://trec.nist.gov.

*LLaMA is short for Large Language Model Architecture

Chapter 2 Background and Related Work

checkpoints are averaged. According to the Llama Team [Lla24], this step further enhances
the model’s mathematical and reasoning performance, which is crucial for academic and

technical question answering.

A second cornerstone is that they employ the Transformer architecture with Rotary
Positional Embeddings (RoPE) [Su+21]. In contrast to traditional absolute positional
encodings, which are simply added to the input embeddings, RoPE introduces position
through a sequence of rotations applied to the query and key vectors within each attention
head. Specifically, ROPE represents each token’s position by rotating pairs of embedding
dimensions in the complex plane, with the angle of rotation proportional to the token’s
position index. By integrating positional information directly into the self-attention
mechanism, ROPE ensures that the similarity between tokens depends not only on their
content but also on their relative positions within the sequence. This design enables the
model to capture both absolute and relative positional relationships, thus allowing it to
generalize more effectively to longer or previously unseen sequence lengths, a capability
that is critical for applications where retrieved context windows can be extensive. The
latest LLaMA models further increase the RoPE base frequency, enabling context windows

of up to 128,000 tokens, far surpassing most open-source counterparts.

Third, LLaMA 3 models are trained using a straightforward yet robust two-phase training
procedure. This process begins with large-scale pre-training on diverse, high-quality data
to build general language understanding. The subsequent post-training phase relies on a
streamlined combination of supervised fine-tuning (SFT) [XZ25], rejection sampling
(RS) [XZ25], and direct preference optimization (DPO) [Raf+23], rather than more
complex reinforcement learning algorithms. Here, rejection sampling refers to generating
multiple output candidates per prompt and selecting the highest-scoring one according
to a reward model, essentially sampling several outputs, evaluating them via the reward
function, and retaining only the best for training. By leveraging this multitude of rela-
tively simple but effective techniques, LLaMA models improve alignment with human
instructions and factual correctness while minimizing the engineering overhead and insta-
bility often associated with reinforcement learning from human feedback (RLHF) methods
[Zie+20; Ouy+22]. This results in models that are both highly capable of following detailed
instructions and well-aligned with human values, critical for reliable answer generation in
RAG systems.

Finally, LLaMA 3 models intentionally employ a standard dense Transformer architecture
[Vas+17] with minor modifications from the LLaMA 2 series [Lla24], deliberately avoiding
the additional complexity of mixture-of-experts (MoE) approaches [Sha+17]. MoE
architectures represent a class of neural network designs in which a gating network
dynamically routes each input token to a small, specialized subset of “expert” feed-forward
sub-layers, rather than sending all tokens through the full feed-forward network at each

layer. This design principle allows MoE-based models to scale to trillions of parameters, as

2.1 Background

17

18

only a fraction of the network is utilized at any given time. However, the routing decisions
made by the gating network, as well as the auxiliary losses required to balance the load
among experts, introduce significant engineering complexity and may lead to variability in
inference behavior. By contrast, the LLaMA 3.1 family deliberately avoids this architectural
paradigm, opting for a dense, decoder-only Transformer backbone that processes all tokens
through the same layers. This design choice is motivated by a desire to maximize stability,
scalability, and ease of deployment, as explicitly noted by the developers in the "LLaMA 3
Herd of Models" paper [Lla24]. This choice, combined with other optimizations, including
grouped query attention (GQA)-a technique that partitions the query heads into multiple
groups with each group sharing one key-value head (with fewer groups than query heads),
thereby balancing efficiency and performance [Ain+23]-allows LLaMA models to achieve
efficient inference, high-quality multilingual performance, and state-of-the-art generation
capabilities [L1a24].

Collectively, these properties position the LLaMA 3 family of models as state-of-the-
art open-source choices for the generation step in RAG pipelines, supporting robust,
contextually grounded, and instruction-following outputs across a wide array of knowledge-

intensive domains [Lla24].

The interaction between LLMs and RAG forms a powerful paradigm, as RAG can effectively
leverage the superior reasoning capabilities of LLMs, combined with the broad knowledge
scope of external data, to explore the potential applications of LLMs more extensively
[HH24]. On the other hand, LLMs can serve as crucial components in RAG, functioning
as the decision maker, answer generator, or even evaluator of certain aspects of a RAG

pipeline [Yu+25]

2.2 Related Work

RAG has gained significant traction within the field of NLP as it addresses critical limi-
tations associated with LLMs, particularly their tendency toward hallucinations, input
token constraints, outdated knowledge, and limited access to real-time or domain-specific
information. The emergence of RAG methodologies has allowed LLMs to condition their
generation on external knowledge sources retrieved at inference time, significantly en-

hancing the accuracy, relevance, and factual consistency of their outputs [Lew+20]

2.2.1 Significance of Retrieval Granularity

The granularity at which documents are segmented for retrieval has a profound impact
on the effectiveness of both the retrieval process and downstream LLM generation in

RAG systems. While segmenting text into smaller chunks reduces irrelevant information

Chapter 2 Background and Related Work

and noise, it can also result in the loss of critical context, as key relationships may be
split across multiple segments. To mitigate this, recursive splitting and sliding window
techniques have been proposed. Recursive splitting is a chunking strategy that attempts
to divide long texts into manageable chunks following a hierarchy of separators—such
as paragraphs, lines, words, and finally character boundaries. If a segment exceeds the
defined chunk size, it recursively tries the next finer-grained separator until all chunks fall
within the specified limit. In the sliding window chunking strategy, the text is segmented
into fixed-size, overlapping chunks by moving a sliding window across the text. Each
chunk overlaps with its neighbor, thereby maintaining important context across chunk
boundaries. While this preserves semantic continuity, it does introduce redundancy and
additional computation overhead due to repeated content processing. However, these
methods still struggle to fully balance the need for semantic coherence and semantic
completeness against the strict limitations imposed by the context length of large language
models [Gao+24a].

Recent studies highlight that the retrieval unit significantly impacts a RAG system’s
performance. Recent research by Chen et al. [Che+24] demonstrate that decomposing
documents into propositions, defined as atomic, self-contained statements expressing
distinct facts, can significantly improve the relevance and factuality of retrieval outputs.
Propositions offer a level of granularity finer than just splitting a text passage into sentences,
as they isolate semantically complete, context-independent pieces of information. This
proposition-level indexing not only reduces contextual noise but also mitigates issues of
ambiguity and co-reference that can hinder retrieval and downstream answer generation.
Chen et al. [Che+24]’s findings indicate that using propositions as the fundamental retrieval
unit enhances precision, improves grounding, and supports more efficient utilization of
the limited context window available in LLMs, thus representing a promising direction for
robust RAG pipelines. Similarly, Vlachos et al. [Vla+25] find the use of propositions more
beneficial (as opposed to other granularities, like chunks or sentences), particularly for

synthetic dialog generation for conversation question-answering,.

2.2.2 Synthetic Data Generation

A persistent bottleneck in the development and evaluation of RAG systems is the creation
of high-quality, large-scale annotated QA datasets. Manual annotation remains costly,
time-consuming, and often limited in both scale and adaptability to new domains or
languages, introducing potential annotation biases and limiting coverage of emerging
or specialized topics. To address these challenges, the use of synthetic data generation
methods, particularly those leveraging LLMs, has rapidly gained traction as a means to
automate the creation of synthetic text data (ranging from question answer pairs and
whole dialogues to even code), thus dramatically reducing reliance on human annotation

and accelerating RAG research and deployment [Sou+24].

2.2 Related Work

19

20

Recent work provides systematic taxonomies of conversational data generation pipelines,
categorizing them into key phases such as seed data creation, utterance generation, and
quality filtering. These synthetic data pipelines are capable of transforming existing
textual resources—including documents, tables, and knowledge graphs—into multi-turn,
contextually rich dialogues or factual QA pairs. This process enables the efficient augmen-
tation of datasets for three broad classes of dialogue systems: task-oriented, open-domain,
and information-seeking systems, which are each central to modern RAG applications
[Sou+24].

Notably, techniques such as dialog inpainting [Dai+22] have been introduced to address
the scarcity of high-quality multi-turn conversational data. DIALOG INPAINTING leverages
LLMs to convert documents into simulated conversations between a writer and an imagined
reader, interleaving real document sentences with automatically generated user queries.
The resulting datasets, such as WikiDiaLoG and WEBDIALOG, achieve not only orders of
magnitude larger than prior manually constructed datasets, but also human-competitive
conversational adequacy and answer quality. According to Dai et al. [Dai+22], using these
datasets to develop CONVQA retrieval systems showed substantial gains in key retrieval

metrics, indicating increased retrieval performance.

2.2.3 LLM-as-Judge Evaluation

The evaluation of Retrieval-Augmented Generation (RAG) systems presents unique method-
ological challenges due to their complex hybrid architecture, which couples retrieval and
generative modules. Traditional evaluation metrics, such as BLEU [Pap+02], ROUGE
[Lin04], METEOR [LA07], and BERTscore [Zha+20] (see Section 6.2.1 for more infor-
mation), while useful for certain subtasks, often fail to capture the nuanced interplay
between retrieval accuracy, factual consistency, and answer quality within end-to-end
RAG pipelines. This limitation is particularly pronounced in knowledge-intensive or open-
ended domains, where the gold standard remains expert human annotation, a process that

is both time-consuming and expensive to scale [Gan+25; Li+24].

To address these bottlenecks, the paradigm of LLM-aAs-A-JUDGE has emerged as a scalable
and cost-effective surrogate for human evaluation in both RAG and general LLM-driven
applications. In this approach, a strong, large language model (typically GPT-4 or com-
parable) is prompted to assess the factuality, relevance, and completeness of candidate
answers. The model is tasked with mimicking human-like evaluative reasoning, allowing
for rapid, context-sensitive, and explainable assessments at a fraction of the cost of human
annotation [Zhe+23; Li+24].

Recent empirical studies demonstrate that LLM-based judges can match, and occasionally

exceed, the consistency of human evaluators, especially when equipped with robust prompt

Chapter 2 Background and Related Work

engineering and bias-mitigation strategies. For example, Zheng et al. [Zhe+23] show that
GPT-4, when used as a judge in the MT-Bench® and Chatbot Arena® settings, achieves
over 80% agreement with expert human raters—comparable to human-human agreement
rates—across thousands of dialogue and QA interactions. Moreover, LLM judges can
provide natural language justifications for their scores, enhancing the transparency and
interpretability of the evaluation process [Li+24]. Other surveys corroborate these findings,
documenting the adaptability and reliability of LLMs-as-judges across diverse domains,

including education, legal, and technical QA [Li+24; Gan+25].

Nevertheless, the LLM-as-Judge evaluation scheme is sensitive to prompt design and
susceptible to certain biases, such as LLM evaluators favoring more verbose outputs [Ye+24],
choosing the first or last option rather than assessing all available context equally [Ye+24],
or exhibiting self-enhancement bias, which refers to the tendency of the evaluating model to
favor responses that it generated itself—i.e., assigning higher preference or scores to its own
outputs over those from other models [PBF24]. These biases can skew evaluation outcomes
and reduce reliability. Another factor that may decrease the reliability of this evaluation
scheme is the task difficulty and the domain in which it is employed. Specifically, Zheng
et al. [Zhe+23] found that LLMs face significant difficulties with grading mathematical or
other highly specialized reasoning tasks. To maximize reliability, best practices include
prompt calibration (i.e., iteratively refining the evaluation prompt to ensure that the LLM
applies the intended criteria), randomized answer order, and benchmarking LLM judgments
against a subset of human gold labels [Zhe+23; Li+24]. Despite these caveats, the LLM-as-
Judge paradigm has rapidly become an indispensable tool in RAG evaluation pipelines,

balancing scalability, cost, and human-like discernment with unprecedented efficiency.

2.2.4 Institutional RAG Assistants

Recent work has explored the specific application of RAG systems within educational and
institutional contexts. Kuratomi et al. [Kur+25a] developed a RAG-based virtual assistant
for the University of Sdo Paulo (USP), designed to enhance information retrieval, taking
advantage of the plethora of available USP documents, significantly improving LLM per-
formance on QA regarding the institution by providing contextually accurate responses.
Similarly, Neupane et al. [Neu+24] introduced BARKPLUG V.2, a RAG-powered chatbot
aimed to unlock Mississippi State University’s (MSU) resources by effectively handling both
academic and non-academic user inquiries, achieving impressive quantitative performance
and user satisfaction by effectively leveraging university-specific datasets by curating
data of 42 different departments within the university, including academic departments,
financial aid, admissions, housing, dining services, library, health center, etc., using web
crawlers. Antico et al. [Ant+24] designed "Unimib Assistant," a student-friendly RAG-based

*https://github.com/1lm-sys/FastChat/tree/main/fastchat/11m_judge
Shttps://1lmsys.org/blog/2023-05-03-arena/

2.2 Related Work

21

https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
https://lmsys.org/blog/2023-05-03-arena/

22

chatbot specifically tailored to address the specific needs of students at the University
of Milano-Bicocca (UNIMIB), which include easier access to hard-to-find academic and
administrative information, simplified navigation across multiple university platforms,
and reliable answers with transparent source links. Despite its positive reception for user-
friendliness and conversational quality, technical challenges such as hallucinations and
inaccurate link generation highlighted ongoing limitations in RAG systems. These studies
underscore the importance of tailoring RAG applications to specific institutional contexts
to maximize their utility and effectiveness [Ant+24]. Additionally, a recent comprehensive
survey by Swacha and Gracel [SG25] investigated 47 distinct educational RAG chatbot ap-
plications, highlighting diverse educational functionalities ranging from facilitating direct
learning and generating personalized dialogues to supporting administrative and organiza-
tional processes. Their findings emphasized RAG’s strengths in mitigating hallucinations, a
primary barrier to the widespread adoption of LLM-based chatbots in educational contexts.
Moreover, the survey underscored the critical role of carefully selecting retrieval methods,
integrating relevant and authoritative educational datasets, and fine-tuning LLM prompts
to maximize factual grounding, conversational coherence, and overall user satisfaction
[SG25].

Chapter 2 Background and Related Work

Document Ingestion

3.1 Studies Guide Preprocessing and
Chunk-Based Indexing

The foundation of the knowledge base for the assistant is the English-language PDF of
the AUEB Department of Informatics Studies Guide, specifically the most recent (2024-
2025) edition 7. The assistant was developed using the English version of the Studies
Guide, primarily due to the wider availability and maturity of open-source tools and
language models for English. Nevertheless, the design is language-agnostic and can be
easily extended to other languages, including Greek, either by translating the source
documents or by employing appropriate language-specific retrieval and generation models.
Furthermore, although the present thesis centers its attention on this specific Studies
Guide, it is important to emphasize that the overall document ingestion pipeline is not
inherently tied to any particular document structure. Rather, the process described herein
is designed to be broadly applicable to a wide range of institutional documents, provided
that minimal adaptations are made to accommodate the inconsistencies present in the
source material. Special consideration is given to the treatment of document components
such as tables and images, which may require bespoke or manual interventions to ensure
their correct integration and representation within the knowledge base, as was indeed the

case in the present work.

In order for the Studies Guide document to pass smoothly through the indexing phase of the
RAG system, it was necessary to design a highly structured parsing, chunking, and metadata
extraction pipeline, closely tailored to the guide’s specific structure. The overarching design
goal was to maximize semantic coherence within each chunk while strictly preserving
logical document boundaries such as headers, sub-headers, and paragraphs. The chunk
structure in the Studies Guide is visualized in Figure 3.1. The visualization shows how
a header (“VIL. Undergraduate Studies”) contains a subheader (“VIL.1 Introduction and
General Information”), which in turn encapsulates a paragraph (“Basic Principles of the
Study Programme”), all together forming a coherent chunk of content with a full set of

metadata extracted using the custom chunking pipeline.

"https://www.dept.aueb.gr/sites/default/files/cs/CS_Manuals/
CSStudiesGuide2024-2025.pdf

23

https://www.dept.aueb.gr/sites/default/files/cs/CS_Manuals/CSStudiesGuide2024-2025.pdf
https://www.dept.aueb.gr/sites/default/files/cs/CS_Manuals/CSStudiesGuide2024-2025.pdf

VIl. MPOMTYXIAKES :NOYAEZ «—— Header
VII.1 Eroaywyn kat Fevikég MAnpodopiss « Subheader
¢¢ Apxés Npoypdpuparog & v < Paragraph

ITOX0G TWV TPOTTUXLAK@WY ortoudwv oto Turjpa MAnpodopurg eivat n npoetotpacia emotnuévwy NAnpodopikic pe edpodia mou Ba
TOUG ETUTPEMOUV VA OUVELGHEPOUV OUCLATTIKG OTNV avdnTuén Texvoloytwv MAnpodopikAg Kal TNV aflomoinan SIKTUAKWY Kal

A bV uroSoutv A ol vépoug yia v avdruén edappoydv MAnpodopikrg kat va éxouv £tat evepyd pého oe
6AoUG TOUG TOMELS TNG OLKOVORIKAG KaL KOWWVIKFG 5pacTnpLéTNTas, kaviv va avianetéABouv ot paydaieg texvohoykég Kat
erotnpovikég eelifels otov kKAado
H Baowd docodia Tou MpoypaypaTo; oMOUSGY oTNplZETal oTNY MEMOIBNON GTL yia TNV 0UCLACTIKY CUVELOHOPE OTO XWPO TNG
MAnpodopuiig eivat e§icou i 1 o€ BaBog Y 0N TG EMLOTARNG TwV YIOAOYLOT@VY KAL 1} YVEGN TOU GVTIKEEVOU TOU TEEBLou
edappoync. Etal, o pountrig propel va mapakoAouBrioel, exktdg and padnuara NANPodopikig, kat HaBiuata OKOVOULKWY,
AtownTikrg Ermotpng kat Emyelpnotaxig Epguvag. H mowkiAia autr Sivel Evav 151aitepo XapakTipa oTIC OMOUSES TOU MAPEEL TO
Tunua.

Chunk Content

Fig. 3.1.: Visualization of the chunk structure in AUEB’s latest Informatics Studies Guide, illustrating
how headers, subheaders, and paragraphs are hierarchically organized into a chunk.

This chunking pipeline was explicitly engineered to account for the complex and at times
inconsistent structure of the original PDF document. The workflow began with the use of
the pdfplumber? library to extract the raw text of each page, storing page contents in
a dictionary structure indexed by page number. All tables within the PDF were detected
using pdfplumber ‘s table extraction API. Where tables were deemed irrelevant or
contained redundant information, they were programmatically removed from the page
text to prevent downstream noise; conversely, critical tables, such as those listing course
modules or free elective courses, were manually reviewed, with the relevant information

re-integrated into the text in narrative form and assigned to the appropriate chunk.

By leveraging both native PDF font attributes (such as boldness and size), regular expres-
sions that capture Roman numerals and hierarchical section markers, and text alignment
heuristics, the detection of headers and sub-headers achieved to further enhance structural
accuracy. The Table of Contents was parsed to map each major and minor section to its
corresponding page range, providing a high-level navigational map for the subsequent
chunking process. Using these structural markers, the Studies Guide was then sliced into
distinct, logically bounded text chunks, with each chunk typically corresponding to a
unique section, subsection, or paragraph within a given header or sub-header. Chunk
boundaries were deliberately aligned with the document’s logical structure, ensuring that
each chunk encapsulates a coherent, self-contained unit of information. Each chunk may
span one or more paragraphs, depending on the structure of the text under each section of

the document.

Each chunk is equipped with an array of detailed metadata. These metadata include
the name of the source file (in this case, the name of the PDF file), the page of the start of
the chunk’s content in the original document, and the header, sub-header, and paragraph
names that the chunk belongs to, extracted from the document’s structure. Note that

the metadata fields chunk_id, page, and file_name are always present for every

*https://github.com/jsvine/pdfplumber

24 Chapter 3 Document Ingestion

https://github.com/jsvine/pdfplumber

chunk. For each chunk, the metadata fields header, subheader, and paragraph
may be None depending on the document’s structure at that point. However, every chunk
is always associated with at least one of these fields, so no chunk is created without a
contextual reference. As discussed in Section 3.1, these metadata can be leveraged to
improve retrieval accuracy by enabling a pre-retrieval filtering step, thereby reducing the
pool of candidate documents considered during retrieval [Gao+24a]. Additionally, the
systematic extraction of these metadata lay the groundwork for a citation functionality,
which would allow users to manually trace each answer back to the precise location in
the original document from which supporting information was retrieved. Beyond citation
support, the availability of rich metadata annotations also opens up avenues for enhancing
retrieval accuracy. In particular, metadata-aware filtering, such as restricting retrieval
to specific course modules, academic years, or document sections, could be integrated
to constrain the search space and reduce semantic noise during retrieval, especially in

cases where user intent is known or can be inferred. It should be emphasized, however,

that these functionalities are not actively utilized in the present version of the system.

Rather, the document ingestion and chunk extraction pipeline was deliberately designed
to capture and expose such metadata so that functionalities like these could be explored in

future iterations of the system.

CHUNK CONTENT:

Prerequisite Courses

All students, regardless of their year of admission, must have
successfully completed one of the prerequisite courses listed
for each course in the course table on the following pages in a
previous semester to enroll in a course. First-year courses,
courses offered by other departments, and the courses "Logic"
and "Investment Evaluation with Applications in Informatics"
have no prerequisite courses.

!

Ferid

CHUNK METADATA:

{
"chunk_id": 88,
"header": "VII. UNDERGRADUATE STUDIES",
"subheader": "VII.1. Introduction and General Information",
"paragraph": "Prerequisite Courses",
"page": 24,
"file_name": "Study Guide 2024-2025 ENG.pdf"
}

Fig. 3.2.: Example of an extracted chunk with a complete set of metadata.

Some manual corrections and interventions were necessary in certain sections. Errors,
such as spurious page numbers, typographical errors, and encoding issues, were removed

or corrected during this step. Specifically, the term “Elective Courses” was systematically

replaced by “Free Elective Courses” to match the terminology of the original Greek version.

Additionally, information from tables critical to the curriculum, such as course module

3.1 Studies Guide Preprocessing and Chunk-Based Indexing

25

assignments and lists of free elective courses, was converted into narrative sentences and

inserted into the relevant chunks’ text.

