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Abstract

Image Captioning is a research area at the intersection of Computer Vision (CV) and
Natural Language Processing (NLP), focusing on the automatic generation of descriptive
text for images. In the medical field, this task becomes especially important when applied
to diagnostic images such as radiographs. Known as Diagnostic Captioning (DC), the
goal is to generate clinically meaningful text that reflects a patient’s condition based on
visual input. This thesis investigates how general-purpose vision-language models can be
adapted to meet the specific demands of this high-stakes application. Three post-training
strategies are explored: Supervised Fine-Tuning (SFT), Reinforcement Learning (RL), and
Test-Time Scaling (TTS). These approaches are applied to state-of-the-art models and
evaluated using a dedicated benchmark from the ImageCLEFmedical 2025 challenge. The
systems developed in this thesis are assessed both quantitatively, using relevance and
factuality metrics, and qualitatively, through examples that demonstrate model behavior
under different conditions. The results highlight the strengths and limitations of each
approach, and also show that these methods can be effectively combined to leverage the
advantages of each technique. Overall, the work contributes to ongoing efforts in making

Al-assisted diagnosis more reliable in real-world medical settings.
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H avtoporn mepypaen emovev amotelel évav epevvnTind Topéo mov Ppioreton otnv
topn g Yroloytoting ‘Opaong (Computer Vision, CV) xou tng Ene€epyaciog Pvowrg
I'\dooag (Natural Language Processing, NLP). Xtov watpied topéa, n texvoloyia avtn
outonté Wiaitepr onpacio 0tav epoppoletal oe SLayveoo TG elMOVES, OTIWS elvart oL axn-
twoypapieg. To medio avtd avagépeton ovxva wg Atyvwotnr Hopoaywyn Aefavtog
(Diagnostic Captioning, DC), pe faoind otdxo tnv avtdportr dnpovpyio xelpéveov mou
QITOTUTTAOVOLV pe XAVt axpifela TNV xaT&oTacT Tov acdevovg Pacel OnTIHNG TANPO-
popiac. H mapovoa mruyiour epyoacio e€etdlel TpOTOUG TPOCAPHOYHS YEVIHOV TTO-
AVTPOTTUOV PHOVTEAWVY OPAGTG-YADO GG GTLG ATTAULTHOELG TG SLY VWO TIXNG TTEPLY PAPTG,
eoTidlovtag o Tpelg oTpatnynég petaenmaidevong: to Supervised Fine-Tuning (SFT),
v Evioyvtuan Madnon (Reinforcement Learning, RL), xou to Test-Time Scaling (TTS).
O pédodot awtég e@oppdlovton oe HOVTEAR OLXIAG Kol ELOAOYOVVTOL HEGK TOL GLVOAOL
dedopévwv tou drtaywviopod ImageCLEFmedical 2025. Ta avamtuoydévta cvatripoato of-
LOAOYOUVTOL TOGO TTOCOTIHG, HE XPT|OT] HETPLUMV TTOL KOAVIITOLV TI) GUVAQPELX 0L TNV
nAwviner] oxpifeta, 6G0 1o TOLOTIUA, PECK TUPOELYHATWYV TTOV AVASELLVOOLY TT) GUHTTEP-
Lpopd Twv povTéAwv vtd diupopetnég ouvinueg. Ta amotedéopata avademvbouv To
TIAEOVEXTIHATA KL TOVG TEPLOPLOHOVG Kade pedddou uar delyvovy OTL 0 GLUVELAGHOG
Toug Propel va aELomondel aTOTEAEGHATIG, EVIOYDOVTAS TO TTAEOVEXTHHATA TNG KODE
piog. Zuvohnd, 1 epyacio avtr cupPaiiel oty Tpdodo TG TEXVNTIHG VOO VVNG GTOV
TOHEX TNG LLTPIKIG KO TLPOWIEL TNV OVAITTTLEN GUGTNHAT®Y OV PITOPOV va vTooThpié-

ovV aoteAecpaTnd TN Sty vwaoTinr Saduacio.
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Introduction

In recent years, advances in medical imaging technologies have significantly enhanced the
ability of healthcare systems to detect, monitor, and diagnose a wide range of conditions.
Modern imaging modalities such as X-rays, Computed Tomography (CT), and Magnetic
Resonance Imaging (MRI) generate an ever-growing volume of high-resolution diagnostic
data. However, this rapid expansion has placed increasing pressure on radiologists, who
are required to manually interpret large numbers of complex medical images. The resulting
workload can lead to delays in reporting, increased fatigue, and a higher likelihood of
diagnostic errors, particularly in time-sensitive clinical environments [Kas+23]. Diagnostic
Captioning (DC) is a specialized area of image captioning focused on generating clini-
cally relevant textual reports or summaries from medical images, such as X-rays or CT
scans [Pav+21]. Unlike text-to-text models, multimodal DC systems combine visual pro-
cessing with natural language generation by extracting meaningful features from images
and translating them into clinically informative text. These systems are designed to assist
radiologists by providing preliminary draft reports, suggesting areas of interest to guide
their attention, or drawing attention to image regions that may warrant further review.
Rather than replacing expert interpretation, DC aims to reduce reporting time, enhance

diagnostic consistency, and ultimately contribute to improved patient outcomes.

This thesis explores the use of post-training techniques in the context of DC. Advances in
Deep Learning (DL) have driven remarkable progress in both Computer Vision (CV) and
Natural Language Processing (NLP), leading to the development of powerful multimodal
models capable of interpreting images and generating coherent text. These models are
typically trained in two stages: an initial pre-training phase, where they are exposed to
large-scale collections of image-text pairs to learn general visual-linguistic representa-
tions; and a subsequent post-training phase, which adapts these representations to specific
domains or tasks [SD25]. Post-training encompasses a range of methods designed to refine
model performance, enhance reasoning capabilities, or better align outputs with human
expectations. According to a recent survey by Wei et al. [Wei+23], these methods can
be broadly categorized into three classes: Supervised Fine-Tuning (SFT) on specialized
datasets, Reinforcement Learning (RL) approaches that optimize task-specific objectives,
and Test-Time Scaling (TTS) strategies, which improve predictions at inference time
without modifying model parameters. Such techniques are particularly relevant to Di-
agnostic Captioning (DC), where factual accuracy (the correctness of the information
presented), clinical precision (the detailed and accurate description of medical findings),

and domain sensitivity (the model’s ability to respect medical terminology and context)
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are critical. These metrics ensure that generated captions are reliable and useful for clinical
decision-making, minimizing the risk of misinterpretation or incorrect diagnoses that
could adversely affect patient care. By applying post-training methods to pretrained Vision-
Language Models (VLMs), this thesis aims to bridge the gap between general-purpose

captioning systems and the specialized demands of the medical domain.

Part of this thesis focuses on the participation of the AUEB NLP Group in the Image-
CLEFmedical Caption Task 2025 [Dam+25], organized as part of the broader ImageCLEF
2025 campaign [Ion+25]. The Caption Task consists of three primary sub-tasks: Con-
cept Detection, which involves predicting relevant medical concepts associated with an
image; Caption Prediction, which aims to generate coherent and clinically informative
descriptions; and the Explainability Task, which focuses on providing human-interpretable
justifications for the model’s predictions. The author’s main responsibility was the devel-
opment of systems for the Caption Prediction sub-task, which also forms the core topic of
this thesis. Building on the group’s strong track record in previous editions of the competi-
tion [Cha+21; Cha+22; Kal+23; Sam+24], this year the AUEB NLP Group achieved 1% place
in Concept Detection, 5 place in Caption Prediction, and 1% place in the Explainability

Task among 9, 8, and 2 participating research groups, respectively [Cha+25].

1.1 Thesis Structure

Chapter 2: Background and Related Work

Chapter 2 reviews foundational concepts in vision-language models and presents prior

work on medical image captioning,.

Chapter 3: Implemented Methods and Systems

Chapter 3 describes the models and post-training techniques implemented in this thesis,

including fine-tuning, reinforcement learning, and test-time scaling.

Chapter 4: Data

Chapter 4 presents the dataset used in this thesis and provides an exploratory analysis of

the captioning data relevant to the ImageCLEFmedical 2025 challenge.

Chapter 5: Experiments and Results

Chapter 5 reports both qualitative and quantitative results of the developed systems, along

with insights from participation in the ImageCLEFmedical 2025 competition.

Chapter 6: Conclusions and Future Work

Chapter 6 summarizes the main findings and outlines potential directions for future

research.

Chapter 1 Introduction



Background and Related Work

This chapter provides an overview of the key concepts and research areas that underpin
this thesis. It first introduces the foundational training paradigms of large-scale multimodal
systems, including pre-training and post-training. It then reviews related work on generic
image captioning and explores the distinct challenges posed by diagnostic captioning in

the medical domain.