Several parsing decisions were necessitated by the presence of tables within the Studies
Guide, as four of these contained critical information not found elsewhere in the docu-
ment. The first was a table listing all the course modules available to students of AUEB’s
Informatics department. A course module is a title referring to a specific research area of
Informatics, which can be printed on a student’s degree provided that he/she has passed
5 or more courses that belong to that course module. Some examples of course modules
include Data Science, Cybersecurity, and Theoretical Computer Science. This table re-
quired a degree of cleaning and normalization; nevertheless, its content was already largely
textual and could be integrated into the chunked corpus with only minor adjustments. An
example of a course description’s extracted text chunk enhanced with the corresponding

information from the Course Modules Table is presented in Figure3.3.

CHUNK CONTENT (not fully shown for brevity):

Course Modules

Elective core courses and elective courses are organized in course
modules. Provided a student completes a sufficient number of
courses of a module, that module is completed and noted in the
student’s transcripts and diploma supplement awarded at
graduation. Completing a module is not required for graduation.
The modules are as follows:

Data Science 5. Systems and Networks

Operations Research 6. Software Systems

Applied Mathematics 7. Data and Knowledge Management

Theoretical Computer Science 8. Cybersecurity

The following rules apply to modules:

b

CHUNK METADATA:

{
"chunk_id": 89,
"header": "VII. UNDERGRADUATE STUDIES",
"subheader": "VII.1. Introduction and General Information",
"paragraph": "Course Modules",
"page": 24,
"file_name": "Study Guide 2024-2025 ENG.pdf"
3

Fig. 3.3.: Part of the extracted chunk, with its metadata, that contains the Course Module Table in text
format.

Another important table was the one detailing the maximum number of ECTS units that
students are allowed to enroll in per semester, depending on their year of study. This
table was parsed and its information reformatted into a standalone chunk in plain text,
ensuring that the structural and regulatory information it conveyed remained directly
accessible and uniquely referenced. The extracted text chunk with this table’s information

is presented in Figure3.4.

26 Chapter 3 Document Ingestion

CHUNK CONTENT (not fully shown for brevity):
VII.3. Course Enrollment and Examination
In order to attend and be graded in courses, in the beginning of

L= A A

=)
=
(0]

each semester students must complete an online course
enrollment, which they must submit to the Department’s
Electronic Secretariat. Course enrollment is mandatory and must
be completed at the dates and times announced by the University
at the beginning of each semester. Following their enrollment in
courses, students are required to submit an electronic textbook
selection form through the EYDOXOS platform. It is stressed that
course enrollment and textbook selection are distinct, and one
does not substitute the other.

e maximum number of ECTS units that students may select and be

examined about in each semester is as follows:

maximum number of ECTS units for 1st year students are 38 ECTS

— per semester.

The maximum number of ECTS units for 2nd year students are 46 ECTS
—~ per semester.

The maximum number of ECTS units for 3rd year students are 54 ECTS
— per semester.

The maximum number of ECTS units for 4th and subsequent years

— students are 60 ECTS per semester.

S

tudents are strongly advised, however, not to enroll in more than 6

— courses per semester, as the requirements of the Department are

s

high for all courses. An effort is made by the Department so
that the weekly schedules of courses in the same year are not in
conflict. Part-time students ... during the September
examination period.

CHUNK METADATA:

{

A further notable table was a comprehensive list of free elective courses accessible to
Informatics students from the other departments of AUEB. The entirety of this table was
transformed into a sequence of sentences, each describing a course and its corresponding
course code, explicitly stating that the course is recognized as a free elective. This approach

ensured that all information previously confined to table format was preserved in natural

"chunk_id": 96,

"header": "VII. UNDERGRADUATE STUDIES",

"subheader": "VII.3. Course Enrollment and Examination",
"paragraph": "VII.3. Course Enrollment and Examination",
"page": 31,

"file_name": "Study Guide 2024-2025 ENG.pdf"

number of ECTS units available to collect each semester in text format.

language, aligning it for text retrieval while avoiding information loss.

The most complex table encountered during parsing was the Course Overview Table’,

which compiled information regarding course names, course codes, and prerequisite

*The parsing of this table should, in the author’s opinion, be avoided, and in later editions of the Studies

Guide, this information should be added in each course’s description page.

3.1 Studies Guide Preprocessing and Chunk-Based Indexing

Fig. 3.4.: Part of the extracted chunk, with its metadata, that contains the Table containing the maximum

27

requirements. Except for one particular column, the contents of this table were redundant,
as all other details could be found within the detailed course descriptions later in the Studies
Guide. The unique information offered by this table was the mapping of each course to
its corresponding course modules, a detail absent from the individual course description
pages. To preserve this essential linkage, the extracted course module information was
converted into sentences indicating the specific modules to which each course belonged.
These sentences were then inserted at the beginning of each course’s description page,
thereby enriching each course chunk with information that would otherwise have been
lost in the conversion process. As a result, each course description chunk (typically
averaging one document page in length) now contains an explicit statement of its course
module assignments, providing both comprehensive coverage and fine-grained semantic

annotation for downstream retrieval and question answering.

CHUNK CONTENT (not fully shown for brevity):

3515 Logic

Elective Core Course, 5th semester, 7 ECTS units.

<< The course Logic belongs to the following course modules:

— Theoretical Computer Science, Data and Knowledge Management. >>
Instructor: Assistant Professor Evgenia Foustoukou

URL: https://eclass.aueb.gr/courses/INF441/

Course Description

Formal analysis of the concepts of provability and semantical
implication. Propositional Logic: propositional formulas,
assignments and satisfiability, logical implication, complete
set of connectives , axiomatic system using the Modus Ponens
rule, axiomatic system using the resolution rule, formal proofs,
soundness and completeness theorems, compactness theorem.
Predicate Logic: propositional formulas, structures, valuations,
truth within a structure, logical implication, formal proofs,
axiomatic system with Modus Ponens rule of proof, axiomatic
system with resolution rule of proof, the soundness and
completeness theorems, the compactness theorem. Introduction to
the principles of Logic Programming. Other topics of logic with
applications in Computer Science may include: (Monadic) Second
Order Logic, modal logics and temporal logics.

o>

Assessment Criteria

The final grade is set to the final written examination grade.

{\liiiiiiilliil

— Active participation in the classroom (with well-posed

— observations, answers and questions) as well as in the

— intermediate written examinations and the submission of homework
— will raise the final grade.

CHUNK METADATA:

{

"chunk_id": 130,

"header": "IX. COURSE DESCRIPTIONS",

"subheader": "None",

"paragraph": "Logic",

"page": 55,

"file_name": "Study Guide 2024-2025 ENG.pdf"
}

Fig. 3.5.: Part of the extracted chunk, with its metadata, that contains the description of the "Logic"

"o

course. The manual addition of the course modules is enclosed in "«" for display purposes.

28 Chapter 3 Document Ingestion

Finally, the latest version of the Academic Calendar for the academic year 2024-2025 was
also ingested, which was a PDF document with a single section containing three visible sub-
sections, one for each academic period. For alignment with the chunks extracted from the
Studies Guide document, the calendar was split into three distinct chunks, corresponding

to the “Fall Semester,” “Spring Semester,” and “September Period".

3.1.1 Indexing in Numbers

This process resulted in a knowledge base containing a total of 212 richly annotated,
semantically coherent chunks, an otherwise paragraph-level representation of the doc-
ument (as mentioned before, a chunk may contain more than one paragraph, but for
simplicity chunks will be referred to as paragraph-level representations of the document
throughout this thesis), ready for use in both semantic and lexical search and downstream
RAG-based question answering. By carefully combining programmatic extraction, docu-
ment structure-driven chunking, metadata extraction, and targeted manual curation, the
resulting dataset provides both high coverage of the source material and robust support
for systematic, contextually grounded retrieval. This methodology, including the code and
custom routines developed, is fully documented and reproducible for future iterations or

application to other versions of the Studies Guide.

To gain a deeper insight into the structure of the resulting knowledge base, a statistical
analysis of the chunks’ length distribution was conducted, both as word sequences and
token sequences, as tokenized by the LLaMA 3.1 tokenizer. Notably, in terms of chunk
length measured in words, the average chunk contained approximately 195.76 words,
with a standard deviation of 181.44, and a median value of 136.50, indicating considerable
variability across sections. When considering the same units in terms of token sequences,
the average chunk comprised 293.47 tokens with a standard deviation of 265.57 and a
median value of 191.50. These findings underscore the heterogeneous nature of the Studies
Guide’s content, as well as the importance of tailored preprocessing strategies that can

effectively manage this variability before indexing.

Histogram of chunk lengths (in words)

Frequency

—

T T T T T T T
0 200 400 600 800 1000 1200 1400
Length (words)

Fig. 3.6.: Distribution of chunk lengths (in words).

3.1 Studies Guide Preprocessing and Chunk-Based Indexing

29

Histogram of chunk lengths (in tokens)

100

o
[=}
I

60 1

Frequency

40

20 A

[

0 250 500 750 1000 1250 1500 1750
Length (tokens)

Fig. 3.7.: Distribution of chunk lengths (in tokens, as tokenized by the LLaMA 3.1 tokenizer).

Figure 3.8 illustrates the distribution of the number of chunks that can be accommodated
within a single context window of the LLaMA 3-8B-Instruct model, based on 1,000 ran-
domized simulations. Within this setting, each simulation represents a random ordering
of the chunk set, followed by sequential filling of the model’s context window until the
token limit is reached. The x-axis reports the number of chunks that fit, while the y-axis
shows the frequency of simulations achieving each value. Most simulations fit between
20 and 35 chunks, with a peak near 28. This result demonstrates the practical effect of
context window size on the granularity of retrievable content, highlighting the constraints
of working with fixed-length LLM input contexts in RAG systems and the significance of

utilizing them effectively by retrieving context as accurately as possible.

Distribution of Chunks fitting in one Llama-3-8B-Instruct context window

160

140 ~

[

]

=
!

100 ~

n |
[—
||]
0J|—|| =

T T
15 20 25 30 35 40 45
Chunks fitting in one Llama-3 context window

Number of simulations
o
[=]
L

Fig. 3.8.: The number of Chunks that fit in Llama-3.1-8B-Instruct’s context window, on
average. Note that the default context window with an 8,192k token limit is used here.

30 Chapter 3 Document Ingestion

3.1.2 Benefits and Limitations of Chunk-Level Document
Representation

The decision to adopt a document-specific, chunking strategy for the Studies Guide dataset

brings significant strengths but also introduces certain limitations.
Advantages:

« Semantic Coherence and Contextual Enrichment: Each chunk typically encap-
sulates a complete, self-contained unit of meaning, preserving the logical structure
imposed by the original document. When additional context, such as the previously
detailed metadata, accompanies these chunks, the resulting enhancement—termed
contextual enrichment—can help both dense and sparse retrievers make more accu-

rate retrievals.

« Preservation of Hierarchical Structure: By embedding metadata such as headers,
subheaders, and page numbers, each chunk maintains strong links to its document
context. This enables precise traceability and facilitates context-aware question

answering.

+ Minimization of Fragmentation: Grouping information into larger, coherent
segments reduces the risk of excessive fragmentation, which could otherwise hinder

user comprehension or degrade retrieval performance due to a lack of context.
Limitations:

+ Variable Length: Chunks exhibit substantial variability in size, ranging from short
statements to multi-paragraph bodies of text. This irregularity complicates both

storage and retrieval operations.

+ Information Density: The information density within each chunk is also highly
heterogeneous. Some chunks are concise and focused, while others embed numerous,

often unrelated facts, making targeted retrieval of specific information more difficult.

« Implications for Retrieval and Answer Generation: This heterogeneity in both
length and density can adversely affect retrieval granularity and answer quality,
especially when user queries require pinpoint precision. Furthermore, excessively
long or dense chunks increase the computational load and inference latency for the
answer-generating model, a particular challenge when relying on relatively small,

resource-constrained open-source language models.

3.1 Studies Guide Preprocessing and Chunk-Based Indexing

31

32

3.1.3 Motivation for Alternative Retrieval Granularities

Despite these trade-offs, chunks provide a robust starting point for information retrieval
and question answering, particularly in complex, structured academic documents like
the Studies Guide. However, to address the limitations of retrieval precision and answer
specificity, subsequent processing stages were introduced: (1) splitting each chunk into its
constituent sentences, and (2) generating synthetic, decontextualized propositions using
an LLM through a rigorously crafted instruction prompt. These finer granularities aimed

to mitigate the aforementioned issues when using chunks as the retrieval unit.

3.2 Sentence-Level Document Representation

While the chunk granularity provides a robust foundation for document retrieval, certain
information needs, particularly those requiring concise, factoid-style answers, are better
served by finer document granularities. To this end, each chunk was further decomposed
into its constituent sentences, yielding a sentence-level dataset optimized for high-precision

retrieval and more targeted answer generation.

3.2.1 Sentence Extraction Methodology

The sentence extraction process was implemented using Natural Language Toolkit
(NLTK)!°. Each chunk’s text was segmented into sentences leveraging pre-trained models
for English sentence boundary detection. For each sentence extracted, a unique sent_id
was assigned, and all metadata from the parent chunk, such as chunk_id, header,
subheader, paragraph, page number, and file_name were preserved. This
design ensures that every sentence can be precisely traced back to its original context. The
output of this process was a collection of 2,554 sentences. Each sentence contained the

raw extracted text along with the complete metadata set.

3.2.2 Rationale and Implementation Details

The choice of NLTK’s sentence tokenizer was motivated by its ease of use and open-
source availability. The pipeline is fully reproducible and requires minimal computational

resources, making it suitable for large-scale or frequently updated corpora.

Yhttps://www.nltk.org

Chapter 3 Document Ingestion

https://www.nltk.org

SENTENCE CONTENT:
At AUEB, a Committee for Equal Access of Persons with Disabilities
— and Persons with Special Educational Needs has been established.

SENTENCE METADATA:

{
"sent_id": 2465
"chunk_id": 188,
"header": "XI. GENERAL INFORMATION FOR STUDENTS",
"subheader": None,
"paragraph": "Services for students with disabilities",
"page": 105,
"file_name": "Study Guide 2024-2025 ENG.pdf"
}

SENTENCE CONTENT:

Quality Assurance Unit

AUEB implements a quality assurance policy aimed at continuously

— improving the quality of its study programs, research

— activities, and administrative services, enhancing academic and
— administrative work, and improving overall university operation.

SENTENCE METADATA:

{
"sent_ id": 2533
"chunk_id": 200,
"header": "XI. GENERAL INFORMATION FOR STUDENTS",
"subheader": None,
"paragraph": "Quality Assurance Unit",
"page": 108,
"file_name": "Study Guide 2024-2025 ENG.pdf"
}

SENTENCE CONTENT:
Teaching and Learning Activities
Lectures (2 lectures of 2 hours weekly), group assignment.

SENTENCE METADATA:

{
"sent_id": 2363
"chunk_id": 175,
"header": "IX. COURSE DESCRIPTIONS",
"subheader": None,
"paragraph": "Digital Learning Materials.",
"page": 100,
"file_name": "Study Guide 2024-2025 ENG.pdf"
}

Fig. 3.9.: Examples of extracted sentences with their associated metadata. Each sentence inherits the
structural context of its parent chunk (header, subheader, paragraph, page, and file name) while
being assigned a unique sent _id, enabling precise traceability within the Studies Guide.

A critical technical consideration was the preservation of metadata throughout the trans-
formation: each sentence "inherits" all the contextual information of its parent chunk,

augmented with its own globally unique sent_id.

3.2 Sentence-Level Document Representation 33

Histogram of sentence lengths (in words)

300 -

=

o

5 200 4 —|_‘

=

]

= H>—h_l—m
0 .

0 20 40 60 80 100 120
Length (words)

Fig. 3.10.: Distribution of sentence lengths (in words).

A detailed analysis of the extracted sentences reveals significant variability in their length,
measured both in words and tokens. Across the 2,554 sentences in the dataset, the average
sentence length is approximately 16.25 words, with a standard deviation of 13.82 words.
The shortest sentence consists of a single word, while the longest sentence contains 131
words, highlighting the presence of substantial outliers. The median sentence length is 12
words, indicating that half of the sentences are relatively concise, while a smaller subset
consists of much longer sentences. This distribution reflects the diversity in the Studies
Guide’s narrative style and content, encompassing everything from succinct informational
statements to extended explanatory passages. Also, it hints at the fact that the sentence

segmentation using NLTK may have produced some outliers.

Histogram of sentence lengths (in tokens)

300 A

250

—

200 A

1

150 ~

Frequency

100 ~

50 4

T T T
0 50 100 150 200
Length (tokens)

Fig. 3.11.: Distribution of sentence lengths (in tokens, as tokenized by the LLaMA 3.1 tokenizer).

34

Examining the sentences at the token level, the average length is 24.39 tokens, with a
standard deviation of 20.49 tokens. The shortest sentence contains just 1 token, and the
longest extends to 227 tokens, with a median of 19 tokens per sentence. This further demon-
strates the presence of considerable variation in sentence complexity and informativeness,
which is shaped by differences in linguistic structure and subject matter throughout the

document.

Chapter 3 Document Ingestion

Distribution of Sentences fitting in one Llama-3-8B-Instruct context window

100 - R I
; — |
.E 80 4
b=
1]
£
= 604 _
s
e
£ 401 [] —
E
=]
=z

0 e

T T T T T
300 320 340 360 380
Sentences fitting in one Llama-3 context window

Fig. 3.12.: The number of Sentences that fit in L1ama-3.1-8B-Instruct’s context window, on
average. Note that the default context window with an 8,192k token limit is used here.

Figure 3.12 presents the distribution of the number of sentences that can be accommodated
within a single context window of the LLaMA 3-8B-Instruct model, based on 1,000 ran-
domized simulations. In each simulation, sentences from the corpus are sequentially added
until the 8,192-token context limit is reached. The distribution is relatively symmetric and
tightly clustered, with the majority of runs yielding approximately 310 to 355 sentences
per window, and a mode centered around 335. This finding demonstrates the significant
increase in granularity and context coverage afforded by sentence-level segmentation,
enabling the inclusion of a much larger number of information units in a single retrieval
operation. At the same time, it underscores the efficiency gains in packing the context
window when working with more fine-grained textual units, while still being subject to

the fixed-length constraints of LLMs.

3.2.3 Benefits and Limitations of Sentence-Level Document
Representation

Sentence-level document representations offer several advantages in the context of retrieval-
augmented question answering systems, particularly when precision and minimality are
essential. By segmenting documents into individual sentences, the retrieval component can
operate at a finer granularity, enabling highly targeted retrieval of relevant content. This
increased specificity supports more focused and accurate answers, especially for questions
that seek discrete facts or isolated pieces of information. Additionally, this granularity
helps mitigate redundancy, as it reduces the inclusion of tangential or irrelevant context
that might otherwise accompany broader textual units such as full paragraphs or sections.

Importantly, the process of segmenting a document into sentences is relatively straight-

3.2 Sentence-Level Document Representation 35

36

forward, computationally inexpensive, and reproducible with standard natural language

processing tools, making it a practical choice for large-scale indexing and retrieval.

Despite their advantages, sentence-level document representations also present several
important limitations that must be considered. A primary concern is the potential loss
of context when sentences are treated as isolated units. Individual sentences may lack
the necessary semantic context to support accurate answers for queries that require
reasoning across sentence boundaries. Additionally, sentence segmentation does not
eliminate all noise: not all sentences contribute equally to the informational value of a
document. Some sentences may be overly long, vague, or heavily dependent on preceding
content, thereby diminishing retrieval precision for specific information needs. Moreover,
even after segmentation, many sentences lack semantic independence. For instance,
elliptical sentences are a common occurrence in natural language, making certain sentences
unintelligible or ambiguous when detached from their original context. These factors
collectively constrain the standalone interpretability of sentence-level units and can impact

both the retrieval and generation stages of the RAG system.

A statistical analysis of the sentence-level corpus further underscores the variability
inherent in the document structure. On average, each chunk contains approximately
12 sentences, with the shortest chunk comprising just a single sentence and the longest
extending to 112 sentences. The median number of sentences per chunk is 6, indicating that
while a small number of chunks are quite large, the typical chunk is much more succinct.
This pronounced spread is also reflected in the standard deviation, which is calculated
at 13.41 sentences per chunk. Such heterogeneity is a direct consequence of the Studies
Guide’s diverse content, ranging from brief policy statements to extensive, multi-paragraph
course descriptions and regulatory sections. These findings highlight both the strengths
and potential retrieval challenges associated with sentence-level segmentation: while the
approach facilitates high-precision retrieval, it must also contend with variable-length

input units and a non-uniform distribution of information density across the corpus.

3.2.4 Motivation for an Alternative Granularity

Nevertheless, the persistent challenge of context-dependent sentences and implicit ref-
erences motivated the development of a third, even finer representation: the creation of
fully decontextualized propositions inspired by the work of [Che+24; Vla+25]. This next
stage, described in the following section, seeks to maximize both granularity and semantic
independence, ensuring every unit of information is self-contained and directly usable for

question answering.

Chapter 3 Document Ingestion

3.3 Proposition-Level Document Representation

In pursuit of maximally fine-grained, context-independent retrieval, the third document
representation constructed for the Studies Guide corpus consists of synthetically decon-
textualized propositions. Each proposition represents a minimal, standalone statement
that is fully interpretable on its own, eliminating the context loss issues associated with
sentences and mitigating the problem of excessive information density associated with

chunks.

3.3.1 Decontextualization Prompt and Methodology

The process begins by passing each chunk through an LLM, specifically the ‘GPT-01-mini’
model, using a highly structured prompt (see Appendix A). This prompt instructs the
model to first decompose complex, compound sentences into atomic, syntactically simpler
statements. Additionally, any descriptive or qualifying content about named entities
is separated into distinct propositions to ensure clarity. Crucially, all propositions are
rendered fully decontextualized: the model is required to resolve pronouns, anaphoric
expressions, and any implicit references so that each proposition stands independently,
without reliance on external context. The output is returned as a JSON'! structure, where
each proposition is accompanied by its metadata, including a unique prop_id, the chunk_id

from which it was derived, and all other previously mentioned chunk metadata.

This approach leverages the generative and reasoning capabilities of the LLM to extrapo-
late facts and synthesize fully context-independent statements that can serve as atomic
knowledge units for a RAG system. The prompt was crafted manually by enhancing and

tweaking the prompt of [Che+24] to fit custom needs.

Histogram of proposition lengths (in words)

500 - IsE
400
: m
$ 300 4 =
=
: T
B I
100 ol
L AU e |
0 10 20 30 40 50 60

Length (words)

Fig. 3.14.: Distribution of proposition lengths (in words).

"'JSON stands for JavaScript Object Notation, a lightweight, text-based format for representing structured
data using name-value pairs and arrays.

3.3 Proposition-Level Document Representation 37

ORIGINAL CHUNK CONTENT AND METADATA:

Inclusion of completed modules in student transcripts

If a student completes one or more modules, the modules are

— specified in that student’s transcripts. Students are not

— obliged to declare their chosen modules beforehand; it is enough
— for them to declare the module at the time of their graduation
o

application.
{
"chunk_id": 104,
"header": "VIII. DEGREE REQUIREMENTS",
"subheader": VIII.2. Other Provisions (Applicable to All
— Students),
"paragraph": "Inclusion of completed modules in student
— transcripts",
"page": 33,
"file_name": "Study Guide 2024-2025 ENG.pdf"
¥

DECONTEXTUALIZED PROPOSITIONS CONTENT (with only unique prop_id
— shown for brevity):
["prop_id": 1571]

If a student of the Informatics Department of Athens University of
— Economics and Business completes one or more modules, then the
— modules are specified in the student's transcripts.

["prop_id": 1572]

Students of the Informatics Department of Athens University of
— Economics and Business are not obliged to declare their chosen
— modules beforehand.

["prop_id": 1573]
It is enough for students of the Informatics Department of Athens

— University of Economics and Business to declare their modules at
— the time of their graduation application.

Fig. 3.13.: Example of a chunk decomposed into decontextualized propositions.

Histogram of proposition lengths (in tokens)

500 A

400 - =

300 A ’_‘r
200 ‘ ‘

Frequency

ik
L

100 A ’—l—H}
0 T T T

0 20 40 60 80
Length (tokens)

Fig. 3.15.: Distribution of proposition lengths (in tokens, as tokenized by the LLaMA 3.1 tokenizer).

38 Chapter 3 Document Ingestion

A detailed statistical analysis of the extracted propositions underscores their compact and
relatively uniform character compared to full sentences. For the 6,625 propositions in the
corpus, the average length is approximately 13.74 words, with a standard deviation of 6.57
words. The shortest proposition comprises just 3 words, while the longest extends to 66
words, reflecting a notable but bounded range. The median proposition length is 12 words,
suggesting that most propositions are concise, self-contained factual statements, even
though a subset is substantially longer. This statistical profile highlights the effectiveness
of the proposition extraction process in distilling the Studies Guide’s content into granular,

decontextualized units of information.

When analyzed in terms of token count, the 6,625 propositions display a similar pattern
of moderate variability. The average proposition contains 17.42 tokens, with a standard
deviation of 8.28 tokens. The shortest proposition is 4 tokens in length, and the longest
comprises 86 tokens. The median is 16 tokens per proposition, reinforcing the observation
that most propositions are succinct and well-suited for fine-grained retrieval. The consis-
tency in token length further facilitates the design of efficient retrieval and subsequent

generation within the system.

Distribution of Propositions fitting in one Llama-3-8B-Instruct context window

120 A
100
80 4 R—

60 1

| B |
N - -
1 e

T T T T
440 450 460 470 480 490 500
Propositions fitting in one Llama-3 context window

Number of simulations

Fig. 3.16.: The number of Propositions that fitin Llama-3.1-8B-Instruct’s context window,
on average. Note that the default context window with an 8,192k token limit is used here.

Figure 3.16 displays the distribution of the number of propositions that can be accommo-
dated within a single context window of the LLaMA 3-8B-Instruct model, based on 1,000
randomized simulations. In each simulation, propositions are sequentially added from the
corpus until the 8,192-token context limit is reached. The distribution is fairly symmetric
and tightly clustered, with the vast majority of runs fitting between approximately 450
and 485 propositions per window, and a clear mode near 470. This result illustrates the
substantial increase in retrieval granularity enabled by proposition-level segmentation,
which allows the system to include a much larger number of atomic, context-independent

informational units within each query. It also highlights the advantage of finer granularity

3.3 Proposition-Level Document Representation 39

for maximizing context utilization, while still respecting the inherent constraints of the

model’s fixed context window.

3.3.2 Strengths and Limitations of Proposition-Level
Document Representation

The proposition-level representation’s main advantage is that it offers high precision
as decontextualized statements isolate chunks of information, enabling pinpoint retrieval
and eliminating context leakage from neighboring sentences or paragraphs, thus allowing
the system to respond to highly specific user queries with minimal noise or irrelevant

information.

However, several limitations are associated with this granularity. Notably, the decontex-
tualization process is contingent on the accuracy and consistency of the LLM. Imperfect
decontextualization, dropped facts, or over-decontextualization can introduce noise or loss
of nuance. While atomicity aids retrieval, it may also produce a larger number of small,
sometimes redundant or semantically similar propositions. Processing each chunk through
an LLM at scale incurs non-negligible computational and monetary costs, particularly for

large documents or frequent collection updates.

{

nggn:
"chunk_id": 89,
"sentence ids": [381, 382, 383, 384, 385, 386, 387, 388, 389,
<~ 390, 391, 392, 393, 394, 395, 396, 397, 398],
"proposition_ids": [1149, 1150, 1151, 1152, 1153, 1154, 1155,
< 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165,
& 1166, 1167, 1168, 1169, 1170, 1171]

}
}

Fig. 3.17.: Example of a chunk and its corresponding sentence and proposition ids.

40

A statistical summary of the proposition-level corpus highlights the significant size in-
crease compared to both chunk and sentence-level segmentations. On average, each chunk
yields approximately 31 decontextualized propositions, with the number of propositions
per chunk ranging from as few as 2 to as many as 224. The standard deviation, calculated
at 32.62 propositions per chunk, underscores the pronounced variability in information
density and structural complexity across the Studies Guide. This heterogeneity is a direct
result of the diverse content and varying lengths of source chunks, as some sections of the
document contain densely packed factual material, while others remain succinct and nar-
rowly focused. The shift to proposition-level representation thus produces a substantially

larger and more fine-grained retrieval corpus, amplifying both the opportunities for precise,

Chapter 3 Document Ingestion

context-independent retrieval and the attendant challenges of increased fragmentation and

redundancy. The full prompt used for decontextualization is provided in Appendix A.

3.4 Retrieval Granularities: Pros and Cons

Overall, three distinct collections were created by preprocessing the Studies Guide’s PDF,

one for each granularity:

« A collection of one or multiple-paragraph bodies of text, named chunks, derived

through document-specific chunking.

+ A collection of individual sentences, derived through sentence tokenization.

« A collection of decontextualized propositions, produced via processing each chunk
through an LLM.

The resulting corpus forms the basis for retrieval and generation experiments of the RAG

system across multiple document granularities.

Tab. 3.1.: Comparison of Retrieval Granularities

Granularity | Advantages Limitations

Chunk Semantic coherence, preservation of hi- | Variable length, uneven information
erarchical structure density

Sentence High precision, minimal redundancy, | Context loss, ambiguous standalone
computationally inexpensive sentences

Proposition | Maximal precision, context indepen- | High computational cost, risk of redun-
dence dancy

Each retrieval granularity possesses distinct strengths and limitations, summarized in

Table 3.1, while Figure 3.18 provides a schematic overview of how the three document

granularities are produced and how metadata is preserved across transformations.

3.4 Retrieval Granularities: Pros and Cons

41

42

Sentence
Segmentation | ... > 2554
/ (with inherited chunk Sentences
metadata)
@ Structured 212
Chunking |y
—_ — (with extracted > Chunks
metadata)
AUEB Informatics Dep. (ENG)
Studies Guide [2024-2025] etk S , 6625
(with inherited chunk Propositions
metadata)

Fig. 3.18.: Overview of the document representation pipeline. The Studies Guide is first parsed into
semantically coherent chunks with extracted metadata. Each chunk is then further split into
sentences via sentence segmentation and transformed into decontextualized propositions via
LLM-based decomposition. This yields three granularities (chunks, sentences, propositions)
for retrieval in the proposed RAG system.

Chapter 3 Document Ingestion

QA Pairs Dataset Creation

A core requirement of evaluating any information retrieval system is the existence of
a gold-standard dataset of question-answer pairs annotated with their relevant source
text passages. However, no such dataset currently exists for the AUEB Department of
Informatics curriculum. To address this, synthetic QA data were generated based on the
Studies Guide, resulting in aligned datasets at all three document granularities: chunk-level,

sentence-level, and proposition-level.

The main rationale behind this approach lies in the need to objectively evaluate retrieval
effectiveness at varying granularities, ensure sufficient coverage across different sections of
the document, and simulate real-world student questions in a controlled and reproducible

manner.

4.1 Synthetic Question Answer Generation

The generation of the synthetic QA pairs was facilitated through the use of a structured
prompting pipeline that fed selected document subsets to an LLM and requested JSON-
formatted QA pairs annotated with the relevant chunk_id’s used for the answer gener-
ation. This process was repeated for all three document granularities: chunks, sentences,
and propositions. The prompt aimed to enforce clear formatting rules, minimum coverage
guarantees, and realistic phrasing constraints tailored to the AUEB undergraduate student

context (see Appendix A for the full prompt template).

4.1.1 Splitting Chunks to Random Subsets

To enable robust evaluation and cross-comparison between document granularities (chunks,
sentences, and propositions), random subsets were generated in a systematic manner.
The complete set of chunk documents was first randomly partitioned into 27 distinct
subsets, each containing between five and ten chunks. Any remaining chunks after the
initial division were redistributed as needed to maintain a balanced size across subsets.
Sampling was conducted without replacement, so that each chunk appears in exactly one
subset, resulting in disjoint, non-overlapping groups of chunks. This approach prevents
redundancy in question generation and evaluation because using disjoint subsets ensures

that no duplicate QA pairs are produced and reduces the risk of biased evaluation, as

43

44

repeated coverage of the same material could potentially leave certain sections of the
Studies Guide underrepresented. Additionally, an explicit mapping file in JSON format
was created to record the chunk, sentence, and proposition identifiers present in each
subset. This mapping ensures full traceability and enables precisely aligned annotations,
facilitating fair and direct comparisons across retrieval runs at different levels of document

granularity.

4.1.2 Why Random Subsets?

The random subset construction strategy was deliberately chosen to encourage generaliza-
tion, as this way the LLM is prompted with diverse, sometimes non-contiguous content,
better simulating the unpredictability of real student queries. Furthermore, splitting the
input corpus into relatively small, randomized subsets served to limit prompt lengths to
manageable windows. This ensures that the LLM can (i) better attend to the input without
truncation and (ii) likely produce focused, high-quality responses without suffering from
prompt overload or degraded generation quality. Also, this strategy was preferred for its
simplicity and reproducibility. With a fixed random seed, the same subset splits can be

regenerated deterministically for validation, reruns, and ablation studies.

While alternative strategies for chunk subset construction, such as topic-based clustering or
header-aligned grouping, might yield QA pairs with greater semantic coherence, they also
risk grouping together overly similar content, which could reduce the diversity of questions
and answers generated. In contrast, randomized splitting provides a pragmatic balance
between coverage of the entire Studies Guide content and fairness in the distribution of
that content across subsets. It should be noted, however, that this approach is not the only
valid solution and that future work may benefit from a comparative analysis of sampling

and splitting strategies to further optimize dataset construction and system evaluation.

Consequently, the number of chunks per subset ranges from 5 to 10, with a mode of 9 and
an average of approximately 7.8 chunks per subset. This balance ensures uniform coverage
while keeping the LLM prompt input length manageable. This balanced distribution not
only supports fair evaluation across curriculum sections but also ensures that no single
subset dominates the generation process. Such properties are essential for constructing a

representative and generalizable QA dataset.

Chapter 4 QA Pairs Dataset Creation

4.1.3 Instruction Prompt

The generation of synthetic QA pairs was guided by a highly structured instruction prompt
that was fed to an LLM along with a specific document subset. The prompt was designed
to elicit coherent, relevant, and faithfully grounded QA pairs while ensuring adherence
to a strict output JSON schema. The main objective was to simulate realistic student
interactions with a virtual assistant who was knowledgeable only about the content of the
AUEB’s Department of Informatics Studies Guide.

Each prompt consists of two components: (i) a subset of text chunks and (ii) a detailed set
of generation constraints. The following constraints were intended to direct the model’s
output towards the desired structure and content, though the model may not always fully

comply with them.

« Coverage: At least one question-answer pair must be generated for each input

chunk. No chunk should be left unreferenced in the output.

+ Faithfulness: All answers must be strictly grounded in the information provided

by the input chunks.

« Formatting: The response must follow a strict JSON structure, with numerically
indexed QA pairs. Each entry includes three fields: the user’s question, the list of

chunk_ids the answer draws from, and the assistant’s response.

« Language Style: The questions must be phrased in natural language as if asked by
an AUEB undergraduate student. Similarly, answers must be clear, polite, concise,

and complete.

« Minimal Output Quality Guarantees: Each prompt explicitly requested at least
15 question-answer pairs to encourage depth, reuse of chunks where possible, and

high response density.

« Multi-chunk Reasoning: The model was permitted (but not required) to combine
information from multiple chunks into a single QA pair. However, it was explicitly

instructed to ensure that each chunk appears in at least one unique QA pair.

By enforcing these constraints, the resulting QA pairs dataset, containing 438 QA pairs,
maintains consistency, document traceability, and transparency in evaluation, making it
straightforward to interpret retrieval results and their relation to the underlying source

material. The full instruction prompt used can be found at Appendix A.2.

4.1 Synthetic Question Answer Generation

45

Examples of synthetic QA pairs are shown in Figure 4.1 below.

"423": {

"user": "What are the course modules available in the

— Informatics Department at AUEB?",

"chunks_used_ids": [89],

"system": "The course modules available in the Informatics

— Department at AUEB include Data Science, Operations
Research, Applied Mathematics, Theoretical Computer
Science, Systems and Networks, Software Systems, Data
and Knowledge Management, and Cybersecurity."

il

}3

"424": {
"user": "How many courses must I complete to finish a module
— in the Informatics program?",
"chunks_used_ids": [89],
"system": "To complete a module in the Informatics program,
— vyou must take at least 5 out of the 7 to 9 courses
— offered in that module."

s
"425": {
"user": "Is completing a module required for graduation in
— the Informatics Department?",
"chunks_used_ids": [89],
"system": "No, completing a module is not required for
— graduation. However, if you complete a module, it will
— be noted in your transcripts and diploma supplement
— awarded at graduation."

Fig. 4.1.: Snippet from the JSON file containing the synthetic QA Pairs annotated with chunk ids.

4.2 Sentence and Proposition QA Alignment

To enable fine-grained evaluation of document retrieval performance beyond chunk-level
reasoning, each synthetic QA pair was subsequently annotated with sentence-level and
proposition-level justifications. This step aimed to establish a precise alignment between
the assistant’s answer and the specific sentence or proposition from which it was derived.
This annotation process ensures direct comparability and consistency of evaluations across
granularities. Consequently, three synthetically generated datasets are produced, each
rigorously structured and systematically annotated with unique identifiers for streamlined
evaluation. This annotation process was entirely LLM-driven, leveraging structured in-
struction prompts tailored to each granularity. Examples of synthetic QA pairs annotated

with sentence and proposition ids are shown in Figures 4.2 and 4.3, respectively.

It should be noted that this two-step setup, first generating the QA pairs given the ran-
dom chunk subsets and then creating alternate annotations of these with sentence and

proposition identifiers, is not the only possible approach. In principle, the same prompt

46 Chapter 4 QA Pairs Dataset Creation

that generated QA pairs at the chunk level could have been used to request sentence-
or proposition-level justifications, since sentence and proposition subsets containing es-
sentially the same information could be constructed by directly mapping each sentence
or proposition to its corresponding chunk. Indeed, this strategy was attempted in the
early stages of dataset creation, where each subset was passed through the same prompt
separately for each granularity. While this method was both logical and feasible, manual
inspection revealed that the quality and phrasing of the generated QA pairs varied notice-
ably in phrasing, informational scope, and overall quality depending on whether the LLM
was conditioned on chunks, sentences, or propositions as input. Such variability risked
introducing confounding factors into subsequent evaluations. To mitigate this risk and to
ensure consistency across granularities, the final pipeline adopted the two-step process
described above, in which QA generation and fine-grained justification annotation are
handled as distinct stages. This separation provided clearer control over output quality

and reduced the likelihood of evaluation results being compromised.

Given the limited human resources and time available, a large-scale manual validation of
the sentence- and proposition-level annotations was not feasible. However, a small-scale
manual inspection was conducted on a subset of the annotated QA pairs. This inspection
suggested that the LLM annotations were generally adequate and aligned with the intended
justifications, although this observation cannot be stated with a high degree of confidence.
Consequently, it is acknowledged that some degree of inaccuracy may remain in the

automatically produced annotations.

4.2.1 Sentence-Level Annotation

To establish a direct mapping between assistant answers and the specific textual segments
they draw from, each chunk-level QA pair was extended with supporting sentence-level
annotations. For each pair, a large language model was instructed to identify the minimal
set of sentence IDs that most directly justified the given response.

The input to this process included:

+ A single QA pair, consisting of the user’s question, the assistant’s answer, and the

corresponding chunk_ids,

« A pool of candidate sentences filtered to only those belonging to the QA pair’s
chunk_ ids.

The model was instructed to:

+ Leave the user and system fields unmodified,

4.2 Sentence and Proposition QA Alignment

47

48

« Replace the chunks_used_ids with a new sentences_used_ids field

listing the most relevant sentence identifiers,

+ Avoid over-selection by including only those sentences that convey information
directly reflected in the assistant’s answer, excluding sentences that are merely

contained in a chunk labeled as relevant but unused in the response.

Each prompt was limited to a single QA pair. That is, for each question-answer pair, a
separate LLM call was made. The prompt contained only that QA pair, along with its
corresponding filtered sentences. This design choice ensured tight focus and full attention
within the model’s context window, while also eliminating inter-pair interference or
leakage across questions, preventing prompt overload or truncation, and supporting
precise LLM cost tracking (measured as the sum of $ per input and output tokens) at the

per-pair level.

This form of annotation aims to enable high-resolution retrieval evaluation, allowing us
to compute metrics such as Recall@k and Mean Reciprocal Rank using sentence-level
gold targets (as discussed later in Chapter 6). The full prompt template can be found in
Appendix A.3.

4.2.2 Proposition-Level Annotation

In parallel with sentence-level annotation, a second fine-grained dataset was produced in
which each QA pair was annotated with supporting proposition IDs. These propositions
were derived from earlier decontextualization of the Studies Guide into atomic, self-

contained statements (see Chapter 3).

The goal remained the same: identify the smallest subset of text units that directly justify
the assistant’s answer. However, instead of selecting from complete sentences, the model
now operated over (decontextualized) prop_ids within the relevant chunk_ids (see

Appendix A.4 for more information).

Chapter 4 QA Pairs Dataset Creation

"423": {
"user": "What are the course modules available in the
— Informatics Department at AUEB?",
"sentences_used_ids": [385, 386, 387, 388, 389, 390, 391,
- 392],
"system": "The course modules available in the Informatics
— Department at AUEB include Data Science, Operations

— Research, Applied Mathematics, Theoretical Computer
— Science, Systems and Networks, Software Systems, Data
— and Knowledge Management, and Cybersecurity."

s

"424": {
"user": "How many courses must I complete to finish a module
— in the Informatics program?",
"sentences_used_ids": [392, 393],
"system": "To complete a module in the Informatics program,
— you must take at least 5 out of the 7 to 9 courses
— offered in that module."

s

"425": {
"user": "Is completing a module required for graduation in
— the Informatics Department?",
"sentences_used_ids": [382, 383],
"system": "No, completing a module is not required for
— graduation. However, if you complete a module, it will
— be noted in your transcripts and diploma supplement
— awarded at graduation."

}

Fig. 4.2.: Snippet from the JSON file containing the synthetic QA Pairs annotated with sentence ids.

For each QA pair:

+ Only the propositions corresponding to the original chunks_used_ids were

included as candidates.

+ The model was instructed to insert a new propositions_used_ids field into
the JSON output, leaving all other fields unchanged.

« It was required to include only propositions whose content was reflected in the

assistant’s answer, not all propositions derived from the chunk.

Each prompt once again annotated a single QA pair. This consistent design mirrored
the sentence-level pipeline, allowing for easy comparison between granularities. Prompt
formatting, cost tracking, and output validation were handled in a similar manner. This
final annotated dataset enables proposition-level retrieval evaluation and offers a high-
resolution lens on how precisely the assistant’s answer maps back to factual atomic units.

The corresponding prompt is detailed in Appendix A.4.

4.2 Sentence and Proposition QA Alignment

49

"423": {
"user": "What are the course modules available in the
— Informatics Department at AUEB?",
"propositions_used_ids": [1155, 1156, 1157, 1158, 1159,
< 1160, 1161, 11627,
"system": "The course modules available in the Informatics
— Department at AUEB include Data Science, Operations

— Research, Applied Mathematics, Theoretical Computer
— Science, Systems and Networks, Software Systems, Data
— and Knowledge Management, and Cybersecurity."

})

"424": {
"user": "How many courses must I complete to finish a module
— in the Informatics program?",
"propositions_used_ids": [1163, 1164],
"system": "To complete a module in the Informatics program,
— you must take at least 5 out of the 7 to 9 courses
— offered in that module."

b

"425": {
"user": "Is completing a module required for graduation in
— the Informatics Department?",
"propositions_used_ids": [1154, 1169, 1153],
"system": "No, completing a module is not required for
— graduation. However, if you complete a module, it will
— be noted in your transcripts and diploma supplement
— awarded at graduation."

}

Fig. 4.3.: Snippet from the JSON file containing the synthetic QA Pairs annotated with proposition ids.

As a result of this multi-stage annotation process, a synthetic QA dataset in three parallel
variations—each reflecting a different level of document granularity was constructed.

Specifically:

« The original version associates each QA pair with the chunk_ids that were

provided as input context,

« The second version extends this with fine-grained sentences_used_ids, de-

noting the specific sentences that justify each answer,

« The third version further refines grounding precision by associating answers with
the minimal set of prop_ids (fully decontextualized propositions) that support
them.