The rapid evolution of DL has enabled the emergence of powerful multimodal systems
capable of jointly processing visual and textual information. These models, commonly
referred to as VLMs, integrate advances from both CV and NLP to support tasks such
as image captioning, retrieval, and reasoning [BAM17]. Their development is driven by
the broader progress in Large Language Models (LLMs), which have demonstrated strong
generalization capabilities when trained on vast corpora of text [Bro+20]. The learning
process for these systems typically begins with a large-scale pre-training phase designed to
capture general visual-linguistic representations [Zho+20]. However, such general-purpose
training often falls short in high-stakes domains, requiring a subsequent post-training
phase to adapt models to specific applications [Wei+23]. One of the most prominent use
cases for VLMs is image captioning [Hos+18], where models generate natural language
descriptions for visual content. While generic captioning models can produce fluent
and semantically relevant output, transferring these capabilities to diagnostic captioning
involves additional requirements, such as clinical accuracy, appropriate use of terminology,
and interpretability [Pav+21]. Bridging this gap remains a central challenge for research

in medical Artificial Intelligence (AI).

2.1 Pre-Training

This section begins by examining pre-training techniques for textual data, which laid the
groundwork for the development of VLMs, a subset of multimodal models specialized in
processing images and text. In NLP, pre-training has become a foundational paradigm,
largely driven by advances in Self-Supervised Learning (SSL) applied to LLMs. The central
idea is to expose models to large volumes of unlabeled text, enabling them to learn general-
purpose language representations that can later be adapted to specific downstream tasks

via fine-tuning or other post-training methods (Section 2.2).
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Several milestone models exemplify this shift, including BERT [Dev+19], GPT-2/3 [Bro+20],
and T5 [Raf+19]. Each introduced novel self-supervised objectives and architectures that
significantly advanced the state of the art across a wide range of NLP tasks. To illustrate
these pre-training dynamics more concretely, we focus on BERT, one of the most influential
early models. BERT is trained using two self-supervised objectives: Masked Language
Modeling (MLM) and Next Sentence Prediction (NSP). As shown in Figure 2.1, MLM
involves randomly masking a subset of input tokens and training the model to predict
the original tokens based on their surrounding context. This objective encourages the
model to learn bidirectional contextual representations at the word level. In contrast, NSP
is designed to help the model capture discourse-level coherence by predicting whether

two input sentences appear consecutively in the source text.

BERT

Biers) E, |- Ey E sep) E; |- Ey

—1/_\r‘|_r o Lr

| Tok N |[ [SEP] ](Tok‘l} o TokM

Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair

Fig. 2.1: Illustration of the Masked Language Modeling (MLM) objective used in the pre-training
of BERT. Tokens are randomly masked and predicted from surrounding context. Figure
taken from [Dev+19].

The success of BERT [Dev+19] and similar models in NLP inspired a new class of architec-
tures capable of handling both visual and textual modalities, known as VLMs. These models
are trained on paired image-text data to enable tasks such as image captioning, cross-modal
retrieval, and visual question answering. Unlike language-only models, VLMs incorporate
visual inputs using either dual-encoder architectures, where separate encoders are used
for each modality, or unified transformer-based models that jointly process multimodal

inputs.

Chapter 2 Background and Related Work



Pre-training visual-language models (VLMs) generally depends on large-scale datasets
comprising millions of image-caption pairs. Some of the most commonly used datasets
include Conceptual Captions [Sha+18], COCO [Lin+14], and LAION [Sch+22]. Conceptual
Captions is automatically constructed from web alt-text and contains around 3.3 million
pairs; while large, it is weakly supervised and prone to noise. COCO, in contrast, is a
smaller but higher-quality dataset consisting of over 330,000 images with five manually
written captions each, commonly used for fine-tuning and evaluation. LAION offers
web-scale coverage, containing hundreds of millions of image-text pairs collected and
filtered automatically using CLIP embeddings, which are discussed below. Though noisier,
its massive scale makes it particularly suitable for contrastive pre-training. To learn
aligned multimodal representations from such data, VLMs are typically optimized using a
combination of self-supervised objectives. Contrastive Learning (CL), as in Contrastive
Language-Image Pre-training (CLIP) [Rad+21], learns a shared embedding space by pulling
matched image—text pairs closer together while pushing mismatched ones apart, typically
across all pairs in a batch. In contrast, Image-Text Matching (ITM) is formulated as a binary
classification task: given a single image-caption pair, the model predicts whether the
caption is semantically aligned with (i.e., describes) the image, rather than optimizing over
multiple pairs as in supervised contrastive learning. While CL encourages global alignment
in the embedding space, ITM enforces pairwise discrimination, providing complementary
supervision for fine-grained alignment. Masked Image Modeling (MIM) trains the model to
reconstruct masked patches in the input image, improving spatial understanding. Finally,
Multimodal Masked Language Modeling (MMLM) extends the BERT-style MLM objective
to the multimodal setting, requiring the model to fill in masked text tokens using both visual
and linguistic context. Together, these objectives enable VLMs to learn rich, transferable

representations suitable for a wide range of downstream tasks.

A prominent realization of the contrastive pre-training paradigm is CLIP [Rad+21], al-
ready briefly mentioned above. More concretely, CLIP introduces a scalable dual-encoder
framework where visual and textual inputs are processed separately: a Vision Transformer
(ViT) or ResNet [He+16] encodes the image, and a Transformer-based encoder handles
the corresponding text. The model is trained to project both modalities into a shared
embedding space, such that matching image-caption pairs are close, while mismatched
pairs are pushed apart. This alignment is achieved using a contrastive loss computed
over all N x N pairwise similarities in a batch of N image-text examples. A symmetric
cross-entropy objective is applied in both directions (image-to-text and text-to-image),
encouraging strong multimodal association without the need for explicit labels. Figure 2.2
illustrates the architecture and training setup of CLIP. By using separate encoders and a
contrastive loss across the entire batch, CLIP achieves efficient and scalable learning across
noisy web data. It was trained on 400 million image-text pairs collected from the Internet,
allowing it to generalize in a zero-shot manner to a wide range of tasks without task-
specific fine-tuning. This approach has since influenced a broad family of vision-language

models aiming for similar flexibility and scale.

2.1 Pre-Training
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Fig. 2.2: Contrastive pre-training in CLIP [Rad+21]. A text encoder and an image encoder inde-
pendently map their inputs into a joint embedding space. During training, similarity is
maximized for aligned image-text pairs and minimized for all others using a contrastive
objective. Figure taken from [Rad+21].

Recent models such as BLIP [Li+22], Flamingo [Ala+22], and InstructBLIP [Dai+23], which
will be discussed in detail later in this thesis, extend the pre-training paradigm beyond
dual-encoder designs by adopting more integrated transformer-based architectures. These
systems combine multiple learning signals during training and exhibit strong performance

on open-ended generation and reasoning tasks, even under minimal supervision.

In summary, pre-training has become a cornerstone of modern vision-language modeling,
enabling the development of systems that generalize across a wide range of tasks with
minimal supervision. It relies on large-scale datasets that are typically collected automat-
ically and require little or no human annotation, offering scalability and flexibility at a
global scale. However, pre-training is also a resource-intensive process, often performed
only once due to its high computational cost and environmental impact. The resulting
models are reused across many downstream applications, making the design of effective
pre-training strategies a critical foundation for later stages of model adaptation. For this
reason, understanding the role and implications of pre-training is essential, even in work

such as this thesis that focuses primarily on post-training refinement.

2.2 Post-Training

While pre-training endows language and vision-language models with broad general-
purpose capabilities, it often proves insufficient for high-stakes or domain-specific applica-

tions, such as medical image interpretation or diagnostic reporting. Post-training refers to

Chapter 2 Background and Related Work



the set of methods applied after the pre-training phase to further adapt models to specific
tasks, align their behavior with human intent, or enhance their reasoning and factual accu-
racy. According to the taxonomy proposed by Wei et al. [Wei+23], post-training techniques
can be broadly grouped into three categories: Supervised Fine-Tuning (SFT), Reinforcement
Learning (RL), and Test-Time Scaling (TTS) strategies. This classification is illustrated in
Figure 2.3, which shows a four-layer taxonomy: the innermost layer highlights the three
main categories (SFT, RL, and TTS), the next layer outlines their sub-dimensions, the third
layer lists representative algorithms, and the outermost layer maps well-known LLMs and

VLMs to the strategies they use.
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Fig. 2.3: Taxonomy of post-training techniques in LLMs and VLMs, including Supervised Fine-
Tuning (SFT), Reinforcement Learning (RL), and Test-Time Scaling (TTS) strategies. Figure

taken from [Wei+23].

2.2.1 Supervised Fine-Tuning

SFT is the most widely used post-training technique and serves as the primary mechanism
for adapting pre-trained models to specific tasks or domains. It involves training the
model on labeled input-output pairs using standard supervised learning objectives, most
commonly the cross-entropy loss. Unlike full-scale model training, SFT involves only

2.2 Post-Training
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modest adjustments to the model. It typically uses fewer training epochs (e.g., 3-5 for
BERT-style models), smaller learning rates, and often updates only a subset of parameters.
This careful, constrained training prevents catastrophic forgetting while allowing the
model to internalize task-specific patterns, domain terminology, stylistic conventions, and
structural regularities in the target domain. In the context of DC, SFT plays a critical
role by exposing the model to clinically annotated image-text pairs, allowing it to learn

accurate medical phrasing, domain-specific vocabulary, and clinically relevant details.

The success of SFT largely depends on the availability and quality of labeled data [Wan+23b].
Rich, diverse annotations can significantly improve model performance and generalization,
while limited or noisy supervision may lead to overfitting or bias. Regularization techniques,
data augmentation, and transfer learning strategies are often employed to mitigate these
risks. Despite its simplicity, SFT remains a powerful and flexible method for aligning
general-purpose models with the demands of specialized tasks. To better illustrate the
concept of SFT, Figure 2.4 provides a high-level view of the process. An LLM is initially pre-
trained on a massive web-scale corpus to learn general-purpose representations. This base
model is then adapted to a downstream task by fine-tuning it on a smaller, domain-specific
dataset. In this case, the supervised fine-tuning stage incorporates task-specific knowledge
from a private or curated source, such as clinical annotations or task-specific text, allowing
the model to internalize relevant patterns, terminology, and output conventions. The result
is a model that preserves its broad linguistic competence while gaining specialization for

the target application.

\

Specific (private) Knowledge
Base

—pre-training—» \\
Supervised
fine-tuning

Gigantic web-scale dataset Base LLM Fine-tuned LLM

Fig. 2.4: Conceptual overview of Supervised Fine-Tuning (SFT). A base language model pre-trained
on web-scale data is adapted using a smaller, domain-specific dataset to specialize for
downstream tasks. Figure adapted from Tomaz Bratani¢ and Kumar Harsh, illustrating
the general SFT workflow. Knowledge Graphs and LLMs: Fine-Tuning vs. Retrieval-
Augmented Generation, Neo4j Blog, September 11, 2024. https://neo4j.com/
blog/developer/fine-tuning-vs-rag/.

Chapter 2 Background and Related Work
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2.2.2 Reinforcement Learning

Reinforcement Learning (RL) is a learning paradigm in which an agent interacts with
an environment and learns to make decisions by maximizing a reward signal. Unlike
supervised learning, where the model is trained on labeled input-output pairs, RL focuses
on learning optimal actions through trial and error, guided by feedback about the quality
of its predictions. In the context of language and vision-language models, RL is particularly
useful for optimizing objectives that are non-differentiable or difficult to encode directly,

such as factual consistency, clinical accuracy, or human preferences [SB18].

Reinforcement Learning with Human Feedback (RLHF) [Ouy+22] has become a widely
used method, where human annotators rank model outputs to train a reward model. This
reward model serves as a stand-in for human judgment and is then used to steer policy
optimization, typically through policy gradient methods that adjust the model’s parameters
to increase the likelihood of producing preferred responses. RLHF has played a key role in
aligning LLMs with human values and task expectations, especially when the evaluation
criteria are hard to define or measure directly. It has also shown effectiveness in reducing

hallucinations by steering models away from factually incorrect or misleading outputs.

In image captioning, and in particular in the domain of DC, reinforcement learning
(RL) can be used to directly optimize task-specific reward functions. Standard train-
ing with cross-entropy loss often fails to align with clinical correctness or informative-
ness [Gao+19]. By contrast, RL enables models to optimize evaluation metrics more directly,
such as BERTScore [Zha+20], as shown by the winning system at ImageCLEFmedical
2023 [NDK23], or more domain-oriented metrics like UMLS Concept F1. In some cases, a
weighted combination of multiple objectives is used to better align training with clinical
goals, as it will be discussed in Section 3.3. This ability to define flexible, domain-sensitive

rewards makes RL a powerful tool for fine-tuning captioning models in clinical settings.

Beyond RLHF and reward modeling based on external metrics, RL has also been applied
more directly to image captioning through actor—critic methods. In these setups, a policy
network incrementally generates a caption by predicting the next word given the current
state, while a value network estimates the expected cumulative reward from that state
onward. This approach enables lookahead inference, where the model evaluates the
potential quality of future tokens and uses this signal to improve generation. Rewards
are typically defined using semantic similarity to reference captions, embedding-based
alignment, or task-specific heuristics. Figure 2.5 illustrates this process in detail. The
current state is represented by the partially generated caption (“a cat is”) alongside the
input image. The policy network takes this state and produces a distribution over possible
next actions (candidate words such as “lying”, “sitting”, “holding”, etc.). At the same time,

the value network predicts the expected reward associated with continuing from that state.

2.2 Post-Training
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By combining these two signals, the system can not only choose the most likely next word
but also anticipate how that choice will influence the quality of the complete caption. For
instance, in the example shown, the model considers options like “lying” or “sitting” but
selects “holding”, leading toward the caption “a cat is holding a baseball bat”. The key point
is that the actor—critic framework allows the captioning system to optimize word-by-word
generation with respect to a long-term reward signal, rather than relying solely on local

word probabilities.

action prediction

Policy Network Next Action
lying
:
| sitting
1
E lookahead eating
‘I P— - ”
i inference
1
1
! holding a baseball bat
1 :
1
1
' pretty

Value Network

reward prediction —

Fig. 2.5: Actor—Critic framework for image captioning. At each time step, the policy network gen-
erates the next word in the caption, while the value network predicts the expected future
reward based on that partial sequence. The two networks are trained jointly to produce
captions that maximize a task-specific reward signal. Figure taken from [Ren+17a].

However, RL methods come with notable challenges. They are typically more compu-
tationally expensive than supervised fine-tuning, require extensive sampling, and are
highly sensitive to the reward design. Poorly calibrated rewards may lead to degenerate or

unstable behavior, especially in safety-critical domains like healthcare.

2.2.3 Test-Time Scaling

Test-Time Scaling (TTS) refers to methods applied during inference to improve model
performance without modifying its parameters. These techniques offer a lightweight and
flexible alternative to SFT or RL, making them especially valuable when labeled data is

limited, computational resources are constrained, or model updates are impractical.

Prompting can be viewed as a form of TTS, where carefully designed input instructions

are used to steer model behavior. While prompting is more often discussed in the context
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of language modeling, it can also be understood as part of the broader family of TTS
methods. Even minor prompt modifications, such as rephrasing a question or adding cues
like “Let’s think step by step,” can significantly improve model outputs [Koj+22]. This
effect is especially pronounced in LLMs, where zero-shot or few-shot prompts can elicit
more structured or accurate responses. A prominent example is Chain-of-Thought (CoT)
prompting [Wei+22b], which encourages intermediate reasoning by structuring prompts

to model multi-step inference processes.

Beyond text-only tasks, TTS techniques have also proven effective in VLMs and image

captioning. Common strategies include:

+ Caption reranking: Generating multiple caption candidates and selecting the best
one based on external scoring models or domain-specific heuristics [Wei+23], a

concept that also underpins one of the methods discussed in Section 3.4.

+ Iterative decoding: A method in which the model first generates an initial caption
and then refines it over multiple decoding passes, gradually improving coherence

and factual accuracy [Wei+23].

« Retrieval-augmented generation (RAG): At inference time, retrieving relevant
context, such as image-caption pairs, from a datastore to guide caption genera-
tion [REM23].

+ Controllable generation: Guiding the model’s output during inference by modify-
ing prompts or inserting control tokens to enforce stylistic, structural, or domain-

specific constraints [Kes+19].

In the context of DC, TTS methods are particularly valuable when labeled supervision is
limited or domain shift is expected at deployment. For instance, retrieving captions from
visually similar medical images can provide soft guidance, serving as contextual references
to improve output quality without modifying the underlying model. A representative
application of this concept is the Synthesizer module, introduced in [Sam+24]. The Syn-
thesizer operates in two stages. It first receives a draft caption from a base model and then
retrieves one or more image—caption pairs from the dataset based on visual similarity to
the test image. However, experiments show that using a single retrieved caption yields
the best results. It subsequently generates a refined caption that is informed both by the
input image and the retrieved reference. This process can be understood as a form of
RAG-style TTS, where retrieval is used not to augment prompts directly, but to guide
the generation toward captions that are more consistent with visually similar examples.
In doing so, the Synthesizer [Sam+24] facilitates inference-time adaptation to local data

distributions without requiring any changes to the model parameters.

2.2 Post-Training
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Another Test-Time Scaling (TTS) approach proposed by the AUEB NLP Group is a concept-
driven decoding mechanism introduced by Kaliosis et al. [Kal+24]. This method enhances
DC by guiding the generation process using predicted medical tags associated with the
input image. These tags, which represent key medical concepts, are used during inference to
influence the beam search decoding process, encouraging the model to include semantically
relevant content in the output. The technique, named DMMCS (Distance from Median
Maximum Concept Similarity) [Kal+24], imposes a soft penalty on token choices that
deviate from the expected semantic association between tags and caption content, based
on statistics learned from the training set. The method has shown improvements across
multiple architectures and datasets, even when the tags are noisy or automatically predicted,
as demonstrated by its extension to handwritten text recognition [KP25]. More details on
how these tags are acquired can be found in [Cha25] and in our group’s participation in
the ImageCLEFmedical 2025 challenge [Cha+25], specifically in the Concept Detection
task. DMMCS represents a compelling example of controllable generation applied at test
time, offering improved clinical accuracy and domain specificity without requiring any

modification to the model parameters.

While TTS methods are typically lightweight and efficient, their effectiveness often depends
on the quality of the prompt, retrieval corpus, or reranking strategy. Still, they offer a
promising avenue for real-world deployment, particularly in clinical scenarios where

continual fine-tuning may be impractical or risky.