50 Chapter 4 QA Pairs Dataset Creation

4.3 Real-World QA Collection

While synthetic QA pairs enabled wide coverage and controlled alignment across document
granularities, it was equally important to validate system behavior on questions that
students naturally formulate. To that end, a small-scale real-world QA dataset of 60
QA pairs total was created by directly collecting authentic questions from undergraduate
students of the Department of Informatics at AUEB.

{
l'3l': {
"user": "Is it necessary to pass English to graduate?",
"chunks_used_ids": [102, 105],
"system": "It is not strictly necessary to pass English
— alone. You can satisfy the language requirement by
— obtaining a C2 certificate in English, German, or
— French, or by completing one of the 4th semester courses
— English IV, German IV, or French IV."
}s
"4 {
"user": "What are the holidays during the academic year
— 2024-2025?",
"chunks_used_ids": [6],
"system": "The official holidays are October 28th, 2024;
— January 6th, 2024; January 30th, 2024; March 3rd, 2024;
< March 25th, 2024; May 1st, 2024; and June 9th, 2024."
¥
"29": {
"user": "What is the maximum number of ECTS units I can
— register for, given that I am in my 2nd year of
— studies?",
"chunks_used_ids": [96],
"system": "As a 2nd year student, you can register for a
— maximum of 46 ECTS units in each semester."
s
"30": {
"user": "I am in my 4th year and want to cancel a course
— that I passed in my 1st year of studies. Is that
— allowed?",
"chunks_used_ids": [97],
"system": "If you wish to be re-examined in a course you
— have passed last year, you can submit an application to
— the Department’s Secretariat following the guidelines in
— a relevant announcement by the Rectorate. Keep in mind
— that the maximum number of times a student can request a
— re-examination is 4 and that the application must be
— submitted in the interval between the examination period
— you obtained the passing grade and the immediately
— following period where the course will be examined. You
— can participate in the course’s examination anytime in
— the future. So, because you didn’t pass the course the
— Pprevious year, you cannot be re-examined."
}
}

Fig. 4.4.: Snippet from the JSON file containing the real QA Pairs annotated with chunk ids.

4.3 Real-World QA Collection

51

52

4.3.1 Collection Process

A short-form questionnaire was circulated to students through multiple informal and

formal channels:
+ Academic email service managed by department administration,
« Announcements through internal online platforms and student group chats,

+ Peer-to-peer messaging, where participants were encouraged to share the form

with fellow classmates.

The questionnaire prompted students to write any study-related questions they might have
about their curriculum, course prerequisites, specializations, or general academic policies,
and optionally requested them to reference pages of AUEB’s Studies Guide where relevant
information to their query was mentioned.'? Participants were explicitly informed that
the questions would be used to improve an Al-powered assistant based on the Studies
Guide.

4.3.2 Manual Annotation

The author manually answered each collected question based solely on the information
in the official English Studies Guide. Responses were annotated with the corresponding
chunk_ids from which the answers were derived. This step ensured that all answers
remained strictly grounded in the knowledge base used for system training and evaluation.
All annotations were performed by hand, without model assistance, to ensure reliability. A
small number of questions, close to ten, were deemed by the author as either ambiguous,
excessively complex for the current iteration of the system, or redundant due to significant
overlap with other submissions. Some examples of omitted submissions are displayed in
4.5. These instances were excluded from the current dataset to maintain the clarity and
quality of the evaluation set. However, it is important to note that such questions represent

authentic challenges faced by students and will be addressed in future work.

4.3.3 Aligning Annotations Across Granularities

While manual chunk-level annotation sufficed for this limited dataset, repeating the
same process at the sentence and proposition level would have been prohibitively time-
consuming. Given the limited human resources (i.e., only the thesis author), the same

automated LLM-based annotation pipeline employed for the synthetic data was applied.

“The questionnaire can be found here: https://forms.gle/N70WSF8Rz6L0o8dsx9

Chapter 4 QA Pairs Dataset Creation

https://forms.gle/N7oWSF8Rz6Lo8dsx9

« Each QA pair was annotated with sentences_used_ids using a sentence-
level justification prompt (again see Appendix A.3),

« Similarly, propositions_used_1ids were generated using the same proposition-

level annotation prompt described earlier (see Appendix A.4).

This procedure resulted in a triplet of real-world QA datasets (chunk-level, sentence-level,
proposition-level), enabling uniform evaluation across all retrieval granularities. Despite
its smaller size compared to the synthetic dataset, this collection plays a crucial role in

assessing how well the system handles natural, student-initiated queries.

{

- If I pass 42 courses, of which 20 complete 4 cycles (each course
— 1is assigned to only 1 cycle), will my average be the average of
< my passed courses divided by 42°?

- Can elective courses from other departments be used to complete
— course modules?

- How many textbooks am I entitled to for free through the "Eudoxus"
— platform?

- I have completed all the mandatory courses, along with 3 core

— elective courses (orange) and 4 general elective courses

— (green). How many more ECTS do I need to graduate according to
— the 2020-2021 study guide?

- Recommend two courses from the 6th course module.

- Can I pass a course that has no written examination, but only
— mandatory assignments, in the September exam period?

}

Fig. 4.5.: Examples of queries collected from AUEB students, that were not featured in the real QA
pairs dataset.

4.4 Comparative Analysis of the QA Datasets

This section analytically explores the rationale behind experimenting with various re-
trieval granularities (chunks, sentences, and propositions) by examining statistics such as
average support and coverage of each granularity’s synthetic and real-world QA datasets.
The analysis highlights how finer granularities help in effectively pinpointing relevant
information and discusses the significant impact of LLM output quality on both annotation

and the crucial decontextualization process.

4.4 Comparative Analysis of the QA Datasets 53

4.4.1 Synthetic QA Sets

For each QA pair in the evaluation process, the average number of retrieved supporting
documents required at each document granularity was computed. In the synthetic QA
sets, each QA pair was supported, on average, by two chunks, four sentences, or six
propositions, respectively. This increase in the number of supporting units as granularity
becomes more fine-grained reflects the fact that more atomic passages (such as sentences
or propositions) are often needed to cover the full scope of an answer. While chunk-level
retrieval provides broader context in fewer units, more fine-grained units require the
retriever to piece together multiple, precise fragments in order to reconstruct the same

information.

To capture this more clearly, the coverage of each QA dataset was measured, separately for
synthetic and real QA pairs at each granularity. Coverage is defined as the percentage of
all available units of a given granularity that are used at least once as justifications across
the corresponding QA pairs dataset (see Equation 4.1 below).

Used Units

— 1 .
Coverage Total Available Units x 100% (4.1)

In synthetic datasets, chunk-level annotations unsurprisingly achieve almost complete
coverage (99.06%), reflecting the broad but imprecise nature of chunk-based retrieval. On
average, each answer is supported by approximately two chunks; however, these chunks
typically contain many more sentences or propositions than are strictly required to answer
the question. This excess highlights that chunk-level retrieval, while convenient, often
brings in substantial irrelevant information. In contrast, coverage drops significantly at the
sentence level (48.36%) and proposition level (36.20%), demonstrating that not all content
within a chunk is necessary for effective answer support. More fine-grained granularities,
such as sentence or proposition-level retrieval, provide more targeted and efficient retrieval
by selecting only the specific information pertinent to each user query. This observation
underscores the trade-off between coverage and precision inherent to different document

granularities.

Tab. 4.1.: Coverage Statistics for Synthetic QA Sets

54

Granularity | Total Available IDs | Unique IDs Used | Coverage (%)
Chunks 212 210 99.1%
Sentences 2554 1235 48.4%
Propositions 6625 2398 36.2%

Chapter 4 QA Pairs Dataset Creation

4.4.2 Real-world QA Sets

In the real-world QA set, each QA pair was supported, on average, by two chunks, four
sentences, or eleven propositions. Notably, real-world QA pairs required substantially
more fine-grained evidence at the proposition level—nearly double the number observed in
the synthetic set, indicating that authentic student questions often span multiple discrete
facts dispersed throughout the Studies Guide and are generally more complex than the
synthetic ones. This was manually verified by the author on a subset of QA Pairs (this is

evident in Figure 4.5.

Real-world datasets further reinforce the importance of granularity selection. Chunk-level
coverage is lower (27.36%), indicating a narrower but still relatively broad capture of
information. Sentence-level annotations show a significant decrease (7.48%), underscoring
the need for precision when addressing detailed user-generated questions. Interestingly,
proposition-level annotations slightly improve relative coverage (8.63%), demonstrating
their flexibility in capturing detailed nuances within user queries, provided the initial

decontextualization is accurate.

Tab. 4.2.: Coverage Statistics for Real-world QA Sets

Granularity | Total Available IDs | Unique IDs Used | Coverage (%)
Chunks 212 58 27.4%
Sentences 2554 191 7.5%
Propositions 6625 572 8.6%

4.4.3 Impact of LLM Quality

It is paramount to stress that the trustworthiness of the coverage results and the overall
quality of the datasets heavily depend on the quality of the LLM’s output. This dependency
is particularly pronounced during the annotation processes for sentence- and proposition-
level granularities, as well as in the decontextualization step necessary for proposition
extraction. Hence, ensuring high-quality LLM outputs is crucial for producing reliable

datasets and obtaining accurate coverage statistics at finer granularities.

4.4 Comparative Analysis of the QA Datasets 55

System Design and
Implementation

As discussed in detail in Section 2.1, RAG integrates a document retriever with an LLM to
produce answers that are both contextually fluent and factually grounded. In this chapter,
the components of modern RAG implementations, the retriever and the generator, are
configured to implement a lightweight RAG system that will accurately and effectively
answer questions according to the AUEB Studies Guide, tuning retrieval strategies at
multiple granularities and generation hyperparameters to balance accuracy, coverage, and

resource constraints.

Before delving into the live operation and query-time components of the system, it is useful
to briefly recall the offline indexing procedures described in Chapter 3. The official Studies
Guide of the Department of Informatics at AUEB was subjected to a preprocessing pipeline
that segmented the content into three increasingly fine-grained levels of representation:
chunk, sentence, and proposition. Each granularity serves a different purpose in the

information retrieval pipeline and was indexed separately.

Indexing Phase
Studies Guide —
- e
= _Sentence_ _ |
= [Chunking Extraction Sentences
= N~
|
/”ﬂ_ﬁ_‘_'“"\
| \h‘_‘—'—ﬂ—/
Prbposition -
Generation * Propositions
N~

larities.

5.1 Retriever Setup

In the retrieval phase, experimentation involved sparse, dense, and hybrid retrieval ar-
chitectures across chunk-, sentence-, and proposition-level document representations as

retrieval units, enabling a systematic comparison of their performance.

Fig. 5.1.: Overview of the Indexing process for the Studies Guide, and the formation of multiple granu-

57

58

5.1.1 BM25 Retriever

The system utilizes Langchain’s'> BM25RETRIEVER'* component to serve as its sparse
retriever, which employs the widely used Okapi BM25 ranking function, explained in
Section 2.1.2.

The retriever is initialized directly by indexing the Studies Guide document, with the
default (untuned) parameter values, k1 = 1.5, b = 0.75 (see Equation 2.1). These values
are determined from extensive experimentation in the information retrieval community
(such as TREC evaluations), which has shown that k; ~ 1.2-1.5 and b ~ 0.75 yield strong

performance across diverse datasets [Ke22].

5.1.2 VectorStore Retriever

To complement precise keyword matching, the system incorporates dense semantic re-
trieval using the all-MiniLM-L6-v2"®> model in conjunction with a FAISS IndexFlatIP',
which are encapsulated by Langchain’s VectorStoreRetriever !’ component. The MINILM
encoder maps each query and document chunk into a 384-dimensional dense vector space.
Thanks to an Lo normalization step, these embeddings lie on the unit hypersphere, which
simplifies cosine similarity computation to a direct inner product, hence the suitability of
INDEXFLATIP for the present task [JDJ21; RG19; Wan+20].

all-MiniLM-L6-v2: MiniLM is a highly efficient Transformer-based encoder distilled
from BERT-base [Dev+19; Wan+20]. The all-MiniLM-L6-v2 variant consists of only six
Transformer layers and is further fine-tuned in the Sentence-BERT (SBERT) framework via
supervised contrastive learning on over a billion sentence pairs [RG19; Wan+20]. The result
is a compact model (22.7 million parameters, approximately 43 MB in float16 precision)
that delivers high-quality, 384-dimensional semantic embeddings at high throughput (up
to 14,000 sentences per second), making it particularly suitable for real-time, resource-

constrained settings like ours.

IndexFlatIP from FAISS performs exhaustive, exact inner-product search, comparing the
query embedding against every stored vector in the index. While computationally expen-
sive at a large scale, an exhaustive scan is optimal for small to medium-sized corpora, such

as the university-level Studies Guide dataset. This approach guarantees high recall without

Bhttps://www.langchain.com
“https://python.langchain.com/api_reference/community/retrievers/
langchain_community.retrievers.bm25.BM25Retriever.html
“https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
“https://faiss.ai/cpp_api/struct/structfaiss_1_1IndexFlatIP.html
"https://python.langchain.com/api_reference/core/vectorstores/
langchain_core.vectorstores.base.VectorStoreRetriever.html

Chapter 5 System Design and Implementation

https://www.langchain.com
https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.bm25.BM25Retriever.html
https://python.langchain.com/api_reference/community/retrievers/langchain_community.retrievers.bm25.BM25Retriever.html
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://faiss.ai/cpp_api/struct/structfaiss_1_1IndexFlatIP.html
https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.base.VectorStoreRetriever.html
https://python.langchain.com/api_reference/core/vectorstores/langchain_core.vectorstores.base.VectorStoreRetriever.html

approximation error and remains efficient given the manageable size of the knowledge

base.

In summary, the dense retrieval module, through combining MiINILM embeddings and
FAISS’s INDEXFLATIP, enables efficient and semantically meaningful retrieval over the
Studies Guide corpus. As explained in Section 2.1.3, this component enhances the system’s
ability to identify and return conceptually relevant passages, even when users’ queries

differ lexically or structurally from the source text.

5.1.3 Ensemble Retriever

To combine both sparse and dense retrieval signals, the system implements a hybrid
retrieval strategy using Weighted Reciprocal Rank Fusion, integrating result lists from
both the BM25RETRIEVER and VECTORSTORERETRIEVER mentioned previously, as explained

in Section 2.1.4. This setup utilizes Langchain’s ENSEMBLERETRIEVER '® component.

This retrieval component is configured with equal weights for each sub-retriever and
employs the default and widely used fusion constant c value of 60. By using equal
weighting, BM25RETRIEVER and VECTORSTORERETRIEVER are each given the same influence
in the fusion process, enabling balanced consideration of exact keyword matches and
semantic similarity. A fusion constant value of 60 helps maintain fairness across retrieved
lists and favors consensus among retrievers, a strategy shown to improve result robustness

in hybrid RAG systems, as discussed previously in Section 2.1.4).

Retrieval Phase

BM25 Ensemble VectorStore

h 4 h 4 ¥

Sparse Hybrid Dense
Retrieval Retrieval Retrieval

v

Document
Retriever

document granularities.

®https://python.langchain.com/api_reference/langchain/retrievers/
langchain.retrievers.ensemble.EnsembleRetriever.html

5.1 Retriever Setup

Fig. 5.2.: Overview of the retrieval architecture with support for sparse, dense, and hybrid search across

59

https://python.langchain.com/api_reference/langchain/retrievers/langchain.retrievers.ensemble.EnsembleRetriever.html
https://python.langchain.com/api_reference/langchain/retrievers/langchain.retrievers.ensemble.EnsembleRetriever.html

60

5.2 Generator Setup

In the proposed system, the answer generator is implemented using Meta’s instruction-
tuned model Lrama-3.1-8B-INsTruUCT!?, selected for its balance between performance
and resource requirements. The model supports a context window of up to 8192 tokens
(which can be extended to 128,000 after certain configurations on supported runtimes)
and exhibits effective instruction-following behavior, aligning well with the demands
of the RAG system. The model (and the entire RAG system) was developed to run on
the two NVIDIA T4 GPUs (each with 15 GB of usable memory) offered via Kaggle’s free
30-hour/week GPU time quota.

5.2.1 GPU Memory Management through Quantization

Quantization is a widely adopted model compression technique in the domain of large
language models (LLMs), which operates by converting the model’s weights and activa-
tions from high-precision floating-point representations, such as 32-bit or 16-bit floats,
into lower-precision formats, typically 8-bit or even 4-bit integers. The principal goal of
quantization is to reduce the overall memory footprint of the model and accelerate infer-
ence, thereby enabling the deployment of state-of-the-art models on hardware with limited
computational resources and memory capacity. Among its main advantages, quantization
significantly decreases the storage and memory bandwidth requirements, allows for faster
inference due to more efficient integer arithmetic, and reduces energy consumption. How-
ever, these benefits come at the cost of certain disadvantages. Notably, quantization can
introduce numerical errors and may degrade model accuracy, especially when aggressively

reducing the precision to very low bit-widths without careful calibration [Has24].

To manage the available GPU memory efficiently, the model was quantized using the
16-bit bfloat16 precision. According to internal studies and third-party benchmarks, 8-bit
quantization of LLama 3.1 8B INSTRUCT retains nearly identical performance on reasoning
and QA benchmarks compared to full precision (<1% accuracy loss), while halving memory
usage [Kur+25b]. In the current setup, model weights are loaded in bfloat16 and can be
further reduced to INTS8 if GPU memory constraints require it. This allows deployment
even on single GPU setups, although with a risk of noticeable performance degradation
[Mek+25].

Yhttps://huggingface.co/meta-1lama/Llama-3.1-8B-Instruct

Chapter 5 System Design and Implementation

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

5.2.2 Generation Configuration.

Generation is controlled with the following, untuned hyperparameter values, empirically

chosen to balance coherence and creativity:

temperature = 0.4, top_p = 0.9, max_new_tokens = 1024

These settings ensure stable and accurate responses with minimal randomness, while
allowing a sufficient expressive range. Sampling is enabled (do_sample=True), with
eos_token as both stopping and padding token, and attention masks are correctly han-
dled to ignore padding tokens. In this configuration, sampling is performed using nucleus
(top-p) sampling with p = 0.9, which restricts the candidate token pool to the smallest set
whose cumulative probability exceeds 0.9. This balances diversity and coherence by avoid-
ing low-probability outliers while still allowing variability. Furthermore, the relatively low
temperature value of 0.4 further sharpens the probability distribution, biasing generation
toward higher-probability tokens and ensuring stable, deterministic-like outputs with
only limited randomness. Such behavior is desirable for the proposed AUEB assistant,
as it prioritizes factual accuracy and consistency over excessive creativity, ensuring that

responses remain reliable and grounded in the Study Guide.

5.2.3 System Prompt

The system prompt serves as the foundational instruction set that integrates retrieval and
generation in RAG systems. It describes in great detail the assistant’s role, knowledge
domain, and desired output style. This aims to enhance factual grounding by establishing
robust guardrails that prevent adversarial jailbreak attacks, ensuring the model rejects

malicious instructions, and maintains consistent performance across diverse queries.

The aim behind the design of the system prompt was to clearly state the model’s name,
task, and inform it about the specific knowledge that it has access to. It also enforces the
behavior that the generated responses must be strictly grounded in the retrieved context.
The assistant is instructed to handle out-of-domain queries gracefully by returning a safe
fallback response when the question lies outside the AUEB Studies Guide scope. Finally, the
prompt prescribes a clear and consistent style for the assistant’s responses, polite, concise,
and complete, by setting out explicit instructions for how answers should be formulated.
This ensures that students always receive responses that are easy to understand and
appropriate for an academic setting while avoiding ambiguity or unnecessary verbosity.
These constraints are essential in RAG systems to minimize the risk of irrelevant or

hallucinated responses, maintain user trust, and uphold the educational mission of the

5.2 Generator Setup

61

assistant. Appendix A.5 includes the complete system prompt used to define the assistant’s

behavior.
Generation Phase
tnfun :
ﬁ—» Answer Generation «—— # Generator
System Liama
Prompt 3.18B
Instruct

Fig. 5.3.: Overview of the Response Generation phase using an Instruct LLM, conditioned on top-k
retrieved Studies Guide passages.

5.3 Query Flow

The overall operation of the RAG-based assistant can be separated into two main phases:

the offline (pre-deployment) phase and the online (per-query) phase.

5.3.1 Offline Phase: Corpus Indexing, and System
Configuration

Prior to deployment and actual user interaction, a substantial set of preparatory processes
were conducted. First, the Studies Guide corpus is preprocessed and segmented at various
granularities, specifically into chunks, sentences, and propositions, each representing a
different unit of information for potential retrieval, as explained thoroughly in Chapter
3. For each granularity, the corresponding segments are encoded and indexed using the
relevant retrieval methods: a sparse (BM25) index for lexical matching, a dense vector
store (using ALL-MINILM-L6-v2 and a FAISS FlatIP Index), and an ensemble setup
combining both through RRF. This approach allows for systematic experimentation and
direct comparison between retrieval strategies, as each index can be used independently.
During this phase, the active retrieval granularity and retriever method are chosen as fixed
system settings. It must be noted that at present, only one combination is active at a time,

ensuring experimental clarity and consistent evaluation.

62 Chapter 5 System Design and Implementation

5.3.2 Online Phase: Evidence Retrieval and Response
Generation

Once deployed, the system enters the online phase, during which it processes individual
user queries in real time. Upon receiving a query, the system routes it through the selected
retrieval component. This component transforms the input into an appropriate representa-
tion, either a sparse vector or a dense embedding, depending on the retrieval architecture in
use. The retriever then searches the indexed corpus at the selected granularity level (chunk,
sentence, or proposition) and ranks candidate segments according to their relevance to the

query, as determined by the retriever’s internal scoring mechanism.

Once the topk most relevant segments have been identified, they are concatenated in a
fixed, consistent order and formatted to serve as contextual input. This context is appended
to the user’s original query, and together with the predefined system prompt, the complete
input is passed to the generator module. The current generation component, LLama-3.1-
8B-INSTRUCT, is responsible for producing the final response. The model is explicitly
instructed to maintain a helpful, polite, and concise tone, to ground its answers strictly
on the retrieved context, and to refrain from conjecture or unsupported claims. In cases
where the provided context is insufficient to confidently answer the query, the assistant is

configured to return an appropriate fallback message.