2.3 Generic Image Captioning

Image captioning is the task of generating descriptive natural language sentences that
summarize the visual content of a given image. As a classic example of a multimodal
challenge, it requires integrating visual perception with linguistic reasoning. This capability
is broadly useful in real-world applications such as assisting visually impaired users
in understanding visual content, improving accessibility in web and mobile platforms,
enhancing image organization and search through automatic metadata generation, and

enabling content moderation and media summarization.

Formally, given an image Z, the objective is to produce a caption § = (y1,¥y2,---, Y1),
where each y; represents a word token and 7 is the length of the generated sequence.
The caption should accurately reflect the salient entities, actions, and attributes present in
the scene. Figure 2.6 shows examples of three successful captions generated by modern
captioning systems across a range of generic, everyday life images drawn from diverse

visual contexts.

'https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
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(a) A dog running around in a (b) A red car is driving down the (c) A cup of coffee and a pastry
field with a soccer ball street on a plate

Fig. 2.6: Examples of image—caption pairs created by the ViT-GPT2 Image Captioning model'.

Historically, early approaches to image captioning followed an encoder-decoder framework,
inspired by sequence-to-sequence models used in machine translation. A seminal work
in this direction is the “Show and Tell” model [Vin+15], where a Convolutional Neural
Network (CNN) such as Inception [Sze+15] or ResNet [He+16] serves as the image encoder,
and a Recurrent Neural Network (RNN) [RHW86], typically a Long Short-Term Memory
(LSTM) network [HS97], generates the caption sequentially. As illustrated in Figure 2.7,
the model is trained end to end to maximize the likelihood of the target caption given the
image embedding. This architecture established a foundational pipeline and demonstrated

the feasibility of learning grounded descriptions from data.

Vision Language A grou.p 2 beople
Deep CNN Generating Sh°pplng at an
RNN outdoor market.

S =>|

) @ There are many
vegetables at the
fruit stand.

Fig. 2.7: Architecture of the Show and Tell model [Vin+15], where an image is encoded using a
CNN and decoded into a caption using an LSTM network. Figure taken from [Vin+15].

However, basic CNN-RNN models had limitations in spatial reasoning and lacked the
ability to focus on specific regions of an image. This led to the development of attention-
based methods, most notably the “Show, Attend and Tell” model [Xu+15], which introduced
a soft visual attention mechanism. Rather than encoding the image into a single global
feature vector, this model computes attention weights over convolutional feature maps at
each time step of the caption generation process. This enables the decoder to dynamically
focus on different spatial regions depending on the word being generated, significantly
improving both the descriptive richness and interpretability of the captions. As illustrated
in Figure 2.8, the model begins by extracting convolutional features from the input image.
These features are then fed into an attention-equipped LSTM decoder, which enables

the model to focus on specific regions of the image at each time step. As the model

2.3 Generic Image Captioning
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generates words sequentially, attention visualizations highlight the relevant parts of the

image corresponding to each word.

4 )

A
bird
flying
over

14x14 Feature Map

a
body
of
water
1. Input 2. Convolutional 3. RNN with attention 4. Word by

Image  Feature Extraction over the image word
generation
J

L

Fig. 2.8: Overview of the Show, Attend and Tell model [Xu+15], which introduces soft visual
attention. The model dynamically attends to different spatial regions of the image while
generating each word in the caption. Figure taken from [Xu+15].

As datasets grew and computational capabilities expanded, image captioning models began
to incorporate more structured and semantically informed mechanisms. The Bottom-Up
and Top-Down Attention model [And+18] marked a key milestone by combining two
complementary stages: a bottom-up mechanism that uses an object detector such as Faster
R-CNN [Ren+15] to extract region-level visual features, and a top-down decoder that adap-
tively attends over these regions during caption generation. This dual-level architecture
enabled more accurate object grounding and improved compositional reasoning, and it

quickly became a standard in captioning benchmarks such as MSCOCO [Lin+14].

With the rise of transformers [Vas+17], modern image captioning systems have increasingly
adopted fully transformer-based architectures. These models, including OSCAR [Li+20],
VinVL [Zha+21], and BLIP [Li+22], leverage large-scale pre-training on image-text pairs
and integrate both vision and language processing in unified frameworks. They commonly
use visual encoders, such as ViT or ResNet, to extract image features, which are then
fused with text representations via multimodal transformers. This integration supports
both contrastive alignment and conditional generation, enabling strong generalization and

zero-shot transfer across tasks.

A representative model of this paradigm is Bootstrapping Language-Image Pre-training
(BLIP) [Li+22], which introduces a unified vision-language framework combining three
objectives: Image-Text Contrastive (ITC), Image-Text Matching (ITM), and Language
Modeling (LM). As shown in Figure 2.9, BLIP consists of an image encoder, a text encoder,
and a transformer-based text decoder with cross-attention over image features. The
ITC module (left) aligns image and text embeddings by projecting them into a shared
feature space and applying a contrastive loss that pulls paired embeddings together while

pushing apart mismatched ones, enabling retrieval. The ITM module (middle) enforces
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fine-grained alignment by treating image—text correspondence as a binary classification
problem: the image-grounded text encoder, which incorporates cross-attention over visual
features, predicts whether a caption matches its image. The LM module (right) supports
caption generation, where the image-grounded text decoder uses causal self-attention to
predict each token based on preceding tokens and the visual context, producing coherent
descriptions. Together, these modules allow BLIP to combine discriminative learning for
retrieval and alignment (via ITC and ITM) with generative modeling for captioning (via
LM), yielding a flexible architecture that supports both understanding and generation
tasks.

ITC
14 \ o
A I
Feed Forward Feed Forward Feed Forward
Feed Forward
NX NX Cross Attention Cross Attention
Self Attention
™ v
Image Bi Self-Att Bi Self-Att Causal Self-Att
Encoder g' qm
“— ] Text Image-grounded Image-grounded
‘, %ﬁm Encoder “les)+ () Text encoder “[Encode] +(_ )" Text decoder “[Decode] +(__ )"
| X ¥

A 1
4.”’”& “a little girl holding a kitten next to a blue fence”

Fig. 2.9: Overview of the BLIP architecture [Li+22], which integrates Image-Text Contrastive
(ITC), Image-Text Matching (ITM), and Language Modeling (LM) through a unified vision-
language transformer framework. Each module dynamically combines image and text
features via cross-attention to support both retrieval and generation tasks. Figure taken
from [Li+22]

To further improve scalability and reasoning capabilities, BLIP was extended to BLIP-
2 [Li+23], which decouples visual and language components by using a frozen image
encoder and a large pre-trained language model, connected through a lightweight Querying
Transformer (Q-Former), as later depicted in Figure 3.1. This modular design facilitates
compatibility with powerful LLMs such as Flan-T5 or Vicuna, while significantly reducing
training costs. Building on this foundation, InstructBLIP [Dai+23] introduces instruction
tuning to better align image captioning with user intent and application goals. The details

of InstructBLIP and its usage in this thesis are presented in Chapter 3.

Instruction-tuned systems like InstructBLIP act as precursors to a broader class of Multi-
modal Large Language Models (MLLMs). These models unify visual understanding and
language generation by pairing frozen visual encoders with powerful LLMs, connected
through an intermediate projection or adapter module. A general architecture of such
MLLMs is illustrated in Figure 2.10. The image is first processed by a visual encoder that
extracts high-dimensional visual features. These features are then passed through an
adapter module, which projects them into the language embedding space. The adapted
features are concatenated or integrated with a textual prompt and forwarded to the LLM,

which produces a grounded and context-aware response. This framework supports a

2.3 Generic Image Captioning
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wide range of multimodal tasks beyond captioning, such as visual question answering,
where the model generates answers to natural-language queries about an image; dialogue
grounding, where conversational utterances are linked to the relevant visual content; and
object referencing, where the model identifies or locates a specific object in an image based
on a textual description. Crucially, the adapter-based approach enables scalable training
and broad reuse of powerful LLMs without requiring full joint tuning, making it a key
architectural design in state-of-the-art MLLMs.

The unusual aspect of this image is a man
ironing clothes on the back of a minivan. 4+
é This is not a typical place to iron ...

( )

A

Large Language Model (LLM)
UL L L J UL L}

s What is unusual about this image? Please
& output the bounding box of the man.

___VisualDislogue | ___
»
___________________>
]
>
i

Visual
Encoder

s

Fig. 2.10: General architecture of Multimodal Large Language Models (MLLMs). The image is
encoded via a vision encoder, passed through an adapter to align modalities, and then
injected into a frozen language model to generate grounded textual responses. Figure
adapted from [Caf+24].

2.4 Diagnostic Captioning

Diagnostic Captioning (DC) is the task of automatically generating clinically accurate
and contextually appropriate textual descriptions from medical images, most commonly
from modalities such as chest X-rays, CT, or MRL In contrast to generic image caption-
ing, which aims to describe visible content in everyday language, diagnostic captioning
requires models to identify medically relevant abnormalities, use phrasing consistent with
radiological reporting conventions, and avoid hallucinations or unsubstantiated conclu-
sions. The generated text must therefore capture not only the visual findings but also their
clinical significance, including correct use of negation, expressions of uncertainty, and

domain-specific terminology.

As a research task, diagnostic captioning resides at the intersection of computer vision,

medical image analysis, and clinical natural language generation. It plays a pivotal role in
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applications such as automated radiology reporting, clinical decision support systems, and
standardized medical documentation, particularly in scenarios where diagnostic through-
put, consistency, or expert availability are constrained. Importantly, these systems are not
intended to replace human experts, but rather to augment their workflow by producing
preliminary drafts, highlighting salient visual findings, and promoting standardization
across large volumes of imaging studies. Figure 2.11 presents three representative exam-
ples drawn from the ImageCLEFmedical dataset [Riic+24a]. Each image is accompanied
by its ground truth caption, reflecting the kind of clinically focused, modality-specific

descriptions expected in diagnostic captioning.

(a) “Chest X-ray showing en-  (b) “Contrast-enhanced CT im-  (c) “Ultrasound evaluation with
larged cardiac silhouette with age shows 3.6 x 4.5 x 3.1 cm color Doppler, showing a
cardiothoracic ratio of 70%, well defined heterogeneous mass protruding from the
and mild pulmonary conges- enhancing mass in paraaor- mouth with a branching pat-
tion.” tic space (arrow). tern of the feeder vessels.

Fig. 2.11: Representative examples of diagnostic image-caption pairs from the ImageCLEFmedical
dataset [Riic+24a]. The captions shown are ground truth annotations provided in the
dataset and illustrate clinically relevant findings across multiple imaging modalities.

Early models for diagnostic captioning followed the encoder—decoder paradigm established
in generic captioning. These systems typically combined CNNs such as ResNet [He+16] for
visual encoding with RNNs or LSTMs [HS97] for text generation. Attention mechanisms,
introduced in follow-up work, allowed models to dynamically focus on relevant image
regions while generating tokens, improving interpretability and localization. However,
these models often struggled with domain-specific challenges such as subtle findings,

ambiguous phrasing, and clinical correctness, limiting their practical deployment.

A second wave of research in diagnostic captioning has increasingly leveraged structured
modeling and auxiliary supervision to enhance the factual correctness and conceptual con-
sistency of generated radiology reports. Here, structured modeling refers to methods that
explicitly represent relationships between clinical concepts, such as diseases, anatomical
locations, and observations, rather than treating report generation as a purely sequence-
to-sequence task. Similarly, semantic alignment in this context refers to ensuring that the
textual content of the generated report correctly corresponds to the visual information
extracted from the medical images, aligning image features with the appropriate clinical
concepts. For instance, Jing et al. [JXX18] introduced a hierarchical generation model
guided by predicted clinical tags, showing that auxiliary tasks, such as tag prediction,

can anchor report content in medically relevant concepts and improve the consistency

2.4 Diagnostic Captioning
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of the generated text. Other work incorporates explicit constraints into the generation
process to reduce factual errors. Specifically, attention modulation refers to adjusting the
model’s focus on different regions of the input image based on clinical context, while
knowledge-constrained generation means restricting the output to conform to known
medical relationships or rules, preventing implausible combinations of findings. For ex-
ample, Han et al. [Han+20] propose a neural-symbolic framework that integrates domain
knowledge graphs, structured representations of medical entities (e.g., diseases, symptoms,
anatomy) and their relationships, into the generation process. These graphs enforce logical
consistency and improve factual accuracy in the reports. More advanced approaches
improve robustness by explicitly aligning image-derived visual features (features extracted
from X-ray images using a convolutional network) with diagnostic labels (e.g., "pneumo-
nia" or "cardiomegaly") to ensure that the learned visual representations correspond to
clinically meaningful concepts. Yang et al. [Yan+23] further enhance this approach by
using a learned knowledge base, which encodes associations between diseases, imaging
findings, and textual descriptions in a structured embedding space. This knowledge base
is constructed from training data and captures statistical co-occurrences and relationships
among clinical entities, guiding the model to generate reports that are both semantically
consistent and clinically accurate. Their framework also leverages multiple associated
reports per image to improve generalization across diverse report styles. Collectively, these
methods demonstrate the effectiveness of domain-specific supervision, particularly when
applied to radiology-focused datasets such as MIMIC-CXR [Joh+19] and Openl [Dem+16],

which have become standard benchmarks in the field.

Recent advances in multimodal learning have led to the emergence of more powerful and
flexible diagnostic captioning systems. Transformer-based VLMs such as GIT-CXR [Sir+25],
as well as Flamingo-based architectures like Med-Flamingo [Moo+23], have achieved strong
performance by combining pretraining on large-scale image—text pairs with fine-tuning
on radiological data. More recently, instruction-tuned architectures such as Med-Gemma,
an open vision-language model suite trained on paired medical images and text across
multiple modalities, enable better alignment with clinical tasks including captioning,
classification, and visual question answering.> Leading Multimodal LLMs (MLLM:s) like
Med-Gemini [Saa+24], which integrates a large language model with medical image un-
derstanding through visual adapters and multimodal instruction tuning, support few-shot
and zero-shot generalization across medical imaging and reporting tasks [YX+24]. These
models represent a shift toward flexible, clinically aligned captioning systems that balance

linguistic fluency, factual accuracy, and task-specific adaptability.

*https://medgemma.org/
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Implemented Methods and
Systems

This chapter presents the methods and systems developed in the context of this thesis.
Each approach is categorized under one of the three main post-training paradigms, Super-
vised Fine-Tuning, Reinforcement Learning, and Test-Time Scaling, based on its primary
mechanism, although some methods may incorporate elements from more than one cate-
gory. The systems detailed in Sections 3.1, 3.3, and 3.4 form the core of our participation
in the Caption Prediction sub-task of the ImageCLEFmedical 2025 challenge [Cha+25;
Dam+25]. These submissions led to a 5th place ranking among 8 competing research teams.
Additional systems, introduced in the remaining sections, were explored in the later stages
of this thesis, after the ImageCLEFmedical challenge, to further evaluate complementary

strategies and design variations.

3.1 Instruction Fine-Tuning with InstructBLIP

Instruction fine-tuning, as explained in Section 2.3, refers to the process of training a
language model on curated pairs of instructions (prompts) and expected outputs (responses).
Unlike standard supervised learning that may rely on task-specific training examples,
instruction fine-tuning teaches the model to generalize across a wide range of tasks by
following natural language instructions. This technique, originally developed in the NLP
community [Chu+24], has been shown to improve zero-shot and few-shot generalization
across diverse task types such as summarization, question answering, and classification.
Instruction-tuned models like FLAN [Wei+22a] and Alpaca! have demonstrated strong
capabilities to align with user intent by virtue of their enhanced instruction-following

behavior.

InstructBLIP [Dai+23] builds upon the BLIP-2 [Li+23] architecture, introduced in Sec-
tion 2.3, by extending it to the instruction-tuning setting. As shown in Figure 3.1, it
integrates three key components: a frozen image encoder (ViT-g/14), a frozen large lan-
guage model (either FlanT5 or Vicuna), and a trainable Query Transformer (Q-Former)
that bridges the vision and language modalities. A central feature of the Q-Former is its
use of learnable queries: trainable vectors that attend to the image encoder’s output via

cross-attention. These queries act as an adaptive interface that extracts task-relevant visual

'https://crfm.stanford.edu/2023/03/13/alpaca.html
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features, in contrast to static pooling operations. In InstructBLIP, the input instruction is
injected into the Q-Former’s attention layers so that the queries adapt their focus depend-
ing on the task. This design makes the visual features instruction-aware, ensuring that the
downstream language model receives representations aligned with the user’s intent. The
resulting features are linearly projected and used as soft prompts to condition the frozen
LLM. Training proceeds by updating only the Q-Former (including the queries) while
keeping both the image encoder and the language model frozen, using a large collection of

instruction-response pairs across multiple vision-language tasks.

Queries Instruction
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Fig. 3.1: Architecture of InstructBLIP [Dai+23]. Visual features are extracted from a frozen image
encoder via a Query Transformer (Q-Former) that receives both learnable queries and
the task instruction. These instruction-aware features are projected and injected into a
frozen LLM, which generates the response. Figure adapted from [Dai+23].

In this thesis, InstructBLIP is adapted to the medical domain by fine-tuning it on an
instruction-formatted variant of the ImageCLEFmedical 2025 captioning dataset [Riic+24a].
Consistent with the original setup, both the vision encoder (ViT-g/14) and the large
language model (FlanT5) remain frozen, while only the Q-Former, and its learnable queries,
is updated during training. Each training sample is paired with a handcrafted instruction
prompting the model to produce a concise and clinically accurate description of the input
radiology image. This setup enables the model to leverage the instruction-following
capabilities of the LLM while grounding its output in visual features that are adapted to the
clinical task. The resulting system serves as our primary and top-performing submission
to the ImageCLEFmedical 2025 Caption Prediction sub-task and is further evaluated in
Chapter 5.

3.2 Contrastive Fine-Tuning with InfoNCE

While standard instruction fine-tuning optimizes a model to generate accurate captions
using cross-entropy loss, it does not explicitly enforce the ability to distinguish correct

captions from incorrect ones. As a result, VLMs may still produce plausible-sounding yet
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clinically inaccurate outputs, particularly in cases involving subtle visual cues or prior

biases in the training data.