The system supports operation at multiple document granularities and retrieval methods
to allow for comparative analysis of how retrieval unit size and retrieval strategy influence
answer accuracy, completeness, and overall system reliability. However, the system, as
currently implemented, does not support dynamic selection or combination of retrieval
granularities at query time, but this is identified as a promising avenue for future research

(see Chapter 7.3 for more details).

Document
Store

Retrieves Context

il

Searches

Query Document Generator
i' Queres— |ngestion Retriever

Student

¥

Response

/

Fig. 5.4.: Complete end-to-end online query flow of the proposed RAG-based system, illustrating retrieval
and generation phases.

5.3 Query Flow 63

Evaluation

6.1 Retrieval Evaluation

Evaluating the retrieval component is a critical step in the development and optimization
of Retrieval-Augmented Generation (RAG) systems, as it directly influences the quality and
factual grounding of the generated responses. The retrieval step is typically assessed using
well-established Information Retrieval (IR) metrics, each designed to quantify different
aspects of retrieval effectiveness and ranking quality. These metrics not only quantify
how accurately and efficiently the system retrieves relevant documents, but also provide
essential diagnostic signals for optimizing hybrid or fused retriever architectures and
guiding ablation studies [Gan+25].

The retrieval evaluation employs binary relevance judgments, where each document is

labeled as either relevant (labeled as 1) or non-relevant (labeled as 0).

6.1.1 Retrieval Metrics

Recall

Recall@k (R@k) measures the fraction of relevant documents successfully retrieved
within the top-k results. A higher RECALL@K ensures the system captures essential

evidence across queries, which is crucial for a QA task. It is defined as:

relevant docs} N {top-k retrieved
p
|{relevant docs}|

Recall@k = (6.1)

Its range is from 0 to 1, where 1 indicates that all relevant documents appear within the

top-k, and 0 means none do. Higher values reflect better coverage of relevant evidence.

This metric is widely used due to its straightforward interpretation in offline evaluation.

65

66

Mean Average Precision

Precision is the fraction of retrieved documents (up to a given rank) that are relevant to
the query. In Equation 6.2, P, (i) denotes the precision at rank 7, and rel,(¢) is a binary

indicator that equals 1 if the document at rank i is relevant (¢ denotes a given query).

Zé‘zl rely(7)

1

Py(i) = (6.2)

Mean Average Precision (MAP@K) is the mean across queries of the Average Precision

(AP), which itself is the average of precision values computed at ranks where relevant

documents appear, considering only the top-k retrieved results.

S| Py(i) - rely (i) 1
=1"49 g MAP@k = — > AP,Qk (6.3)

AP,Qk =
! Ef:l rely (i) Q@ q=1

MAP@k takes values in the range [0, 1], with 1 indicating perfect ranking (i.e., all relevant
documents ranked before any non-relevant ones within the cutoff k). This metric is
particularly informative in scenarios where both the presence and high ranking of relevant
documents are important. It is sensitive to both recall and ranking quality: ranking relevant

documents higher improves MAP.

Precision thus measures the fraction of retrieved documents up to rank ¢ that are relevant,
and Average Precision (AP) extends this by averaging precision values only at the ranks
where relevant documents occur, before Mean Average Precision (MAP) generalizes further

across all queries.

Normalized Discounted Cumulative Gain

Normalized Discounted Cumulative Gain (NDCG@Kk) evaluates ranking quality with
graded relevance and logarithmic rank discounting, ideal for scenarios with varying
relevance levels. Nevertheless, it can still be used under binary relevance by assigning
rel; € {0, 1}. Under binary relevance, it behaves similarly to MAP. NDCG@xk normalizes
DCG@ck by the iDEAL DCG@K (IDCG@K). Formally, it is defined as:

k rel;
2rel — 1 DCGk
DCGQk = ———— NDCGQk =
; logy (i + 1) IDCGy

(6.4)

Here IDCGQE is the ideal DCG@x when all relevant documents are optimally ordered.
NDCG@k is normalized between 0 and 1: 1 represents a perfectly ranked list, and 0
indicates none of the retrieved documents are relevant. This metric balances the relevance

of top-ranked items against their order in the list [Wan+13].

Chapter 6 Evaluation

Mean Reciprocal Rank

Mean Reciprocal Rank (MRR) quantifies the average position of the first relevant result

per query:
18 1
MRR= 53—

6.5
=l rankgl) ©3)

where ra,nk((ll) is the position of the first relevant document for query ¢. The maximum
value is 1, achieved when every query’s first result is relevant; the minimum approaches
0 as relevant documents are retrieved only at deep ranks or not at all. MRR is especially

relevant for tasks requiring a single early correct answer.

6.1.2 Evaluation Framework

By using binary relevance, it is specified that each document is either fully relevant to
a query or not, simplifying the ground truth setup. Each metric ranges from 0 to 1,
with higher values indicating better performance. This multi-metric framework ensures a
comprehensive understanding of retrieval accuracy and effectiveness. RECALL@K evaluates
coverage, MAP and NDCG@k assess both accuracy and ranking order, and MRR reflects the
ability to retrieve at least one correct answer early. This multi-metric approach is employed
on all three retriever configurations (sparse, dense, and ensemble/hybrid), thus supporting
component-level diagnosis and retrieval comparison.[Gan+25; Yu+25]. Such multi-metric
assessments are essential for identifying retrieval limitations, quantifying improvements,
and correlating retrieval performance with downstream LLM answer quality [Gan+25;
Yu+25; MGG25].

In order to pinpoint the strengths and weaknesses of different retrieval setups for the RAG
system, all three retriever configurations are evaluated: sparse (BM25), dense (FAISS Flat
IP Index with all-miniLM-16-v2 normalized embeddings), and a hybrid ensemble using
RRF on both sparse and dense methods. Each configuration is assessed at each level of
retrieval granularity (chunks, sentences, and propositions) to understand how unit size
influences evidence coverage and precision. At the chunk level, evaluation gauges the
system’s ability to surface broader contextual passages, which typically improves recall
but introduces more non-essential text or outright noise. At the sentence level, evaluation
examines more fine-grained units obtained by splitting chunks, which retain only limited
local context and typically reduce noise compared to whole chunks, but may also lack
essential context and therefore require more precise retrieval. At the proposition level,
evaluation targets fully decontextualized, atomic facts that are well suited for precise
answer grounding, though multi-part answers often require retrieving and composing
several propositions [Che+24]. Examining results across these granularities, therefore,

makes explicit the recall-precision trade-off that different unit sizes impose on the retriever.

6.1 Retrieval Evaluation

67

By measuring Recall@k, MAP@k, NDCG@k, and MRR for each retriever and granularity,
it becomes possible to diagnose whether lexical matching or semantic searching drives
performance gains and also determine the optimal configuration for knowledge-intensive

QA in a resource-constrained setting.

The results of the retrieval evaluation per granularity for each retriever on both datasets
are presented below. Note that all values reported in all the result tables are the metric

averages across all queries of a dataset.

Tab. 6.1.: Retrieval Metrics on the Synthetic QA Set (Chunk Level, 212 chunks in total)

Retriever R@1 | R@5 | R@10 | R@25 | R@50 | R@100 | MRR | MAP@100 | NDCG@100
VECTORSTORERETRIEVER 0.53 0.76 0.84 0.94 0.97 0.99 0.64 0.64 0.72
BM25RETRIEVER 0.57 0.81 0.88 0.93 0.96 0.97 0.67 0.67 0.74
ENSEMBLERETRIEVER 0.63 | 0.87 0.93 0.97 0.99 1.00 0.74 0.74 0.80

Tab. 6.2.: Retrieval Metrics on the Real-World QA Set (Chunk Level, 212 chunks in total)

Retriever R@1 | R@5 | R@10 | R@25 | R@50 | R@100 | MRR | MAP@100 | NDCG@100
VECTORSTORERETRIEVER 0.52 0.69 0.80 0.86 0.93 0.98 0.67 0.63 0.72
BM25RETRIEVER 0.24 0.42 0.46 0.57 0.68 0.79 0.35 0.34 0.44
ENSEMBLERETRIEVER 0.32 0.56 0.68 0.90 0.91 0.95 0.48 0.46 0.58

6.1.3 Retrieval Evaluation Results per Granularity

Analysis of Chunk-Level Retrieval Results

For the Synthetic QA set at the chunk level, the ENSEMBLERETRIEVER achieved the highest
performance, consistently surpassing both BM25 and VECTORSTORERETRIEVER across
all metrics. This highlights the advantage of combining lexical and semantic retrieval
methods at chunk granularity for synthetic data. The BM25 retriever performed well but
was slightly behind the Ensemble, while VECTORSTORERETRIEVER showed competitive but

slightly lower performance.

For the Real-world QA set at the chunk level, the VECTORSTORERETRIEVER notably outper-
formed both BM25 and the ENSEMBLERETRIEVER at chunk granularity. BM25’s performance
significantly declined, reflecting the limitations of lexical matching when handling the
complexity and variability inherent in real-world questions. The ENSEMBLERETRIEVER,
while still effective, did not reach the performance level of the VECTORSTORERETRIEVER in

this context.

Tab. 6.3.: Retrieval Metrics on the Synthetic QA Set (Sentence Level, 2554 sentences in total)

68

Retriever R@1 | R@5 | R@10 | R@25 | R@50 | R@100 | MRR | MAP@100 | NDCG@100
VECTORSTORERETRIEVER 0.21 0.34 0.39 0.49 0.59 0.68 0.43 0.30 0.41
BM25RETRIEVER 0.15 0.25 0.29 0.36 0.41 0.49 0.33 0.21 0.30
ENSEMBLERETRIEVER 0.01 0.21 0.33 0.46 0.56 0.63 0.15 0.10 0.24

Chapter 6 Evaluation

Tab. 6.4.: Retrieval Metrics on the Real-World QA Set (Sentence Level, 2554 sentences in total)

Retriever R@1 | R@5 | R@10 | R@25 | R@50 | R@100 | MRR | MAP@100 | NDCG@100
VECTORSTORERETRIEVER | 0.20 | 0.42 0.47 0.57 0.59 0.69 0.48 0.33 0.46
BM25RETRIEVER 0.08 0.16 0.20 0.25 0.30 0.39 0.19 0.13 0.20
ENSEMBLERETRIEVER 0.02 0.19 0.28 0.44 0.56 0.62 0.14 0.11 0.25

Analysis of Sentence-Level Retrieval Results

For the Synthetic QA set at the sentence level, VECTORSTORERETRIEVER consistently out-
performed BM25 and ENSEMBLERETRIEVER. BM25 showed notably weaker performance,
demonstrating clear limitations in lexical retrieval for shorter, context-dependent segments.
The ENSEMBLERETRIEVER also did not achieve significant improvements, suggesting chal-
lenges in effectively integrating multiple retrieval methods at this granularity. This can
in part be attributed to the choice of weights assigned to each subretriever. As a result,
the ensemble may not have been able to fully leverage the complementary strengths of its
components, potentially limiting its overall effectiveness. A more systematic approach
to hyperparameter tuning, specifically regarding the contribution of each retriever, could
further enhance ensemble performance and represents a promising direction for future

work.

For the Real-world QA set at the sentence level, VECTORSTORERETRIEVER again delivered
the best results, significantly surpassing both BM25 and ENSEMBLERETRIEVER. BM25
retrieval quality was consistently low, highlighting its inherent weaknesses in real-world
sentence-level retrieval. Similarly, the ENSEMBLERETRIEVER underperformed, confirming

the difficulties associated with hybrid methods at finer granularities.

Tab. 6.5.: Retrieval Metrics on the Synthetic QA Set (Proposition Level, 6625 propositions in total)

Retriever R@1 | R@5 | R@10 | R@25 | R@50 | R@100 | MRR | MAP@100 | NDCG@100
VECTORSTORERETRIEVER 0.13 0.33 0.46 0.60 0.70 0.76 0.47 0.33 0.50
BM25RETRIEVER 0.10 0.24 0.32 0.44 0.56 0.65 0.34 0.25 0.39
ENSEMBLERETRIEVER 0.13 | 0.33 0.43 0.61 0.73 0.81 0.46 0.33 0.51

Tab. 6.6.: Retrieval Metrics on the Real-World QA Set (Proposition Level, 6625 propositions in total

Retriever R@1 | R@5 | R@10 | R@25 | R@50 | R@100 | MRR | MAP@100 | NDCG@100
VECTORSTORERETRIEVER | 0.10 | 0.31 0.43 0.57 0.66 0.75 0.38 0.29 0.45
BM25RETRIEVER 0.08 0.09 0.14 0.18 0.23 0.32 0.18 0.11 0.18
ENSEMBLERETRIEVER 0.06 0.19 0.25 0.48 0.62 0.74 0.24 0.18 0.34

6.1 Retrieval Evaluation 69

70

Analysis of Proposition-Level Retrieval Results

For the Synthetic QA set at the proposition level, VECTORSTORERETRIEVER demonstrated
clear superiority, indicating its effectiveness in capturing detailed semantic nuances. BM25
retrieval was consistently weaker, reflecting challenges at fine-grained semantic retrieval.
The ENSEMBLERETRIEVER provided competitive results but did not exceed the performance

of the dense retrieval method.

For the Real-world QA set at the proposition level, VECTORSTORERETRIEVER maintained
dominance, reinforcing its strong semantic understanding capability. BM25 showed
severely limited performance, indicating significant shortcomings in processing finely
detailed semantic content. The ENSEMBLERETRIEVER offered moderate results, revealing

complexities in effectively combining retrieval signals at the proposition level.

6.1.4 Summary of Observations

VECTORSTORERETRIEVER consistently exhibited superior performance across all gran-
ularities, with its advantage becoming especially pronounced in real-world scenarios.
Its robustness in semantic retrieval allowed it to achieve the highest scores in nearly
all metrics—particularly REcaLL@k, MAP, and NDCG@100—across both sentence and
proposition-level evaluations. The chunk-level performance of VECTORSTORERETRIEVER
on the Real-world QA set emerged as the single most effective retrieval configuration,
combining high MRR and top-k recall, hinting that the custom parsing process following
the strict structure of the Studies Guide document aids retrieval as it contains dense context

about a specific theme, even if it may also carry some non-essential information.

BM25RETRIEVER demonstrated only limited competitiveness, achieving relatively strong
performance in the synthetic chunk-level setting, likely due to a substantial lexical similar-
ity between synthetic questions and indexed content. However, its performance sharply
declined in finer granularities and in the real-world QA set, where semantic variability
and paraphrasing reduced its effectiveness. Notably, its poor MAP@100 and NDCG@100
scores at the sentence and proposition levels reflect an inability to rank relevant evidence

effectively under these conditions.

The ENSEMBLERETRIEVER, which integrates lexical and dense signals via RRF, performed
best in the synthetic chunk-level setting, outperforming both individual retrievers in terms
of MRR and ReEcaLL@K. Nevertheless, its effectiveness diminished at the sentence and
proposition levels, particularly in real-world queries. This suggests that while fusion
methods can yield gains under controlled input distributions, they struggle to generalize
when retrieval units become finer and queries more context-dependent—possibly due to

suboptimal fusion weighting or redundancy amplification.

Chapter 6 Evaluation

Overall, chunk-level retrieval consistently provided the best trade-off between contextual
sufficiency and retrieval accuracy. When paired with VECTORSTORERETRIEVER, it not
only achieved the highest aggregate scores but also exhibited stable performance across
metrics and datasets. Sentence and proposition-level retrievals, although valuable for
reducing context length and targeting atomic information, underperformed. These findings
collectively underscore that, under current constraints, chunk-level semantic retrieval
constitutes the most effective configuration for accurate and contextually appropriate

evidence retrieval from the knowledge base.

6.2 Generation Evaluation

The systematic evaluation of generated answers in knowledge-intensive QA systems is a
multifaceted challenge that necessitates both a quantitative and a qualitative approach to
account for the diversity of language output. To comprehensively assess the effectiveness
of the answer generation module within the RAG-based student assistant, a comprehensive

suite of evaluation metrics is employed.

These include the traditional reference-based, the embedding-based, and the more modern
LLM-based text generation metrics. Reference-based metrics compare model outputs to
human-written or LLM-generated correct answers, called references or reference answers,
using n-gram overlap and surface-level similarity. Embedding-based metrics assess
semantic alignment in high-dimensional representation spaces, and LLM-based metrics
leverage the reasoning abilities of advanced LLMs to provide holistic assessments of answer

quality, guided by structured scoring guidelines.

6.2.1 Traditional Generation Evaluation Metrics

Traditional generation evaluation metrics fall into two complementary paradigms: clas-
sic NLG (Natural Language Generation) metrics, such as BLEU, METEOR, and ROUGE,
that quantify surface-level token overlap between generated and ground-truth answers,
and embedding-based metrics like BERTScore, which measure semantic similarity by

comparing their contextual embeddings from pre-trained language models.

Classic NLG metrics, sometimes referred to as string-based or overlap-based evaluation
metrics [Hwa+23], constitute the most established framework for the automatic assessment
of machine-generated text. The central premise of these metrics is to compare the model’s
output, the generated answer, also known as the candidate answer, against one or more
human-written correct answers (i.e., treated as ground-truth answers), known as reference
answers. Due to recent advancements in LLM capabilities, LLM-generated answers can

be used as a substitute in cases where human annotators are unavailable or prohibitively

6.2 Generation Evaluation

71

72

expensive. Answer quality is then judged in terms of the degree of overlap, measured at

the level of surface forms such as words, n-grams, subsequences, or exact tokens.

The paradigm these metrics follow is grounded in the tradition of machine translation and
summarization evaluation, where reference texts are treated as gold standards, and model
outputs are evaluated based on their ability to reproduce the wording, phraseology, or
ordering of the reference texts. Metrics like BLEU, ROUGE, and METEOR are thus said
to follow a token-matching paradigm, which prioritizes lexical similarity over semantic
equivalence or factual correctness. As a result, these metrics are most effective in settings
where the space of acceptable answers is relatively constrained and reference texts provide

good coverage of valid variations.

A series of systematic studies have demonstrated that their correlation with human judg-
ments is generally weak, especially in open-ended generation tasks, dialog systems, or
knowledge-intensive question answering, where there may be many equally valid phras-
ings or correct answers not present in the reference set [Liu+16; Low+17; NK18]. Further-
more, these metrics are inherently limited to scenarios where at least one high-quality
reference is available for each input, which is often not the case for real-world, domain-

specific, or conversational datasets.

BLEU

The BLEU (Bilingual Evaluation Understudy) metric introduced by Papineni et al.
[Pap+02] is a corpus-level n-gram precision score combined with a brevity penalty to
discourage overly short hypotheses. It calculates the geometric mean of modified n-gram

precisions (usually uni- to 4-grams, called BLEU-4) as follows:

4

BLEU = BP - exp (Z i1n pn> (6.6)
n=1

where p,, is the modified (clipped) n-gram precision and BP is the brevity penalty as defined

by Papineni et al. [Pap+02]. Its strength lies in its efficiency, language independence, and

strong correlation with human judgments across diverse language pairs [Pap+02].

Modified n-gram precision refers to clipping the count of each n-gram in the candidate
translation to the maximum number of times it appears in any reference translation; this

prevents inflated precision from over-repetition of n-grams [Pap+02].

Segment-level BLEU applies the metric at the sentence level rather than across a corpus.
Since higher-order n-grams may be missing in short sentences, this often leads to zero
scores even when the overall quality is acceptable [Pap+02]. Chen and Cherry [CC14]

addressed this issue by introducing smoothing techniques, such as epsilon smoothing

Chapter 6 Evaluation

(which adds a small constant ¢ to unseen n-gram counts) or floor smoothing (a lower
bound on precision estimates). These smoothing techniques were adopted by NLTK to

produce more stable sentence-level BLEU results.

These techniques form the basis of the nltk.translate.bleu_score module,
in particular the sentence_bleu function and the SmoothingFunction class,

which are employed in the evaluation scheme.

ROUGE

The ROUGE?® (Recall-Oriented Understudy for Gisting Evaluation) metrics were
introduced by Lin [Lin04] as a package for automatic summarization evaluation. These
metrics focus on coverage—the degree to which the generated answer overlaps with

reference answers—using various n-gram and sequence measures.

ROUGE-N computes the recall of overlapping n-grams between a candidate answer and

one or more references:

ZSeRefs Zgramn es Countmatch (gramn)
ZSERefs Zgramn) Count(gramn)

ROUGE-N = (6.7)
where N is the n-gram length. In the following generation evaluation metric tables,
ROUGE-1, ROUGE-2, ROUGE-3, and ROUGE-4 (i.e., unigram to 4-gram recalls) are all

reported to capture increasing spans of lexical overlap [Lin04].

ROUGE-L is based on the longest common subsequence (LCS) between the candi-
date and reference, capturing sentence-level structure without requiring strict adjacency.
It combines LCS-based recall and precision into an F-measure, rewarding in-sequence

matches even across gaps [Lin04].

METEOR

The METEOR (Metric for Evaluation of Translation with Explicit Ordering) metric
introduced by Lavie and Agarwal [LA07] was designed to address certain limitations of
BLEU, particularly its limited use of recall and weak sentence-level correlation with human
judgment. METEOR aligns unigrams between system-generated output and reference
answers using multiple matching modules (exact surface form, stemming, synonymy) and

favors alignments with fewer word order violations.

O1n the following metric tables, all ROUGE metrics are abbreviated as “R”.

6.2 Generation Evaluation

73

74

Once an optimal alignment is established, METEOR computes unigram precision P = *
and recall R = *, where m is the number of matched unigrams, w; is the hypothesis
token count, and w, is the reference token count. These are combined using a weighted

harmonic mean Fpean = TR with greatest emphasis on recall (commonly o = 0.1,

__PR
aP+(1—«a
giving recall nine times more weight).

To account for fluency and word order, METEOR introduces a penalty based on fragmen-
tation: the ratio of aligned chunks to matches, elevated and scaled by tunable parameters

[and «. The final score for each segment is:

chunks

METEOR = Fean - (1 =7 - (%) (6.8)

m

Lavie and Agarwal [LA07] showed METEOR vyields significantly higher sentence-level
correlation with human judgments than BLEU (up to 0.40 vs. 0.22), and tunable parameters
(¢ = 0.1, B = 3, v = 0.5) and matching modules enhance its effectiveness. It remains one
of the most reliable metrics for evaluating answer generation in QA systems, particularly

when grammatical ordering and semantics are important.