To address this limitation, InstructBLIP is extended in this work with a contrastive learning
objective that promotes fine-grained alignment between radiology images and their corre-
sponding reports. This extension introduces an additional InfoNCE-style loss [OLV18]
during fine-tuning, encouraging matched image—-text pairs to be close in a shared embed-

ding space while simultaneously repelling mismatched pairs.

In practice, image embeddings are extracted from the frozen vision encoder and text
embeddings from the frozen language model’s encoder (FlanT5). These embeddings are
projected into a shared 512-dimensional space using separate trainable linear projection
layers for text and images. The contrastive loss is then computed using a symmetric
Information Noise-Contrastive Estimation (InfoNCE) formulation over all pairs within

each training batch:

1 % o exp(sim(v;, t;)/T) 1 exp(sim(v;, t;)/7)
i=1 jo1 exp(sim(v;, ;) /7) jo1 exp(sim(vy, t)/7) |

(3.1)

where v; and ¢; are the projected visual and textual embeddings for the i-th sample in the

E B = —
contrastive
2N

batch, sim(-) denotes cosine similarity, 7 is a temperature parameter, and N is the batch

size.

The overall training objective combines this contrastive loss with the standard captioning

loss Leaptioning (cross-entropy over generated tokens):

£tota1 = Ecaptioning +A- Econtrastivey (3'2)

where ) is a tunable hyperparameter controlling the influence of the contrastive term. A
value of A = 0.2 was selected empirically based on performance on a held-out development

set.

This joint optimization requires no additional supervision or curated negatives. By lever-
aging in-batch negatives, i.e., unmatched captions and images from other samples in the
batch, the model learns to associate clinically appropriate descriptions with the correct
visual inputs and to reject inappropriate or misleading ones. This setup encourages greater
factual grounding, reduces hallucinated findings, and improves discrimination between

visually similar but clinically distinct cases.

The contrastive module is implemented with minimal architectural modification and is

trained concurrently with the instruction-finetuned InstructBLIP. Experimental results

3.2 Contrastive Fine-Tuning with InfoNCE
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presented in Chapter 5 demonstrates that this training strategy improves performance on
alignment-related metrics, such as Image-Caption Similarity (Section 5.1.4) and AlignScore

(Section 5.1.5), in the generated reports for the ImageCLEFmedical 2025 captioning task.

3.3 Reinforcement Signal-Driven Training with
Mixer

Mixer is a training strategy that augments traditional cross-entropy optimization with a
task-specific reinforcement signal. The goal is to directly improve evaluation-time metrics,
such as BERTScore for semantic similarity or UMLS Concept F1 for clinical factuality, by
rewarding model outputs that better align with downstream objectives. These metrics,
described in detail in Section 5.1, are often non-differentiable and cannot be optimized
through standard supervised losses alone. While the overall training pipeline remains
supervised in structure, the inclusion of a learned reward signal based on model predictions

places this method within the broader family of reinforcement learning approaches.

The Mixer approach builds on Self-Critical Sequence Training (SCST) [Ren+17b], a rein-
forcement learning technique designed specifically for sequence generation tasks. Unlike
traditional RL setups that require external critics or value networks, SCST leverages the
model’s own predictions as a dynamic baseline for computing rewards. This self-referential
setup reduces variance and simplifies optimization. In practice, the model generates two
captions per training instance: a greedy caption ¢ via deterministic decoding, and a sam-
pled caption y* using stochastic decoding strategies such as top-p sampling or diverse beam
search. These outputs are then compared using a reward function tailored to the specific
goals of diagnostic captioning, computed as a combination of six task-relevant metrics that
each produce scores in the range [0, 1]. Four of these, BERTScore (Section 5.1.1), ROUGE-1
(Section 5.1.2), BLEURT (Section 5.1.3), and Image—Text Similarity (Section 5.1.4), focus
on semantic relevance, while the remaining two, AlignScore (Section 5.1.5) and UMLS
Concept F1 (Section 5.1.6), emphasize clinical factuality. To obtain the final reward, the
scores from the relevance-based metrics are first averaged, as are those from the factuality-
based metrics. The overall reward is then computed as the mean of these two intermediate

averages.

The reinforcement signal is defined in terms of the advantage, which quantifies how
much better (or worse) the sampled caption y* performs relative to the greedy baseline ¢

according to the composite reward function:

Adv(y®) = r(y°) —r(9), (33)
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where r(y) denotes the scalar reward computed using the six evaluation metrics, following
the aggregation procedure outlined above. A positive advantage indicates that the sampled
caption outperforms the greedy one in terms of overall alignment with the task-specific

evaluation criteria, while a negative value implies the opposite.

As mentioned earlier, the training objective is not limited to the standard cross-entropy
loss, which in its simplest form is defined as — ), y; log p;, where y; is the true label
(one-hot) and p; is the predicted probability. In the sequence setting considered here, this

becomes:
T

Leg=—Y logmo(ys | y<t, ), (3.4)
=1

where 7y(y: | y<¢,Z) denotes the probability of the ¢-th token given the previous tokens
and the input image 7.

This is combined with a reinforcement learning loss defined using the SCST formulation:
Lr = —Adv(y®) - log mg(y°), (3.5)

where 7y (y®) is the likelihood of the sampled caption y*, and Adv(y®) is the advantage

score computed as in Equation 3.3.

The final training objective combines both terms into a weighted sum:
Lioal = (1 — ) - Lcg + o - Ly, (3.6)

where « is a mixing coefficient that controls the balance between supervised and rein-

forcement learning signals.

To ensure stable optimization, the contribution of the reinforcement signal is introduced
progressively throughout training. This is achieved by linearly increasing the mixing

coefficient @ over time, according to the following schedule:

e

a(e) = amax - 5 (3.7)

where e denotes the current epoch, F is the total number of training epochs, and qyay is the
maximum reinforcement weight (typically set close to 1.0). This gradual ramp-up allows
the model to first focus on learning fluent and well-formed captions via cross-entropy,
and then progressively shift toward optimizing task-specific evaluation metrics through

reinforcement learning.

3.3 Reinforcement Signal-Driven Training with Mixer
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3.4 Test-Time Caption Reranking with MedCLIP

To improve the quality of generated image captions at inference time, a test-time reranking
strategy is proposed that operates independently of the underlying captioning model. This
method can be applied on top of any pretrained captioning backbone, such as InstructBLIP
(Section 3.1), and serves as a post-processing step that selects the most visually grounded
caption among a set of candidates. The reranking mechanism relies on MedCLIP [Wan+22],

a contrastive vision-language model trained specifically on radiological data.

The architecture and workflow of MedCLIP are illustrated in Figure 3.2, which highlights
how clinical knowledge is used to supervise the alignment of image and text representations.
This method builds upon the foundation of CLIP [Rad+21], first introduced in Section 2.1,
which jointly trains a visual encoder and a text encoder to align paired image and text
embeddings in a shared latent space. CLIP is trained on 400 million natural image-text
pairs from the internet using a contrastive loss that pulls matched pairs closer while
pushing mismatched ones apart. Although CLIP has demonstrated remarkable zero-shot
capabilities across general vision-language tasks, its direct application to the medical
domain is hindered by the scarcity of large-scale paired image-report datasets and the

subtle, fine-grained semantics of clinical language.

Extract entities from text Sampling a batch of reports

i________—_______i Embedding extraction
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Fig. 3.2: Overview of the MedCLIP architecture. Medical entities are extracted from unpaired
images and reports to build a semantic similarity matrix. The model uses this signal to
contrastively train aligned visual and textual embeddings, which are later used to rerank
caption candidates based on image-text similarity. Figure taken from [Wan+22]

To address these challenges, MedCLIP adapts the CLIP framework by introducing two key
modifications. First, it decouples the contrastive training process to allow learning from
unpaired data. Radiological datasets often contain image-only or text-only samples, and
strict pairing is expensive and limited. To overcome this, MedCLIP constructs a semantic
similarity matrix between sampled images and texts by extracting medical concepts from
both modalities and aligning them to a common ontology. On the text side, clinical

entities are extracted from reports using tools such as MetaMap, which links terms to the
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Unified Medical Language System (UMLS). On the image side, diagnostic labels provided
in radiology datasets (e.g., “pneumonia”, “cardiomegaly”) are likewise mapped to UMLS
concepts through their standardized codes. This entity-level alignment ensures that both
modalities are represented in the same semantic space. The aligned entities are then
converted into multi-hot vectors, and their cosine similarity provides the soft supervision

signal for contrastive training.

Second, MedCLIP replaces the standard InfoNCE loss with a semantic matching loss that
reduces false negative noise. In medical datasets, different patient cases may express
the same findings; treating them as negatives can harm representation learning. Instead,
the semantic similarity between any image-text pair is used to compute soft targets, and
contrastive learning is guided by cross-entropy between these targets and predicted cosine
similarities. Formally, let v; and ¢; denote the normalized visual and textual embeddings of
the i-th image and j-th text in a batch, respectively. The semantic similarity between their
corresponding medical entity labels /img and /iy defines a soft target distribution y;;. The
predicted similarity is obtained from the cosine score s;; = v t;. The semantic matching

loss is then given by:

Lo LSSy tog — SR/ T) (3.8)
= N Yij ) .
N i=1j=1 ’ Zl]cvzl exp(sik/T)

where 7 is a temperature hyperparameter and N is the batch size. The final train-
ing objective symmetrizes this loss over both image-to-text and text-to-image direc-
tions [Wan+22]. The model consists of a vision encoder (e.g., ResNet-50 [He+16] or
Swin Transformer [Liu+21]) and a text encoder (e.g., BioClinicalBERT?, each followed
by a projection head to produce embeddings in a shared space. These embeddings are

normalized and used for computing similarities during both training and inference.