BERTScore

BERTScore, introduced by Zhang” et al. [Zha+20], computes semantic similarity between
a candidate answer and its reference by leveraging contextual embeddings from a pre-
trained BERT model. Rather than relying solely on exact n-gram matches, BERTScore
aligns tokens via cosine similarity in the embedding space. Specifically, the process begins
by passing both the candidate and reference answers through the model to obtain their
token-level vector representations. Let r denote the sequence of embeddings for the
reference answer, and c for the candidate answer. BERTScore then defines precision and
recall at the level of contextualized tokens by measuring the maximum cosine similarity
between each token embedding in one sequence and all token embeddings in the other
[Zha+20]:

Pogrr = Id - Z , max cos (ris ci), (6.9)
RpprT = Z max cos (i, ¢5), (6.10)
T, ET J

where cos(+, -) denotes cosine similarity between token embeddings. The overall BERTScore
F7 is then computed as the harmonic mean of Ppgrr and Rpgprr, analogous to the tradi-

tional F} formula:

P ‘R
BERTScore-F) = 2. —BERT BERT (6.11)

Pprrr + RBERT

Chapter 6 Evaluation

BERTScore values theoretically range from —1 to 1, corresponding to the cosine similarity
interval, but according to Hanna and Bojar [HB21], empirical scores for high-quality
outputs typically occupy the upper end of this spectrum. This range reflects the met-
ric’s underlying sensitivity to both semantic alignment and the quality of the learned

representations.

This metric correlates more strongly with human judgments in generation tasks, such as
machine translation and image captioning, than traditional metrics like BLEU and ROUGE,

offering robustness to paraphrasing and semantic variation [Zha+20].

In the evaluation setup, BERTScore-F; is computed using the BERT-BASE-UNCASED model
via the Hugging Face TRANSFORMERS and BERT_SCORE libraries. This approach ensures a
semantically grounded evaluation of generated answers, which is particularly important

for assessing deeper meaning and paraphrase fidelity beyond surface-level matches.

6.2.2 LLM-based Generation Evaluation Metrics

LLMs enable two complementary paradigms for evaluating generated answers: intrinsic

confidence estimation via perplexity and external judgment via LLM-as-Judge.

Perplexity

Perplexity (commonly abbreviated as PPL) is widely used to quantify how well a language
model predicts a given sequence. In RAG scenarios, it is used to complement reference-
based metrics, as, unlike them, it does not directly measure the quality of generated text.
Instead, it assesses the "confidence" or "surprise" of a language model in predicting the
next word in a sequence of words. It is defined as the exponentiated average negative

log-likelihood (i.e., average cross-entropy [MMZ23]) of a sequence of tokens. Formally:

N
PPL(X) = exp (—]1, > log py(w; | fﬂ<i)> : (6.12)
i=1

where N is the number of tokens and py(z; | ;) is the model probability for token x;
given its preceding context. Equivalently, it can be viewed as the exp(CROSSENTROPY) per
token, with lower PPL indicating that the model is assigning higher probability mass to
the correct tokens [CS24].

In the evaluation scheme, PPL is computed as the exponentiated average cross-entropy

loss over the ground-truth answer tokens, excluding the query and ground-truth context

tokens, which are masked in the input. The model’s per-token cross-entropy loss on

6.2 Generation Evaluation

75

76

the answer is weighted by the number of answer tokens to recover the total negative
log-likelihood for each QA pair. These totals are then summed across all QA pairs and
divided by the overall number of answer tokens, yielding the average cross-entropy loss .
Finally, PPL is obtained as exp(¢). In this thesis, PPL essentially reports how confident,
on average, the model was in producing the gold answers, given the right context. Under
this gold-context setup, the calculation is independent of the retriever configuration or the

value of k.

As future work, the evaluation framework could also be extended to compute PPL under a
full RAG setup, where the retrieved context directly influences the probabilities the LLM
assigns to the ground truth answer tokens. Another direction closely aligned with this
is the Semantic Perplexity (SePer) framework introduced by Dai et al. [Dai+25], which
quantifies retrieval efficacy in RAG systems by measuring the reduction in semantic

perplexity resulting from the retrieved context.

Perplexity offers an intrinsic, language-agnostic, and computationally efficient metric,
reflecting a model’s internal confidence over its generation. However, it is influenced by
tokenization, context length, and vocabulary size, making it unsuitable as a standalone

metric to evaluate the generation quality, but useful nonetheless.

Moreover, while PPL is ideal for assessing generation fluency and model calibration, Hu
et al. [Hu+24] showed that it does not reliably reflect an LLM’s ability to understand long
texts, as it focuses on the predictability of individual words within a sequence, essentially
measuring how well the model captures local language patterns. Thus, it can yield low

values while the model still struggles with complex, lengthy passages.

For these reasons, generation evaluation is complemented with traditional NLG metrics,
such as BLEU, ROUGE, and METEOR, and embedding-based metrics such as BERTSCORE.
Last but not least, LLM-based metrics are also employed to capture other nuances that

affect the quality of generated answers, like factual accuracy, helpfulness, and coherence.

LLM-as-Judge

The fundamental premise of LLM-as-Judge is to leverage the contextual reasoning and task
generalization of state-of-the-art models (such as GPT-4) to assess generated answers based
on a set of human-interpretable criteria. These typically include relevance to the user query,
factual accuracy, fluency, coherence, and helpfulness, which are either explicitly provided
in the evaluation prompt or learned through fine-tuning [Li+24]. In pointwise evaluation,
the LLM is asked to independently grade each answer, assigning scores or labels according

to each criterion; in pairwise evaluation, it compares two answers and determines which

Chapter 6 Evaluation

one is superior or declares a tie; listwise and more advanced multi-turn settings are also

increasingly explored for ranking and conversation evaluation tasks [Li+24; Zhe+23].

The evaluation scheme employs a pointwise LLM-as-Judge tactic, where the LLM, GPT-40-
MINTI in the present case, is presented with the user query, the retrieved context, and the
generated answer, and instructed via a carefully designed prompt to provide a structured,
multi-dimensional evaluation. This setup enables fine-grained, scalable, and cost-effective
assessment, especially when expert human annotation is prohibitively expensive or infea-

sible for large evaluation sets.

Specifically, through the structured prompt, the LLM is instructed to grade each generated
answer based on five distinct metrics, on a scale from 1 through 5, each targeting a critical
aspect of answer quality. Relevance assesses whether the response directly addresses the
user’s query and utilizes the provided context appropriately. Factual Accuracy judges
the correctness and verifiability of the information presented, penalizing hallucinations or
unsupported statements. Fluency measures the grammatical correctness and the well-
formedness of the answer, ensuring that the response is both easy to read and natural in its
phrasing. Coherence evaluates the logical flow and structural organization of the response,
measuring whether the answer logically follows from both the query and the retrieved
context. Lastly, Helpfulness reflects the practical utility of the answer, emphasizing
whether it provides actionable, informative, or otherwise useful guidance to the student.
For each generated answer, the LLM is instructed to output a JSON-formatted object with
a discrete score (1-5) for every metric, as well as a brief explanatory comment justifying
its ratings. This approach is intended not only to support quantitative aggregation and
comparison across models or systems but also to enable qualitative error analysis, making
the evaluation process both scalable and interpretable. Incorporating the LLM-as-Judge
paradigm in the evaluation scheme enables comprehensive, fine-grained evaluation at

scale, serving as a practical proxy for expert human annotation.

The full instruction prompt used for LLM-based generation evaluation can be found at
Appendix A.6.

The different values of top-k presented in the tables, specifically top-k = 10 for chunks
and top-k = 100 for sentences and propositions, are a direct consequence of hardware
limitations. While evaluating generation performance, significant GPU memory limita-
tions that restricted the chunk-level experiments to top-k = 10 were encountered. In
contrast, due to the smaller memory footprint required by sentence and proposition-level
representations, it was possible to conduct more extensive evaluations with top-k = 100,
and would have further increased this value if additional computational resources and

time had been available.

6.2 Generation Evaluation

77

The results of the generation evaluation (both Traditional metrics, LLM-based metrics, and

PPL values) per granularity for each retriever on both datasets are presented below:

Chunk Granularity

Synthetic QA Set

Tab. 6.7.: Traditional Generation Metrics on the Synthetic QA Set (Chunk Level, top k = 10)

Retriever BLEU | METEOR | R-1 | R-2 | R-3 | R-4 | R-L | BERTScore
BM25RETRIEVER 0.26 0.60 | 0.61 | 044 | 0.34 | 0.27 | 0.54 0.75
VECTORSTORERETRIEVER 0.33 0.65 | 0.66 | 0.51 | 0.41 | 0.33 | 0.60 0.79
ENSEMBLERETRIEVER 0.26 0.61 | 0.62 | 046 | 0.35 | 0.28 | 0.55 0.76

Tab. 6.8.: LLM-as-Judge Generation Metrics on the Synthetic QA Set (Chunk Level, top k = 10)

Retriever Factual Accuracy | Relevance | Fluency | Coherence | Helpfulness

BM25RETRIEVER 4.52 4.58 4.97 4.61 4.50

VECTORSTORERETRIEVER 4.39 4.50 4.97 4.53 4.39

ENSEMBLERETRIEVER 4.59 4.66 4.98 4.68 4.58
Real-World QA Set

Tab. 6.9.: Traditional Generation Metrics on the Real-World QA Set (Chunk Level, top k = 10)

Retriever BLEU | METEOR | R-1 | R-2 | R-3 | R-4 | R-L | BERTScore
BM25RETRIEVER 0.11 0.37 | 040 | 0.23 | 0.15 | 0.11 | 0.34 0.63
VECTORSTORERETRIEVER 0.17 0.45 | 047 | 0.30 | 0.21 | 0.16 | 0.40 0.68
ENSEMBLERETRIEVER 0.13 039 | 0.41 | 0.24 | 0.15 | 0.11 | 0.35 0.64

Tab. 6.10.: LLM-as-Judge Generation Metrics on the Real-World QA Set (Chunk Level, top k = 10)

Retriever Factual Accuracy | Relevance | Fluency | Coherence | Helpfulness
BM25RETRIEVER 3.73 4.20 4.93 4.21 3.88
VECTORSTORERETRIEVER 4.66 4.86 4.98 4.87 4.75
ENSEMBLERETRIEVER 4.14 4.52 4.95 4.54 4.29

78

Analysis of Chunk-Level Generation Results

For the Synthetic QA set at the chunk level, the VECTORSTORERETRIEVER achieved the best
results across traditional metrics, highlighting its superior ability in semantic retrieval.
However, for LLM-as-Judge metrics, the ENSEMBLERETRIEVER notably outperformed both
VECTORSTORERETRIEVER and BM25 in factual accuracy, relevance, fluency, coherence, and
helpfulness, demonstrating its strength in combining semantic and lexical retrieval methods

to enhance overall retrieval results, and by extension, answer generation quality.

Chapter 6 Evaluation

For the Real-world QA set at the chunk level, the VECTORSTORERETRIEVER consistently
achieved top performance across all traditional metrics and LLM-as-Judge metrics, signifi-
cantly outperforming both BM25 and ENSEMBLERETRIEVER. The BM25 retriever demon-
strated substantial limitations in generating accurate and relevant content, particularly
reflected in very low BLEU and METEOR scores and lower factual accuracy and helpfulness

scores.

6.2.3 Generation Evaluation Results per Granularity

Sentence Granularity

Synthetic QA Set

Tab. 6.11.: Traditional Generation Metrics on the Synthetic QA Set (Sentence Level, top-k = 100)

Retriever BLEU | METEOR | R-1 | R-2 | R-3 | R-4 | R-L | BERTScore
BM25RETRIEVER 0.18 043 | 048 | 0.32 | 0.25 | 0.20 | 0.42 0.69
VECTORSTORERETRIEVER 0.29 0.54 | 0.57 | 0.42 | 0.32 | 0.25 | 0.49 0.74
ENSEMBLERETRIEVER 0.20 0.46 | 0.50 | 0.35 | 0.26 | 0.20 | 0.44 0.70

Tab. 6.12.: LLM-as-Judge Generation Metrics on the Synthetic QA Set (Sentence Level, top k = 100)

Retriever Factual Accuracy | Relevance | Fluency | Coherence | Helpfulness

BM25RETRIEVER 3.26 3.73 4.86 3.82 3.37

VECTORSTORERETRIEVER 4.30 4.55 4.96 4.49 4.32

ENSEMBLERETRIEVER 3.75 4.21 4.89 4.07 3.88
Real-World QA Set

Tab. 6.13.: Traditional Generation Metrics on the Real-World QA Set (Sentence Level, top k = 100)

Retriever BLEU | METEOR | R-1 | R-2 | R-3 | R-4 | R-L | BERTScore

BM25RETRIEVER 0.11 0.34 | 0.39 | 0.23 | 0.15| 0.12 | 0.33 0.63

VECTORSTORERETRIEVER 0.17 0.41 | 0.45 | 0.28 | 0.20 | 0.15 | 0.38 0.67

ENSEMBLERETRIEVER 0.13 0.36 | 040 | 0.24 | 0.16 | 0.12 | 0.34 0.64
Real-World QA Set

Tab. 6.14.: LLM-as-Judge Generation Metrics on the Real-World QA Set (Sentence Level, top k = 100)

Retriever Factual Accuracy | Relevance | Fluency | Coherence | Helpfulness
BM25RETRIEVER 3.33 3.83 4.78 3.91 3.46
VECTORSTORERETRIEVER 4.44 4.74 4.98 4.70 4.54
ENSEMBLERETRIEVER 3.98 4.37 4.94 4.45 4.16

6.2 Generation Evaluation

79

Analysis of Sentence-Level Generation Results

For the Synthetic QA set at the sentence level, VECTORSTORERETRIEVER once again led
across traditional metrics, outperforming both BM25 and ENSEMBLERETRIEVER significantly.
This trend is further reflected in LLM-as-Judge metrics, where VECTORSTORERETRIEVER
scored highest in factual accuracy, relevance, coherence, and helpfulness. BM25 notably
underperformed across both sets of metrics, indicating poor retrieval quality and lower

semantic coherence.

For the Real-world QA set at the sentence level, VECTORSTORERETRIEVER maintained its
leading position, clearly outperforming BM25 and ENSEMBLERETRIEVER in all metrics.
BM25 showed persistently low performance, highlighting its ineffectiveness in capturing
relevant semantic context, while ENSEMBLERETRIEVER presented moderate performance

improvements but remained behind VECTORSTORERETRIEVER.

Proposition Granularity

Synthetic QA Set

Tab. 6.15.: Traditional Generation Metrics on the Synthetic QA Set (Proposition Level, top k = 100)

Retriever BLEU | METEOR | R-1 | R-2 | R-3 | R-4 | R-L | BERTScore
BM25RETRIEVER 0.19 0.46 | 0.50 | 0.34 | 0.26 | 0.20 | 0.42 0.70
VECTORSTORERETRIEVER 0.30 0.57 | 0.58 | 0.43 | 0.33 | 0.26 | 0.50 0.75
ENSEMBLERETRIEVER 0.20 0.48 | 0.52 | 036 | 0.27 | 0.21 | 0.44 0.71

Tab. 6.16.: LLM-as-Judge Generation Metrics on the Synthetic QA Set (Proposition Level, top-k = 100)

Retriever Factual Accuracy | Relevance | Fluency | Coherence | Helpfulness

BM25RETRIEVER 3.81 4.15 4.90 4.21 3.90

VECTORSTORERETRIEVER 4.35 4.59 4.95 4.51 4.40

ENSEMBLERETRIEVER 4.01 4.33 4.91 4.35 4.09
Real-World QA Set

Tab. 6.17.: Traditional Generation Metrics on the Real-World QA Set (Proposition Level, top k = 100)

Retriever BLEU | METEOR | R-1 | R-2 | R-3 | R-4 | R-L | BERTScore
BMZ25RETRIEVER 0.09 0.31 | 0.35 | 0.19 | 0.12 | 0.09 | 0.29 0.62
VECTORSTORERETRIEVER 0.13 0.38 | 0.41 | 0.25 | 0.18 | 0.14 | 0.34 0.66
ENSEMBLERETRIEVER 0.09 0.33 | 0.36 | 0.20 | 0.13 | 0.10 | 0.30 0.63

80 Chapter 6 Evaluation

Tab. 6.18.: LLM-as-Judge Generation Metrics on the Real-World QA Set (Proposition Level, top k = 100)

Retriever Factual Accuracy | Relevance | Fluency | Coherence | Helpfulness
BM25RETRIEVER 3.00 3.53 4.83 3.66 3.17
VECTORSTORERETRIEVER 4.40 4.89 4.99 4.72 4.55
ENSEMBLERETRIEVER 4.34 4.75 4.89 4.71 4.57

Analysis of Proposition-Level Generation Results

For the Synthetic QA set at the proposition level, VECTORSTORERETRIEVER delivered the
highest scores across all reference-based metrics, demonstrating effective semantic align-
ment and detailed context retrieval. In LLM-as-Judge metrics, VECTORSTORERETRIEVER
again ranked highest, especially in factual accuracy and helpfulness, confirming its su-
perior semantic understanding capabilities. ENSEMBLERETRIEVER performed moderately,
whereas BM25 consistently underperformed, reflecting significant shortcomings in captur-

ing detailed semantic information.

For the Real-world QA set at the proposition level, VECTORSTORERETRIEVER again clearly
dominated both reference-based and LLM-based generation metrics. The ENSEMBLERE-
TRIEVER showed competitive performance in LLM-as-Judge metrics, closely following
VECTORSTORERETRIEVER in factual accuracy, relevance, and helpfulness, yet still behind
in traditional metrics. BM25 remained notably inadequate, emphasizing its significant

limitations in precise semantic retrieval.

Perplexity Tables

Synthetic QA Set

Tab. 6.19.: Perplexity Values for Each Granularity on the Synthetic QA Set

Real-World QA Set

Granularity | Perplexity
CHUNKS 6.44
SENTENCES 6.63
PROPOSITIONS 6.63

Granularity | Perplexity
CHUNKS 8.52
SENTENCES 8.68
PROPOSITIONS 8.72

Tab. 6.20.: Perplexity Values for Each Granularity on the Real-World QA Set

6.2 Generation Evaluation

81

82

Analysis of Perplexity Results

PERPLEXITY scores across both Synthetic and Real-world QA sets highlighted the advan-
tage of chunk-level granularity, achieving lower perplexity values compared to sentence
and proposition granularities. The consistently lower perplexity at chunk granularity
underscores its optimal balance between context depth and semantic clarity, enhancing

the generative performance across retrieval configurations.

6.2.4 Summary of Observations

Across all evaluated configurations, the VECTORSTORERETRIEVER consistently yielded the
strongest performance in generation quality, as measured by both traditional reference-
based metrics and LLM-as-Judge scores. This dominance was observed at all levels of
retrieval granularity and across both the synthetic and real-world QA datasets, reinforcing
the importance of semantic retrieval in effectively grounding answers and facilitating

meaningful generation.

For chunk-level retrieval, which benefits from richer context windows, the VECTORSTOR-
ERETRIEVER led in traditional metrics such as BLEU, ROUGE, and METEOR, especially on
the real-world QA set where semantic understanding is crucial. However, in the synthetic
QA set, the ENSEMBLERETRIEVER marginally outperformed in LLM-as-Judge metrics, partic-
ularly in factual accuracy and helpfulness. This suggests that combining lexical and dense
retrieval signals may sometimes enhance generation when queries align more closely with
indexed content. Nevertheless, this advantage did not generalize to real-world inputs,
where the VECTORSTORERETRIEVER outperformed all others by a substantial margin across

all evaluation dimensions.

At sentence-level granularity, the VECTORSTORERETRIEVER maintained its lead in both
metric categories. Its ability to assemble coherent answers from context-fragmented
sentences underlines its robustness, especially in handling diverse real-world phrasing.
BM25RETRIEVER consistently underperformed, and while the ENSEMBLERETRIEVER closed
the gap slightly in synthetic tasks, it could not surpass the semantic retriever in either

dataset.

The proposition-level results further confirmed this pattern. On both QA sets, the VEc-
TORSTORERETRIEVER scored highest across the board, with LLM-as-Judge evaluations
particularly favoring it for factual accuracy and relevance. The fine granularity of propo-
sitions likely demands accurate semantic alignment, a task that lexical-based retrieval
inherently struggles with. Moreover, BM25RETRIEVER’s default hyperparameters—which
were not tuned in this work—are typically optimized for longer documents and may there-

fore perform suboptimally on short segments such as sentences and propositions. While

Chapter 6 Evaluation

the ENsEMBLERETRIEVER did improve in the real-world QA set under LLM-based evaluation,
its traditional metric scores remained inferior to those of the semantic retriever, suggesting
that score fusion at the proposition level may still fall short of exploiting contextual density

optimally.

Perplexity results mirrored the broader findings: chunk-level retrieval consistently yielded
the lowest values on both datasets, indicating higher model confidence and better contex-
tual predictability. This affirms that the chunk representations strike an effective balance
between information richness and answer relevance, enhancing the model’s ability to
generate accurate and fluent answers. In contrast, sentences and propositions, while more

fine-grained, did not improve perplexity.

Overall, these observations point to VECTORSTORERETRIEVER with chunk-level retrieval as
the most reliable configuration for the task of this thesis, offering optimal performance
in both controlled (synthetic) and unconstrained (real-world) settings. Sentence- and
proposition-level retrieval offer valuable avenues for further refinement, particularly
when combined with semantic reranking or dynamic context selection, but may require
advanced post-retrieval strategies to rival chunk-level results. Importantly, the results
also underscore the limited scalability of BM25RETRIEVER in text generation tasks and the
inconsistent gains of hybrid retrieval in real-world QA, thereby motivating more adaptive

fusion mechanisms or reranking pipelines for future development.