At test time, the reranking module operates as follows: for a given image, the captioning
model generates a set of m = 4 candidate captions using beam search. Each caption is
encoded by MedCLIP and scored based on its similarity to the image embedding. The
caption with the highest similarity is selected as the final output. This strategy enhances
the clinical plausibility of the generated description by prioritizing captions that are not

only syntactically fluent but also semantically aligned with the visual content.

’https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT

3.4 Test-Time Caption Reranking with MedCLIP
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Data

This chapter provides general background information along with an exploratory data
analysis of the ImageCLEFmedical 2025 [Dam+25] dataset. This dataset served as the
primary benchmark for evaluating the performance and effectiveness of the systems

developed in this thesis, which were presented in Chapter 3.

4.1 ImageCLEFmedical 2025

The ImageCLEFmedical 2025 [Dam+25] dataset is based on an extended version of the
Radiology Objects in COntext Version 2 (ROCOv2) [Riic+24a] and serves as the foundation
for all three sub-tasks of the challenge, described in Chapter 1. It comprises 97,368 medical
images from various imaging modalities, each accompanied by a corresponding diagnostic
caption and a set of medical concepts represented as Unified Medical Language System
(UMLS) [Bod04] terms. As this thesis focuses on the Caption Prediction sub-task, the
analysis presented here will be limited to that part of the dataset.

The dataset was initially provided in two official splits: a training set and a validation
set, containing 80,091 and 17,277 images, respectively. However, all methods discussed
in Chapter 3 were evaluated using a custom split, created by merging the original sets
and repartitioning them into three subsets: training, validation, and development (or
private test) sets, using a 75%-10%-15% ratio. This new partitioning was performed using
stratification based on both concept distribution and caption length. The effectiveness of
the stratification was confirmed by visualizing and comparing the distributions across the

new splits.

4.2 Caption Prediction

The Caption Prediction sub-task focuses on generating coherent and clinically relevant
textual descriptions for medical images. Each image in the dataset is paired with a single
caption. In total, the dataset contains 97,268 captions, out of which 96,866 are unique,
resulting in a uniqueness rate of 99,48%. Caption lengths vary considerably: the shortest
caption consists of a single word, while the longest reaches up to 778 words. On average,

a caption contains approximately 21 words. This variation suggests that while many
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captions describe routine imaging procedures, others provide more detailed and specific

clinical observations. Table 4.1 summarizes the key statistics related to caption frequency

and length.
H Statistic H Value H
Total Captions 97,268
Unique Captions 96,866

Percentage Unique 99.48%

Minimum Length 1 word

Maximum Length || 778 words
Average Length 21 words

Tab. 4.1: Descriptive statistics of captions in the dataset.

The distribution of caption lengths is highly skewed, with most captions being relatively
short and only a few extending to several hundred words. This pattern is illustrated in
Figure 4.1, which presents two histogram plots. The left subplot shows the full distribution
of caption lengths across the dataset, while the right subplot provides a zoomed-in view
limited to captions containing fewer than 200 words. This visualization highlights the
presence of a long-tail distribution, with the vast majority of captions concentrated in the

lower range of lengths.

Distribution of Caption Lengths (Log Scale)

Full Range of Caption Lengths Zoomed In (0-200 Words)

Number of images

360 540 720 900 80 120
Number of words Number of words

(a) (b)
Fig. 4.1: Distribution of caption lengths (in number of words) on a logarithmic scale. The left

plot (a) shows the full range of caption lengths across the dataset, while the right plot (b)
provides a zoomed-in view limited to captions with up to 200 words.

To better understand common phrase patterns in the dataset, a frequency analysis of
bigrams and trigrams was performed. These n-grams represent pairs and triplets of
consecutive words that frequently appear across captions. Table 4.2 presents the ten most
common bigrams and trigrams. The results show a strong presence of modality-related and
anatomical expressions, reflecting the specialized vocabulary typical in radiology reporting.

Additionally, several frequent phrases involve visual markers (e.g., “white arrow”, “red
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arrow”) or generic reporting verbs (e.g., “showing”), which are commonly used to draw

attention to specific findings or regions of interest within the image.

H Bigram H Freq. H Trigram H Freq. H
computed tomography || 10,539 magnetic resonance imaging 2,777
ct scan 7,381 computed tomography scan 2,042
chest xray 4,148 computed tomography ct 1,444
magnetic resonance 4,027 ct scan showing 1,357
white arrow 3,328 chest xray showing 1,041
red arrow 2,842 ct scan abdomen 767
resonance imaging 2,836 ct computed tomography 749
tomography scan 2,292 chest computed tomography 691
scan showing 2,275 || abdominal computed tomography || 498
image showing 2,174 computed tomography image 633

Tab. 4.2: Top 10 most frequent bigrams and trigrams in the captions.

To complement the n-gram analysis, a word cloud visualization was generated to highlight
the most frequently occurring non-stopwords in the dataset. As shown in Figure 4.2,
prominent terms such as “computed tomography”, “ct scan”, “white arrow”, and “showing”
dominate the visualization. These frequent expressions reflect both the procedural nature
of medical imaging and the emphasis on anatomical references and visual indicators within
the captions. The word cloud provides an intuitive overview of the lexical patterns in the

dataset, visually emphasizing domain-specific terminology:.

Word Cloud of Most Common Words in Captions
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Fig. 4.2: Word cloud of the most frequent non-stopwords appearing in the captions. Word size is
proportional to frequency.

Finally, it is important to note that all captions are subjected to a standardized preprocessing
pipeline prior to evaluation, as specified by the task organizers. This ensures consistent

and fair comparison across systems. The preprocessing includes:

4.2 Caption Prediction
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+ Converting all characters to lowercase,

« Replacing numeric values with their word equivalents (e.g., “10” becomes “ten”), and

« Removing punctuation marks.

These steps reduce superficial variation in model outputs and shift evaluation focus toward

semantic accuracy and fluency.
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Experiments and Results

This chapter outlines the experimental framework followed in this thesis, including the eval-
uation methodology and performance analysis of the diagnostic captioning systems. It also
details the participation of the AUEB NLP Group in the ImageCLEFmedical 2025 [Dam+25]

competition and the metrics used to assess model effectiveness.

5.1 Evaluation Metrics

The evaluation metrics used in this thesis align with those employed in the ImageCLEFmed-
ical 2025 competition [Dam+25]. These metrics are designed to assess the quality of gen-
erated captions from multiple perspectives. Specifically, they are grouped into two main
categories: relevance, which evaluates how well the caption matches the image and the
reference text, and factuality, which focuses on the clinical accuracy and consistency of
the generated content. Together, these complementary dimensions offer a comprehensive

framework for evaluating the effectiveness of diagnostic captioning systems.

5.1.1 BERTScore

BERTScore [Zha+20] is an automatic evaluation metric for text generation that measures
the similarity between a generated (candidate) sentence and a reference sentence using
contextualized embeddings from pretrained language models. Unlike traditional lexical
overlap-based metrics such as ROUGE [Lin04] (discussed in Section 5.1.2), BERTScore
captures semantic similarity by leveraging token-level embeddings from Transformer
models like BERT [Dev+19].

To compute the BERTScore between a reference sentence = and a candidate sentence Z,
each token in both sequences is embedded using a contextualized language model—in this
case, the microsoft/deberta-xlarge-mnli' model. The token embeddings are then compared
pairwise using cosine similarity. For each token in Z (the candidate), the most similar
token in x (the reference) is identified, and vice versa. These maximum similarities are

aggregated to produce the final score. Figure 5.1 illustrates this process, showing how

'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli
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contextual embeddings are used to construct a similarity matrix, from which the strongest

alignment paths are extracted.

" the I=0_59? 0.428 0.408
—
Referemce :BA 27/ weather {0.462 0.393 fp.s1540.326
The weather is i
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Fig. 5.1: Illustration of BERTScore computation between a reference sentence z (top) and a candi-
date sentence & (bottom). Tokens are embedded using a Transformer model, and pairwise
cosine similarity scores are computed. Maximum similarity scores are selected per token
for aggregation. Figure taken from [Zha+20].

The original BERTScore framework [Zha+20] proposes three scoring variants: Precision
(P), Recall (R), and F1 (F), depending on the directionality of token alignment between
the candidate and reference. In the context of this thesis, we adopt the Recall variant
with Inverse Document Frequency (IDF) weighting, which prioritizes semantic coverage
of the reference content by the candidate. IDF is a common term-weighting scheme in
information retrieval that assigns higher weights to rare, content-rich tokens and lower
weights to frequent ones. This choice aligns with the official evaluation setup of the

ImageCLEFmedical 2025 competition [Dam+25].