6.2 Generation Evaluation

83

Conclusions

7.1 Conclusions

Overall, VECTORSTORERETRIEVER consistently emerged as the superior retriever across all
granularities and datasets in both reference-based and LLM-based generation metrics, for
the particular task of this thesis. Chunk granularity, in particular, also provided the optimal
generative performance, evident through the lowest perplexity values and consistently
higher generation metric scores. BM25 showed severe limitations across most conditions,
as further discussed in Section 7.2, while the ENSEMBLERETRIEVER provided moderate
improvements, especially notable in LLM-based metrics at chunk granularity. These results
suggest that currently, VECTORSTORERETRIEVER combined with the chunk granularity

represents the most effective configuration for the proposed RAG system.

Additionally, the experiments emphasized the utility of synthetic question-answer gen-
eration as a practical method for preliminary system evaluation, particularly valuable
in low-resource environments lacking extensive real-world datasets. However, observed
discrepancies between synthetic and authentic question-answer datasets indicate that
synthetic datasets alone might not fully capture the complexity and subtlety inherent
in real user queries. Therefore, a balanced combination of synthetic and authentic data
is recommended to ensure evaluation results more closely reflect actual performance

scenarios.

Furthermore, the cost-performance trade-off analysis conducted in this thesis highlighted
how, despite constraints in computational resources—particularly hardware limitations
and model size—the developed RAG system achieved commendable performance. This
demonstrates that an efficient and thoughtful system design, incorporating optimal retrieval
architecture and careful granularity selection, can effectively offset resource constraints,

reinforcing the potential for robust yet resource-efficient RAG system deployments.

7.2 Limitations

It must be noted that in the current implementation of the system, the document collection

size remains small and lacks diversity, potentially affecting generalizability. Furthermore,

86

the quality of decontextualization during proposition creation, which primarily depends
on the model and the prompt used, may also impact retrieval and generation accuracy. The
significant limitations of BM25, especially in the sentence and proposition granularities,
can be attributed not only to its inability to capture semantic similarity but also to the use
of untuned hyperparameter values. Since these default values are generally optimized for
longer documents, their direct application to much shorter units of text likely reduced
retrieval effectiveness, as also evidenced in prior work on BM25 tuning [Cha+21]. The
advantages observed at the chunk granularity likely stem from the highly structured
nature and inherent contextual completeness of the Studies Guide document. However,
most real-world documents rarely exhibit such characteristics, suggesting the potential
value of proposition-level decomposition to handle less structured, more diverse corpora
effectively. Expanding the knowledge base to include documents of varying structural
complexity could further validate the effectiveness and generalizability of proposition-level

retrieval.

7.3 Future Work

Future work will focus on several critical improvements and experiments to enhance system
performance and robustness. Expanding the corpus by indexing additional university-
related documents, including regulatory documents, professor CVs, and Studies Guides
from other departments, will address limitations regarding corpus size and diversity. Im-
plementing pre-retrieval strategies such as metadata filtering and post-retrieval reranking

could further improve retrieval accuracy.

Exploring more advanced embedding models and stronger generator LLMs represents
a promising direction for improving semantic searching and answer generation quality.
Future work could also include tuning the BM25 hyperparameters to better accommodate
shorter retrieval units. Moreover, experimenting with multiple granularities simultane-
ously or dynamically selecting granularity during query processing could optimize retrieval

performance, as suggested by Zhong et al. [Zho+25]

Finally, expanding and enhancing the real-world QA dataset will provide a more robust
basis for evaluating and improving the system, ensuring it remains responsive and effective
in addressing realistic academic queries and information needs. Additionally, initiating
trial deployments of the system and engaging students to interact with it, providing
feedback on missing features and their overall satisfaction, would further inform iterative

enhancements and ensure alignment with user expectations and practical usability.

Chapter 7 Conclusions

Bibliography

[AD19]

[Ain+23]

[Ant+24]

[CC14]

[CCB09]

[Cha+21]

Hiteshwar Kumar Azad and Akshay Deepak. “Query expansion techniques for informa-
tion retrieval: A survey”. In: Information Processing and Management 56.5 (Sept. 2019),
pp. 1698-1735.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, et al. “GQA: Training Generalized
Multi-Query Transformer Models from Multi-Head Checkpoints”. In: Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing. Ed. by Houda
Bouamor, Juan Pino, and Kalika Bali. Singapore: Association for Computational Lin-
guistics, Dec. 2023, pp. 4895-4901.

Chiara Antico, Stefano Giordano, Cansu Koyuturk, and Dimitri Ognibene. Unimib
Assistant: designing a student-friendly RAG-based chatbot for all their needs. 2024. arXiv:
2411.19554 [cs.HC].

Boxing Chen and Colin Cherry. “A Systematic Comparison of Smoothing Techniques
for Sentence-Level BLEU”. In: Proceedings of the Ninth Workshop on Statistical Machine
Translation. Ed. by Ondfej Bojar, Christian Buck, Christian Federmann, et al. Baltimore,

Maryland, USA: Association for Computational Linguistics, June 2014, pp. 362-367.

Gordon V. Cormack, Charles L. A. Clarke, and Stefan Biittcher. “Reciprocal rank fusion
outperforms condorcet and individual rank learning methods”. In: Proceedings of the
32nd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR 2009, Boston, MA, USA, July 19-23, 2009. Ed. by James Allan,
Javed A. Aslam, Mark Sanderson, ChengXiang Zhai, and Justin Zobel. ACM, 2009,
pp. 758-759.

Ilias Chalkidis, Manos Fergadiotis, Nikolaos Manginas, Eva Katakalou, and Prodromos
Malakasiotis. “Regulatory Compliance through Doc2Doc Information Retrieval: A
case study in EU/UK legislation where text similarity has limitations”. In: Proceedings
of the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume. Ed. by Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty. Online:
Association for Computational Linguistics, Apr. 2021, pp. 3498-3511.

87

https://arxiv.org/abs/2411.19554

88

[Che+24]

[CR12]

[CS24]

[Dai+22]

[Dai+25]

[Dev+19]

[FPC21]

[FS93]

[Gan+25]

[Gao+24a]

[Gao+24b]

Tong Chen, Hongwei Wang, Sihao Chen, et al. “Dense X Retrieval: What Retrieval
Granularity Should We Use?” In: Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing. Ed. by Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen. Miami, Florida, USA: Association for Computational Linguistics, Nov. 2024,
pp. 15159-15177.

Claudio Carpineto and Giovanni Romano. “A Survey of Automatic Query Expansion in

Information Retrieval”. In: ACM Comput. Surv. 44.1 (Jan. 2012).

Nathan Cooper and Torsten Scholak. Perplexed: Understanding When Large Language
Models are Confused. 2024. arXiv: 2404 .06634 [cs.SE].

Zhuyun Dai, Arun Tejasvi Chaganty, Vincent Zhao, et al. “Dialog Inpainting: Turning
Documents to Dialogs”. In: International Conference on Machine Learning (ICML). PMLR.
2022.

Lu Dai, Yijie Xu, Jinhui Ye, Hao Liu, and Hui Xiong. SePer: Measure Retrieval Util-
ity Through The Lens Of Semantic Perplexity Reduction. 2025. arXiv: 2503 .01478
[cs.CL].

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding”. In: Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers). Ed. by Jill Burstein, Christy Doran, and Thamar Solorio. Minneapolis, Minnesota:
Association for Computational Linguistics, June 2019, pp. 4171-4186.

Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. “SPLADE: Sparse Lex-
ical and Expansion Model for First Stage Ranking”. In: SIGIR °21: The 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval. Virtual
Event, Canada: ACM, July 2021, pp. 2288-2292.

Edward A. Fox and Joseph A. Shaw. “Combination of Multiple Searches”. In: TREC.
Vol. 500-215. NIST Special Publication. National Institute of Standards and Technology
(NIST), 1993, pp. 243-252.

Aoran Gan, Hao Yu, Kai Zhang, et al. Retrieval Augmented Generation Evaluation in the
Era of Large Language Models: A Comprehensive Survey. 2025. arXiv: 2504 .14891
[cs.CL].

Yunfan Gao, Yun Xiong, Xinyu Gao, et al. Retrieval-Augmented Generation for Large
Language Models: A Survey. 2024. arXiv: 2312.10997 [cs.CL].

Yunfan Gao, Yun Xiong, Meng Wang, and Haofen Wang. Modular RAG: Transforming
RAG Systems into LEGO-like Reconfigurable Frameworks. 2024. arXiv: 2407 .21059
[cs.CL].

Bibliography

https://arxiv.org/abs/2404.06634
https://arxiv.org/abs/2503.01478
https://arxiv.org/abs/2503.01478
https://arxiv.org/abs/2504.14891
https://arxiv.org/abs/2504.14891
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2407.21059
https://arxiv.org/abs/2407.21059

[GRS24]

[Has24]

[HB21]

[HH24]

[Hu+24]

[Hwa+23]

[Jag+23]

[DJ21]

[Ke22]

[Kur+25a]

[Kur+25b]

[Kuz+20]

Shailja Gupta, Rajesh Ranjan, and Surya Narayan Singh. A Comprehensive Survey
of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future
Directions. 2024. arXiv: 2410.12837 [cs.CL].

Jahid Hasan. Optimizing Large Language Models through Quantization: A Comparative
Analysis of PTQ and QAT Techniques. 2024. arXiv: 2411.06084 [cs.LG].

Michael Hanna and Ondrej Bojar. “A Fine-Grained Analysis of BERTScore”. In: Proceed-
ings of the Sixth Conference on Machine Translation. Ed. by Loic Barrault, Ondrej Bojar,
Fethi Bougares, et al. Online: Association for Computational Linguistics, Nov. 2021,
pp. 507-517.

Yizheng Huang and Jimmy Huang. A Survey on Retrieval-Augmented Text Generation
for Large Language Models. 2024. arXiv: 2404 .10981 [cs. IR].

Yutong Hu, Quzhe Huang, Mingxu Tao, Chen Zhang, and Yansong Feng. Can Perplexity
Reflect Large Language Model’s Ability in Long Text Understanding? 2024. arXiv: 2405 .
06105 [cs.CL].

Yerin Hwang, Yongil Kim, Hyunkyung Bae, et al. “Dialogizer: Context-aware Conversational-

QA Dataset Generation from Textual Sources”. In: Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing. Ed. by Houda Bouamor, Juan
Pino, and Kalika Bali. Singapore: Association for Computational Linguistics, Dec. 2023,
Pp. 8806-8828.

Rolf Jagerman, Honglei Zhuang, Zhen Qin, Xuanhui Wang, and Michael Bendersky.
Query Expansion by Prompting Large Language Models. 2023. arXiv: 2305 . 03653
[cs.IR].

Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-Scale Similarity Search with
GPUs”. In: IEEE Transactions on Big Data 7.3 (July 2021), pp. 535-547.

Weimao Ke. “Alternatives to Classic BM25-IDF based on a New Information Theoretical
Framework”. In: 2022 IEEE International Conference on Big Data (Big Data). Dec. 2022,
pp- 36—44.

Gustavo Kuratomi, Paulo Pirozelli, Fabio G. Cozman, and Sarajane M. Peres. A RAG-
Based Institutional Assistant. 2025. arXiv: 2501.13880 [cs.CL].

Eldar Kurtic, Alexandre Marques, Shubhra Pandit, Mark Kurtz, and Dan Alistarh. "Give
Me BF16 or Give Me Death"? Accuracy-Performance Trade-Offs in LLM Quantization.
2025. arXiv: 2411.02355 [cs.LG].

Saar Kuzi, Mingyang Zhang, Cheng Li, Michael Bendersky, and Marc Najork. Leveraging
Semantic and Lexical Matching to Improve the Recall of Document Retrieval Systems: A
Hybrid Approach. 2020. arXiv: 2010.01195 [cs. IR].

Bibliography

89

https://arxiv.org/abs/2410.12837
https://arxiv.org/abs/2411.06084
https://arxiv.org/abs/2404.10981
https://arxiv.org/abs/2405.06105
https://arxiv.org/abs/2405.06105
https://arxiv.org/abs/2305.03653
https://arxiv.org/abs/2305.03653
https://arxiv.org/abs/2501.13880
https://arxiv.org/abs/2411.02355
https://arxiv.org/abs/2010.01195

90

[KZ20]

[LA07]

[Lew+20]

[Li+24]

[Lin04]

[Liu+16]

[Liu+23]

[Lla24]

[Low+17]

[Ma+23]

Omar Khattab and Matei Zaharia. “ColBERT: Efficient and Effective Passage Search via
Contextualized Late Interaction over BERT”. In: Proceedings of the 43rd International
ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020,
Virtual Event, China, July 25-30, 2020. Ed. by Jimmy X. Huang, Yi Chang, Xueqi Cheng,
et al. ACM, 2020, pp. 39-48.

Alon Lavie and Abhaya Agarwal. “Meteor: an automatic metric for MT evaluation with
high levels of correlation with human judgments”. In: Proceedings of the Second Workshop
on Statistical Machine Translation. StatMT ’07. Prague, Czech Republic: Association for
Computational Linguistics, 2007, pp. 228-231.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. “Retrieval-Augmented Generation
for Knowledge-Intensive NLP Tasks”. In: Advances in Neural Information Processing
Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33.
Curran Associates, Inc., 2020, pp. 9459-9474.

Haitao Li, Qian Dong, Junjie Chen, et al. LLMs-as-Judges: A Comprehensive Survey on
LLM-based Evaluation Methods. 2024. arXiv: 2412 .05579 [cs.CL].

Chin-Yew Lin. “ROUGE: A Package for Automatic Evaluation of Summaries”. In: Text
Summarization Branches Out. Barcelona, Spain: Association for Computational Linguis-

tics, July 2004, pp. 74-81.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, et al. “How NOT To Evaluate Your Dialogue
System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response
Generation”. In: Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing. Ed. by Jian Su, Kevin Duh, and Xavier Carreras. Austin, Texas:

Association for Computational Linguistics, Nov. 2016, pp. 2122-2132.

Nelson F. Liu, Kevin Lin, John Hewitt, et al. Lost in the Middle: How Language Models
Use Long Contexts. 2023. arXiv: 2307 .03172 [cs.CL].

Al@Meta Llama Team. The Llama 3 Herd of Models. https: //1lama . meta.
com/. arXiv:2407.21783. 2024.

Ryan Lowe, Michael Noseworthy, Tulian Vlad Serban, et al. “Towards an Automatic Tur-
ing Test: Learning to Evaluate Dialogue Responses”. In: Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Ed. by
Regina Barzilay and Min-Yen Kan. Vancouver, Canada: Association for Computational

Linguistics, July 2017, pp. 1116-1126.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. “Query Rewriting in
Retrieval-Augmented Large Language Models”. In: Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing. Ed. by Houda Bouamor, Juan
Pino, and Kalika Bali. Singapore: Association for Computational Linguistics, Dec. 2023,

pp. 5303-5315.

Bibliography

https://arxiv.org/abs/2412.05579
https://arxiv.org/abs/2307.03172
https://llama.meta.com/
https://llama.meta.com/

[MA02]

[Mek+25]

[MGG25]

[MMZ23]

[Nas+21]

[NC19]

[Neu+24]

[NK18]

[Nog+20]

[Ouy+22]

[Pap+02]

Mark H. Montague and Javed A. Aslam. “Condorcet fusion for improved retrieval.” In:
CIKM. ACM, 2002, pp. 538-548.

Anmol Mekala, Anirudh Atmakuru, Yixiao Song, Marzena Karpinska, and Mohit Iyyer.
Does quantization affect models’ performance on long-context tasks? 2025. arXiv: 2505 .
20276 [cs.CL].

Chandana Sree Mala, Gizem Gezici, and Fosca Giannotti. Hybrid Retrieval for Hallu-
cination Mitigation in Large Language Models: A Comparative Analysis. 2025. arXiv:
2504.05324 [cs. IR].

Anqi Mao, Mehryar Mohri, and Yutao Zhong. Cross-Entropy Loss Functions: Theoretical
Analysis and Applications. 2023. arXiv: 2304 .07288 [cs.LG].

Shahrzad Naseri, Jeffrey Dalton, Andrew Yates, and James Allan. “CEQE: Contextualized
Embeddings for Query Expansion”. In: Advances in Information Retrieval: 43rd European
Conference on IR Research, ECIR 2021, Virtual Event, March 28 — April 1, 2021, Proceedings,
Part I Berlin, Heidelberg: Springer-Verlag, 2021, pp. 467-482.

Rodrigo Nogueira and Kyunghyun Cho. Passage Re-ranking with BERT. arXiv: 1901.04085.
Feb. 2019.

Subash Neupane, Elias Hossain, Jason Keith, et al. From Questions to Insightful Answers:
Building an Informed Chatbot for University Resources. 2024. arXiv: 2405 .08120
[cs.ET].

Preksha Nema and Mitesh M. Khapra. “Towards a Better Metric for Evaluating Question
Generation Systems”. In: Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. Ed. by Ellen Riloff, David Chiang, Julia Hockenmaier,
and Jun’ichi Tsujii. Brussels, Belgium: Association for Computational Linguistics, 2018,

pp. 3950-3959.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. “Document Ranking
with a Pretrained Sequence-to-Sequence Model”. In: Findings of the Association for
Computational Linguistics: EMNLP 2020. Ed. by Trevor Cohn, Yulan He, and Yang Liu.
Online: Association for Computational Linguistics, Nov. 2020, pp. 708-718.

Long Ouyang, Jeffrey Wu, Xu Jiang, et al. “Training language models to follow instruc-
tions with human feedback”. In: Advances in Neural Information Processing Systems.
Ed. by S. Koyejo, S. Mohamed, A. Agarwal, et al. Vol. 35. Curran Associates, Inc., 2022,
pp. 27730-27744.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. “BLEU: a method for
automatic evaluation of machine translation”. In: Proceedings of the 40th Annual Meet-
ing on Association for Computational Linguistics. ACL ’02. Philadelphia, Pennsylvania:
Association for Computational Linguistics, 2002, pp. 311-318.

Bibliography

91

https://arxiv.org/abs/2505.20276
https://arxiv.org/abs/2505.20276
https://arxiv.org/abs/2504.05324
https://arxiv.org/abs/2304.07288
https://arxiv.org/abs/2405.08120
https://arxiv.org/abs/2405.08120

92

[PBF24]

[PMM24]

[Raf+23]

[RG19]

[RZ09]

[Sam+25]

[SG25]

[Sha+17]

[Sha+24]

[Sha25]

[Sou+24]

[Su+21]

Arjun Panickssery, Samuel R. Bowman, and Shi Feng. LLM Evaluators Recognize and
Favor Their Own Generations. 2024. arXiv: 2404 .13076 [cs.CL].

Aleksandr V. Petrov, Sean MacAvaney, and Craig Macdonald. “Shallow Cross-Encoders
for Low-Latency Retrieval”. In: Advances in Information Retrieval: 46th European Confer-
ence on Information Retrieval, ECIR 2024, Glasgow, UK, March 24-28, 2024, Proceedings,
Part III. Glasgow, United Kingdom: Springer-Verlag, 2024, pp. 151-166.

Rafael Rafailov, Archit Sharma, Eric Mitchell, et al. “Direct preference optimization:
your language model is secretly a reward model”. In: Proceedings of the 37th International
Conference on Neural Information Processing Systems. NIPS *23. New Orleans, LA, USA:

Curran Associates Inc., 2023.

Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks”. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Ed. by Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun
Wan. Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 3982—
3992.

Stephen Robertson and Hugo Zaragoza. “The Probabilistic Relevance Framework: BM25
and Beyond”. In: Found. Trends Inf. Retr. 3.4 (Apr. 2009), pp. 333-389.

Saron Samuel, Dan DeGenaro, Jimena Guallar-Blasco, et al. MMMORRF: Multimodal Mul-
tilingual Modularized Reciprocal Rank Fusion. 2025. arXiv: 2503 .20698 [cs.CV].

Jakub Swacha and Michat Gracel. “Retrieval-Augmented Generation (RAG) Chatbots
for Education: A Survey of Applications”. In: Applied Sciences 15.8 (2025).

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, et al. Outrageously Large Neural
Networks: The Sparsely-Gated Mixture-of-Experts Layer. 2017. arXiv: 1701 .06538
[cs.LG].

Sanat Sharma, David Seunghyun Yoon, Franck Dernoncourt, et al. Retrieval Aug-
mented Generation for Domain-specific Question Answering. 2024. arXiv: 2404 .14760
[cs.CL].

Chaitanya Sharma. Retrieval-Augmented Generation: A Comprehensive Survey of Architec-

tures, Enhancements, and Robustness Frontiers. 2025. arXiv: 2506.00054 [cs. IR].

Heydar Soudani, Roxana Petcu, Evangelos Kanoulas, and Faegheh Hasibi. A Survey
on Recent Advances in Conversational Data Generation. 2024. arXiv: 2405 .13003
[cs.CL].

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. “RoFormer: Enhanced
Transformer with Rotary Position Embedding”. In: CoRR abs/2104.09864 (2021). arXiv:
2104.09864.

Bibliography

https://arxiv.org/abs/2404.13076
https://arxiv.org/abs/2503.20698
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2404.14760
https://arxiv.org/abs/2404.14760
https://arxiv.org/abs/2506.00054
https://arxiv.org/abs/2405.13003
https://arxiv.org/abs/2405.13003
https://arxiv.org/abs/2104.09864

[Vas+17]

[Ver24]

[VIa+25]

[Wan+13]

[Wan+20]

[Wu+22]

[WZzZz21]

[XZ25]

[Ye+24]

[Yor+24]

[Yu+25]

Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. “Attention is All you Need”. In:
Advances in Neural Information Processing Systems. Ed. by 1. Guyon, U. Von Luxburg,
S. Bengio, et al. Vol. 30. Curran Associates, Inc., 2017.

Sourav Verma. Contextual Compression in Retrieval-Augmented Generation for Large
Language Models: A Survey. 2024. arXiv: 2409.13385 [cs.CL].

Christos Vlachos, Nikolaos Stylianou, Alexandra Fiotaki, et al. Building Open-Retrieval
Conversational Question Answering Systems by Generating Synthetic Data and Decontex-
tualizing User Questions. 2025. arXiv: 2507 .04884 [cs.CL].

Yining Wang, Liwei Wang, Yuanzhi Li, Di He, and Tie-Yan Liu. “A Theoretical Analysis
of NDCG Type Ranking Measures”. In: Proceedings of the 26th Annual Conference on
Learning Theory. Ed. by Shai Shalev-Shwartz and Ingo Steinwart. Vol. 30. Proceedings
of Machine Learning Research. Princeton, NJ, USA: PMLR, June 2013, pp. 25-54.

Wenhui Wang, Furu Wei, Li Dong, et al. “MiniLM: Deep Self-Attention Distillation
for Task-Agnostic Compression of Pre-Trained Transformers”. In: Advances in Neural
Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 5776-5788.

Zeqiu Wu, Yi Luan, Hannah Rashkin, et al. “CONQRR: Conversational Query Rewriting
for Retrieval with Reinforcement Learning”. In: Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing. Ed. by Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang. Abu Dhabi, United Arab Emirates: Association for Computa-
tional Linguistics, Dec. 2022, pp. 10000-10014.

Shuai Wang, Shengyao Zhuang, and Guido Zuccon. “BERT-based Dense Retrievers
Require Interpolation with BM25 for Effective Passage Retrieval”. In: Proceedings of the
2021 ACM SIGIR International Conference on Theory of Information Retrieval. ICTIR ’21.
Virtual Event, Canada: Association for Computing Machinery, 2021, pp. 317-324.

Tong Xiao and Jingbo Zhu. Foundations of Large Language Models. 2025. arXiv: 2501 .
09223 [cs.CL].

Jiayi Ye, Yanbo Wang, Yue Huang, et al. Justice or Prejudice? Quantifying Biases in
LLM-as-a-Judge. 2024. arXiv: 2410.02736 [cs.CL].

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Berant. “MAKING RETRIEVAL-
AUGMENTED LANGUAGE MODELS ROBUST TO IRRELEVANT CONTEXT”. In:
Publisher Copyright: © 2024 12th International Conference on Learning Represen-
tations, ICLR 2024. All rights reserved.; 12th International Conference on Learning
Representations, ICLR 2024 ; Conference date: 07-05-2024 Through 11-05-2024. 2024.

Hao Yu, Aoran Gan, Kai Zhang, et al. “Evaluation of Retrieval-Augmented Generation:

A Survey”. In: Big Data. Springer Nature Singapore, 2025, pp. 102-120.

Bibliography

93

https://arxiv.org/abs/2409.13385
https://arxiv.org/abs/2507.04884
https://arxiv.org/abs/2501.09223
https://arxiv.org/abs/2501.09223
https://arxiv.org/abs/2410.02736

[Zha+20] Tianyi Zhang®, Varsha Kishore”, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi.
“BERTScore: Evaluating Text Generation with BERT”. In: International Conference on

Learning Representations. 2020.

[Zhe+23] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, et al. Judging LLM-as-a-Judge with MT-
Bench and Chatbot Arena. 2023. arXiv: 2306.05685 [cs.CL].

[Zho+25] Zijie Zhong, Hanwen Liu, Xiaoya Cui, Xiaofan Zhang, and Zengchang Qin. Mix-of-
Granularity: Optimize the Chunking Granularity for Retrieval-Augmented Generation.
2025. arXiv: 2406 .00456 [cs.LG].

[Zie+20] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, et al. Fine-Tuning Language Models from
Human Preferences. 2020. arXiv: 1909.08593 [cs.CL].

94 Bibliography

https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2406.00456
https://arxiv.org/abs/1909.08593

Prompt Templates

This appendix presents the prompt templates used throughout the development of the
AUEBot assistant. These prompts were submitted to LLMs to enable document transfor-
mation and synthetic data generation, and are central to the system’s preprocessing and

evaluation pipeline.

A.1 Decontextualized Proposition Creation

Chunk Decomposition to Decontextualized Propositions Prompt

I am giving you a text chunk extracted from the Studies Guide of the Informatics

Department of Athens University of Economics and Business.

Your task is to decompose the chunk into clear, simple, and decontextualized proposi-

tions.

Follow these instructions:

1. Split compound sentences into simple sentences. Maintain the original phrasing from
the input whenever possible.

2. For any named entity that is accompanied by additional descriptive information,
separate this information into its own distinct proposition.

3. Always decontextualize each proposition by adding necessary modifiers to nouns or
entire sentences and replacing pronouns (e.g., “it”, “he”, “she”, “they”, “this”, “that”) with
the full name of the entities they refer to. This is imperative!

4. Every proposition MUST BE DECONTEXTUALIZED FULLY, SO THAT IT CAN BE
INTERPRETABLE ON ITS OWN.

5. Ensure the JSON output is encoded in UTF-8 without Unicode escape sequences.

{
"{num}": {
"chunk id": <chunk id>,
"propositions": [
{
"prop_id": 1,

95

96

"text": "<Proposition 1>"
})
{
"prop_id": 2,
"text": "<Proposition 2>"
¥
]
}
}
<chunk>
{chunk}
</chunk>

A.2 QA Pairs Generation

Synthetic QA Pairs Generation from Chunks Prompt

You are given a set of text chunks extracted from the Studies Guide of the Informatics

Department of Athens University of Economics and Business.

Your task is to read the given chunks and generate question-answer pairs between a
user and a virtual assistant based on one or more chunks, where the user asks certain
questions, and the assistant tries to provide answers.

Follow these instructions:

1. Your response should be a JSON structure of the following format:

{

" {num}":
"user": "Your question here",
"chunks_used_ids": [4, 5, ...],
"system": "Your answer here"

s

"{next_num}": {
"user": "Your question here",
"chunks_used_ids": [1, 3, ...],
"system": "Your answer here"

}

}

2. You MUST generate at least one question-answer pair for EACH of the provided
chunks.

Chapter A Prompt Templates

3. The ‘chunks_used_ids field must include the exact ‘chunk_id" of the chunk the QA
pair is based on.

4. The system must answer helpfully, carefully, politely, impartially, honestly, and
respectfully to the user.

5. The user’s question must be a self-contained, standalone question without the need
to refer to any previous context.

6. You may combine two or more chunks to answer a more complex question, but make
sure that each chunk is still used in at least one distinct question-answer pair.

7. In each question-answer pair, the system answers the user’s question based only on
information from the retrieved chunks.

8. Answers must form a complete sentence or paragraph.

9. Create as many high-quality question-answer pairs as are reasonably supported by
the given chunks, with a minimum of one per chunk.

10. You can use the same chunk in multiple question-answer pairs, but make sure every
chunk is used in at least one.

11. You can generate more than one question-answer pair per chunk if meaningful, but
one is the minimum for each.

12. Questions should be phrased as if asked by an undergraduate Informatics student at
AUEB.

13. Generate at least one question-answer pair for each chunk given.

14. Each question and answer should be a single-line string.

15. For this subset, you MUST generate at least 15 question-answer pairs in total.

<chunks>
{docs}
</chunks>

A.3 QA Pairs Annotation Sentence Annotation

QA Pair Annotation from Chunk IDs to Sentence IDs Prompt

You are given a set of question-answer pairs generated from text chunks of the Studies

Guide of the Informatics Department of Athens University of Economics and Business.

Each pair includes:

- A user question,

- The assistant’s answer,

A.3 QA Pairs Annotation Sentence Annotation 97

98

- The chunk ids from which the answer was derived.

Your task is to annotate each QA pair by identifying the specific sentence IDs that best
support or justify the assistant’s answer.

Follow these instructions carefully:

1. You will be provided with:

- A set of question-answer pairs.

- A set of sentences, each associated with a unique ‘chunk_id" from the ‘chunks_used_ids’
field in the QA pairs.

2. Your output must be a valid JSON object of the following form:

{
"{num}": {
"user": "Original question here",
"sentences_used_ids": [5, 10, ...],
"system": "Original answer here"
}
}

3. For each QA pair, use the sentences that most directly support the assistant’s answer.
4. Be precise — select only the relevant sentences, not all from a chunk.

5. The ‘sentences_used_ids’ must belong to the ‘chunks_used_ids‘ used in the original
answer.

6. Do NOT change the original 'user’ question or ’system’ answer. Only insert the
’sentences_used_ids’ field for each QA.

7. Return only the updated JSON structure as your output — do not include any other text.

<question_answer_pairs>

{qa_pairs}
</question_answer_pairs>

<sentences>
{sentences}
</sentences>

Chapter A Prompt Templates

A.4 QA Pairs Proposition Annotation

QA Pair Annotation from Chunk IDs to Proposition IDs Prompt

You are given a set of question-answer pairs generated from text chunks of the Studies
Guide of the Informatics Department of Athens University of Economics and Business.

Each pair includes:

- A user question,

- The assistant’s answer,

- The chunk ids from which the answer was derived.

Your task is to annotate each QA pair by identifying the specific proposition IDs that
best support or justify the assistant’s answer.

Follow these instructions carefully:

1. You will be provided with:

- A set of question-answer pairs.

- A set of propositions, each associated with a unique ‘chunk_id* from the
‘chunks_used_ids field in the QA pairs.

2. Your output must be a valid JSON object of the following form:

{
L1} {n‘.lm} " B {
"user": "Original question here",
"propositions_used_ids": [5, , 10 ...],
"system": "Original answer here"
}
}

3. For each QA pair, use the propositions that most directly support the assistant’s

answer.
4. Be precise — select only the relevant propositions, not all from a chunk.

5. The ‘propositions_used_ids* must belong to the ‘chunks_used_ids" used in the original
answer.

6. Do NOT change the original 'user’ question or ’system’ answer. Only insert the
‘propositions_used_ids’ field for each QA.

7. Return only the updated JSON structure as your output — do not include any other

text.

<question_answer_pairs>
{qa_pairs}

A.4 QA Pairs Proposition Annotation 99

</question_answer_pairs>

<propositions>
{propositions}
</propositions>

A.5 System Prompt for AUEBbot

System Prompt

"You are AUEBDot, an assistant mainly for undergraduate students of the Department of
Informatics at the Athens University of Economics and Business, also known as AUEB.
Your task is to answer a student’s question based only on valid information from the
department’s current Studies Guide.

You are particularly helpful to the student and provide concise but adequately com-
prehensive answers. Focus on answering as accurately as possible. Respond carefully,
politely, impartially, honestly, and respectfully towards the student.

You will only accept to answer questions that are relevant to AUEB and the Department
of Informatics.

If you cannot deduce a valid answer for the student, simply answer «I am afraid I do

not know the answer to your question.»"

A.6 LLM-based Generation Evaluation

LLM-as-Judge Evaluation Prompt

Evaluate the following response based on the user’s query and the provided context

documents.

Rate the response on the following criteria:

- Relevance: Does it address the user’s query? (1-5)

- Factual Accuracy: Is the information correct? (1-5)

- Fluency: Is the response well-written and grammatically correct? (1-5)

- Coherence: Does it logically follow from the query and context? (1-5)

- Helpfulness: Does it provide actionable or useful information for the user? (1-5)

100 Chapter A Prompt Templates

Query:
{query}

Retrieved Context:

{context}

Generated Response:

{response}

Output: Provide scores for each metric and a brief comment in a single-line string
justifying your decision.

- Return your answer **only™” in the following JSON format.

- Do not include any extra commentary or text outside the JSON block.

Your answer should be in the following JSON format:

{
"{query_id}": {
"query_id": {query_id},
"evaluation": {
"Relevance": <score>,
"FactualAccuracy": <score>,
"Fluency": <score>,
"Coherence": <score>,
"Helpfulness": <score>,
"Comments": "<optional additional comments>"
}
}
}

A.6 LLM-based Generation Evaluation 101

102

List of Acronyms

AUEB

API

Al

NLP

QA

ConvQA

IR

TREC

LLM

RoPe

SFT

RS

DPO

TF

IDF

Athens University of Economics and Business

Application Programming Interface

Artificial Intelligence

Natural Language Processing

Question-Answering

Conversational Question-Answering

Information Retrieval

Text Retrieval Conference

Large Language Model

Rotary Positional embeddings

Supervised Fine-Tuning

Rejection Sampling

Direct Preference Optimization

Retrieval-Augmented Generation

Term Frequency

Inverse Document Frequency

BM25

BERT

SBERT

FAISS

1P

RRF

AP

MAP

NDCG

MRR

BLEU

ROUGE

METEOR

PPL

JSON

Best Match 25

Bidirectional Encoder Representations from Transformers

Sentence BERT

Facebook Al Similarity Search

Inner Product

Reciprocal Rank Fusion

Average Precision

Mean Average Precision

Normalized Discounted Cumulative Gain

Mean Reciprocal Rank

Bilingual Evaluation Understudy

Recall-Oriented Understudy for Gisting Evaluation

Metric for Evaluation of Translation with Explicit Ordering

Perplexity

JavaScript Object Notation

A.6 LLM-based Generation Evaluation

103

104

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.2

33

34

3.5

3.6
3.7

The main idea behind a RAG pipeline. The system retrieves relevant docu-
ments from a document store to supplement the user prompt, enabling the
generator (LLM) to produce grounded responses.
Overview of a typical indexing process.
Overview of the Naive RAG paradigm (figure reconstructed by the author
from Gaoetal. [Gao+24a]).
Overview of the Advanced RAG paradigm (figure reconstructed by the author
from Gaoetal. [Gao+24a]).
Overview of the Modular RAG paradigm (figure reconstructed by the author
from Gaoetal. [Gao+24a]).
Overview of the SBERT architecture (figure reconstructed by the author from
Reimers and Gurevych [RG19]).
Intuitive Overview of a hybrid retrieval setup, leveraging both lexical and se-
mantic search (figure reconstructed by the author from this website: https:
//www.couchbase.com/blog/hybrid-search/.

Visualization of the chunk structure in AUEB’s latest Informatics Studies
Guide, illustrating how headers, subheaders, and paragraphs are hierarchi-
cally organized intoachunk. oo L
Example of an extracted chunk with a complete set of metadata.
Part of the extracted chunk, with its metadata, that contains the Course
Module Table in text format.
Part of the extracted chunk, with its metadata, that contains the Table con-
taining the maximum number of ECTS units available to collect each semester
intext format.
Part of the extracted chunk, with its metadata, that contains the description
of the "Logic" course. The manual addition of the course modules is enclosed
in "«" for display purposes.
Distribution of chunk lengths (inwords).
Distribution of chunk lengths (in tokens, as tokenized by the LLaMA 3.1

tokenizer).

25

28
29

https://www.couchbase.com/blog/hybrid-search/
https://www.couchbase.com/blog/hybrid-search/

3.8

3.9

3.10
3.11

3.12

3.14

3.13
3.15

3.16

3.17
3.18

4.1

4.2

4.3

4.4

4.5

5.1

The number of Chunks that fitin Llama-3.1-8B-Instruct’s con-
text window, on average. Note that the default context window with an
8,192k token limitisused here.
Examples of extracted sentences with their associated metadata. Each sen-
tence inherits the structural context of its parent chunk (header, subheader,
paragraph, page, and file name) while being assigned a unique sent_id,
enabling precise traceability within the Studies Guide.
Distribution of sentence lengths (inwords).
Distribution of sentence lengths (in tokens, as tokenized by the LLaMA 3.1
tokenizer).
The number of Sentences that fitin L1lama-3.1-8B-Instruct’s con-
text window, on average. Note that the default context window with an 8,192k
token limitisused here. Lo Lo
Distribution of proposition lengths (in words).
Example of a chunk decomposed into decontextualized propositions.
Distribution of proposition lengths (in tokens, as tokenized by the LLaMA
3.1 tokenizer). e e e
The number of Propositions that fitin Llama-3.1-8B-Instruct’s
context window, on average. Note that the default context window with an
8,192k token limitisused here.
Example of a chunk and its corresponding sentence and proposition ids. . . .
Overview of the document representation pipeline. The Studies Guide is first
parsed into semantically coherent chunks with extracted metadata. Each
chunk is then further split into sentences via sentence segmentation and
transformed into decontextualized propositions via LLM-based decompo-
sition. This yields three granularities (chunks, sentences, propositions) for

retrieval in the proposed RAG system.

Snippet from the JSON file containing the synthetic QA Pairs annotated with
chunkids..
Snippet from the JSON file containing the synthetic QA Pairs annotated with
sentenceids.
Snippet from the JSON file containing the synthetic QA Pairs annotated with
propositionids. Lo
Snippet from the JSON file containing the real QA Pairs annotated with
chunkids..
Examples of queries collected from AUEB students, that were not featured

in the real QA pairsdataset.

Overview of the Indexing process for the Studies Guide, and the formation

of multiple granularities. o L

105

106

5.2

5.3

5.4

Overview of the retrieval architecture with support for sparse, dense, and
hybrid search across document granularities. 59
Overview of the Response Generation phase using an Instruct LLM, condi-
tioned on top-k retrieved Studies Guide passages. 62
Complete end-to-end online query flow of the proposed RAG-based system,

illustrating retrieval and generation phases. 63

List of Tables

3.1

4.1
4.2

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

Comparison of Retrieval Granularities 41
Coverage Statistics for Synthetic QA Sets 54
Coverage Statistics for Real-world QA Sets 55

Retrieval Metrics on the Synthetic QA Set (Chunk Level, 212 chunks in total) 68
Retrieval Metrics on the Real-World QA Set (Chunk Level, 212 chunks in total) 68
Retrieval Metrics on the Synthetic QA Set (Sentence Level, 2554 sentences in

total) 68
Retrieval Metrics on the Real-World QA Set (Sentence Level, 2554 sentences
intotal) 69
Retrieval Metrics on the Synthetic QA Set (Proposition Level, 6625 proposi-
tionsintotal) 69
Retrieval Metrics on the Real-World QA Set (Proposition Level, 6625 proposi-
tionsintotal L 69
Traditional Generation Metrics on the Synthetic QA Set (Chunk Level, top k =
10) . 78
LLM-as-Judge Generation Metrics on the Synthetic QA Set (Chunk Level,
topk=10) 78
Traditional Generation Metrics on the Real-World QA Set (Chunk Level,
topk=10) 78
LLM-as-Judge Generation Metrics on the Real-World QA Set (Chunk Level,
topk=10) e 78
Traditional Generation Metrics on the Synthetic QA Set (Sentence Level,
top-k=100) 79
LLM-as-Judge Generation Metrics on the Synthetic QA Set (Sentence Level,
topk=100) 79
Traditional Generation Metrics on the Real-World QA Set (Sentence Level,
topk=100) 79
LLM-as-Judge Generation Metrics on the Real-World QA Set (Sentence Level,
topk =100) 79

107

108

6.15

6.16

6.17

6.18

6.19
6.20

Traditional Generation Metrics on the Synthetic QA Set (Proposition Level,
topk=100)
LLM-as-Judge Generation Metrics on the Synthetic QA Set (Proposition Level,
top-k=100)
Traditional Generation Metrics on the Real-World QA Set (Proposition Level,
topk=100)
LLM-as-Judge Generation Metrics on the Real-World QA Set (Proposition
Leve topk =100)
Perplexity Values for Each Granularity on the Synthetic QA Set
Perplexity Values for Each Granularity on the Real-World QA Set

	Titlepage
	Abstract
	Acknowledgements
	Acknowledgements
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Thesis Structure

	2 Background and Related Work
	2.1 Background
	2.1.1 Retrieval Augmented Generation
	2.1.2 Sparse Lexical Retrieval with BM25
	2.1.3 Dense Semantic Retrieval with Sentence-BERT
	2.1.4 Hybrid Retrieval and Rank Fusion
	2.1.5 Generative Model Characteristics

	2.2 Related Work
	2.2.1 Significance of Retrieval Granularity
	2.2.2 Synthetic Data Generation
	2.2.3 LLM-as-Judge Evaluation
	2.2.4 Institutional RAG Assistants

	3 Document Ingestion
	3.1 Studies Guide Preprocessing and Chunk-Based Indexing
	3.1.1 Indexing in Numbers
	3.1.2 Benefits and Limitations of Chunk-Level Document Representation
	3.1.3 Motivation for Alternative Retrieval Granularities

	3.2 Sentence-Level Document Representation
	3.2.1 Sentence Extraction Methodology
	3.2.2 Rationale and Implementation Details
	3.2.3 Benefits and Limitations of Sentence-Level Document Representation
	3.2.4 Motivation for an Alternative Granularity

	3.3 Proposition-Level Document Representation
	3.3.1 Decontextualization Prompt and Methodology
	3.3.2 Strengths and Limitations of Proposition-Level Document Representation

	3.4 Retrieval Granularities: Pros and Cons

	4 QA Pairs Dataset Creation
	4.1 Synthetic Question Answer Generation
	4.1.1 Splitting Chunks to Random Subsets
	4.1.2 Why Random Subsets?
	4.1.3 Instruction Prompt

	4.2 Sentence and Proposition QA Alignment
	4.2.1 Sentence-Level Annotation
	4.2.2 Proposition-Level Annotation

	4.3 Real-World QA Collection
	4.3.1 Collection Process
	4.3.2 Manual Annotation
	4.3.3 Aligning Annotations Across Granularities

	4.4 Comparative Analysis of the QA Datasets
	4.4.1 Synthetic QA Sets
	4.4.2 Real-world QA Sets
	4.4.3 Impact of LLM Quality

	5 System Design and Implementation
	5.1 Retriever Setup
	5.1.1 BM25 Retriever
	5.1.2 VectorStore Retriever
	5.1.3 Ensemble Retriever

	5.2 Generator Setup
	5.2.1 GPU Memory Management through Quantization
	5.2.2 Generation Configuration.
	5.2.3 System Prompt

	5.3 Query Flow
	5.3.1 Offline Phase: Corpus Indexing, and System Configuration
	5.3.2 Online Phase: Evidence Retrieval and Response Generation

	6 Evaluation
	6.1 Retrieval Evaluation
	6.1.1 Retrieval Metrics
	6.1.2 Evaluation Framework
	6.1.3 Retrieval Evaluation Results per Granularity
	6.1.4 Summary of Observations

	6.2 Generation Evaluation
	6.2.1 Traditional Generation Evaluation Metrics
	6.2.2 LLM-based Generation Evaluation Metrics
	6.2.3 Generation Evaluation Results per Granularity
	6.2.4 Summary of Observations

	7 Conclusions
	7.1 Conclusions
	7.2 Limitations
	7.3 Future Work

	Bibliography
	A Prompt Templates
	A.1 Decontextualized Proposition Creation
	A.2 QA Pairs Generation
	A.3 QA Pairs Annotation Sentence Annotation
	A.4 QA Pairs Proposition Annotation
	A.5 System Prompt for AUEBbot
	A.6 LLM-based Generation Evaluation

	Acronym
	List of Acronyms
	List of Figures
	List of Tables