The Rpgrrmpr (Recall BERTScore with IDF weighting) is computed as follows:

™ IDF(x;) - maxi<j<y, cosing E(z;), E(%;))
™ IDF(z;) '

(5.1)

RpgrTIDF =

Here, x = (21,...,%y) and X = (&1,...,%,) denote the sequences of tokens in the
reference and candidate sentences, respectively. F/(x;) and E(Z;) represent the contextual
embeddings of the corresponding tokens, and the cosine similarity measures their semantic
closeness. The max operator selects, for each reference token, the candidate token with the
highest similarity, ensuring that the most relevant matches contribute to the score. The IDF
weights are computed from the test corpus and serve to emphasize rare and content-rich
tokens while down-weighting common ones. To obtain the overall BERTScore for a model,

the recall score is first calculated independently for each caption-reference pair in the
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evaluation set. The final metric is then derived by averaging these individual scores across

all examples in the dataset.

While BERTScore has the advantage of capturing semantic similarity, it also has important
limitations, particularly in domains like medicine where factual correctness is critical. One
major flaw is that BERTScore may assign a high similarity score to fluent but factually

incorrect outputs. For example, consider the following two sentences:

 Reference: “There is no evidence of pneumonia in the right lower lobe.”

« Candidate: “There is evidence of pneumonia in the right lower lobe.”

Despite the crucial difference introduced by the word “no”, BERTScore might still assign
a high similarity score due to the strong semantic overlap in surrounding tokens. This
insensitivity to negation or factual contradiction is a proven weakness [HB21] and makes
BERTScore unsuitable as a standalone metric in clinical applications. Additionally, be-
cause BERTScore relies on large pretrained models, it can be computationally expensive,

especially when evaluating large test sets.

Overall, while BERTScore contributes valuable insight into semantic fidelity, it must be
complemented by factuality-oriented metrics to ensure reliability in medical captioning
tasks.

5.1.2 ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [Lin04] is a set of metrics
commonly used to evaluate automatic text summarization and generation systems by mea-
suring the lexical overlap between generated outputs and reference texts. It is particularly
useful when exact wording matters, and it has been widely adopted due to its simplicity

and interpretability.

Several variants of ROUGE exist, including ROUGE-N (n-gram overlap), ROUGE-L (longest
common subsequence), and ROUGE-W (weighted variant of the latter). In this thesis, and
in the ImageCLEFmedical 2025 competition [Dam+25], we focus on ROUGE-1 (F-measure),
which evaluates the overlap of unigrams (i.e., individual words) between the generated

caption and its reference.

Formally, ROUGE-1 F-measure is defined as:

5.1 Evaluation Metrics
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2-P-R
ROUGE-1p = — - -* 5.2
F="PIR (5:2)

where precision P and recall R are given by:

__ # overlapping unigrams __ # overlapping unigrams

= = 53
# unigrams in candidate’ # unigrams in reference 5.3)

The final ROUGE-1 score is computed by averaging the F-measure across all caption-

reference pairs in the evaluation set.

While ROUGE-1 is effective in capturing surface-level similarity and penalizing missing
or extraneous words, it does not account for semantic similarity or paraphrasing. For
instance, it would assign a low score to the pair “chest radiograph” and “x-ray of the chest”,

despite them being semantically equivalent.

5.1.3 BLEURT

BLEURT (Bilingual Evaluation Understudy with Representations from Transformers) is
a learned metric for evaluating the quality of text generation systems [SDP20]. Unlike
traditional n-gram-based metrics such as BLEU [Pap+02] and ROUGE [Lin04], BLEURT
uses pretrained language models and fine-tuning on human-annotated quality scores to
capture semantic similarity and linguistic fluency in a way that better aligns with human

judgment.

At its core, BLEURT is a regression model built on top of BERT [Dev+19], which is fine-
tuned using reference-candidate sentence pairs and their associated human ratings. The
model is trained to predict these scores directly, enabling it to approximate subjective qual-
ity assessments. BLEURT computes a scalar score for a candidate-reference pair, indicating
the predicted human rating. The predicted scores are typically in the range [—1, 1], with
higher values corresponding to better quality. This range reflects the normalization of

human ratings used during BLEURT’s fine-tuning on quality estimation datasets.

A distinguishing feature of BLEURT is its two-phase training procedure. First, it undergoes
pretraining on large-scale synthetic sentence pairs generated by perturbing Wikipedia
sentences using techniques such as masked language modeling, back-translation (translat-
ing a sentence to another language and back to create a paraphrase [SHB16]), and random
word dropping. During this pretraining, the model learns to predict a continuous similarity
score for each sentence pair, which reflects the degree of semantic change introduced

by the perturbation, allowing it to capture fine-grained differences between sentences.
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This step improves generalization to unseen domains. Next, BLEURT is fine-tuned on real
human-labeled data from quality estimation benchmarks such as the WMT Metrics Shared
Tasks [Boj+17].

In the context of this thesis, BLEURT is employed using the official BLEURT-20 checkpoint,
which was pretrained on synthetic data and fine-tuned on human ratings. The BLEURT
score is calculated for each caption, and the final score is the mean over all image-caption

pairs in the evaluation set.

5.1.4 Image and Caption Similarity

Image and Caption Similarity is a relevance-based metric that measures the semantic
alignment between a medical image and a generated caption. Unlike traditional text-only
metrics, this approach directly evaluates cross-modal consistency by embedding both
the image and caption into a shared representation space and computing their cosine

similarity.

The implementation relies on a pretrained medical vision-language model introduced by
Riickert et al. [Riic+24b]. Given a medical image and a corresponding caption, the model
independently encodes each modality and computes the cosine similarity between the
resulting embeddings. The final score reflects how well the textual description semantically

matches the visual content.

Formally, the similarity score is computed as:
Score = w - max (0, cos(v, c)) (5.4)

where v and c are the image and caption embeddings, respectively, and w = 2.5 is a
scaling factor used in the competition implementation. Cosine similarity is clipped at zero

to avoid negative scores.

This metric has the advantage of capturing cross-modal semantic alignment, especially
in a domain where visual and textual signals must correspond precisely. However, it is
sensitive to the quality and domain-specific training of the underlying embedding model,

which can affect generalizability to rare findings or non-standard phrasings.

5.1.5 AlignScore

AlignScore [Wan+23a] is a factuality-focused evaluation metric designed to measure the

consistency of generated text with a reference. It was developed for applications such as

5.1 Evaluation Metrics
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fact-checking, summarization, and medical report generation, where ensuring alignment

between source and output is essential.

The metric works by comparing the generated caption (treated as a series of factual
claims) with the reference caption (serving as context). Using a RoBERTa-based alignment
model [Liu+19], AlignScore splits both the candidate and reference into semantically
meaningful chunks. Each claim sentence from the candidate is then aligned to the most
supportive context chunk from the reference, and a relevance score is computed for each

pair.
The final AlignScore is the average of all claim-context alignment scores:

N
1
AlignScore = — Z max align(c;, ;) (5.5)
Ni=
where ¢; are the claim chunks from the candidate caption, r; are the reference chunks,
align(c;, ;) is the predicted alignment score between them, and IV is the total number of

candidate claim chunks.

AlignScore is particularly well-suited for tasks where factual accuracy matters more than
surface similarity. Compared to semantic similarity metrics like BERTScore [Zha+20] or
BLEURT [SDP20], AlignScore has been shown to better detect factual inconsistencies,
especially in settings involving negation, contradiction, or omission [Wan+23a]. However,
its performance depends on accurate chunking and alignment modeling, and it can be

sensitive to sentence boundaries or fragmented input.

5.1.6 UMLS Concept F1

The UMLS Concept F1 score is a domain-specific evaluation metric that assesses the
clinical accuracy of generated text by comparing its medical concept content with that of
a reference. It leverages the Unified Medical Language System (UMLS) [Bod04] to extract

standardized medical entities from both the candidate and the reference captions.

To perform this evaluation, both texts are first processed using a concept extraction
tool—specifically, QuickUMLS? or MedCAT [Kra+19]—to identify UMLS concepts. Only
entities that fall within specific semantic types (e.g., disorders, anatomy, procedures) are
retained, consistent with the configuration used in the MEDCON metric [Yim+23]. The

extracted concept sets are then compared using the the Dice-Serensen coefficient®:

*https://pypi.org/project/quickumls/
*https://en.wikipedia.org/wiki/Dice-S%C3%B8rensen_coefficient
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2- ‘Ccand N Cref’

UMLS-F1 =
’Ccand’ + ‘Cref‘

(5.6)

Here, Ccang and Cier denote the sets of extracted UMLS concepts from the candidate and
reference texts, respectively. The metric rewards systems that can identify and correctly

include medically relevant content, independent of phrasing.

While this metric is highly suitable for clinical contexts, especially where factual correctness
is paramount, it also comes with limitations. It is sensitive to named entity recognition
performance and may penalize semantically correct but differently phrased outputs that

use non-standard terminology not captured by UMLS.

5.2 Experimental Results

This section presents the evaluation of the DC systems developed in this thesis. The results
are analyzed both qualitatively, by examining generated captions and model behaviors, and
quantitatively, through metric-based comparisons on the development set. Additionally,
the performance of selected models in the official test set of the ImageCLEFmedical 2025

Caption Prediction sub-task is reported.

5.2.1 Qualitative Evaluation

Benchmarking model performance alone does not capture the full range of model behavior,
especially in complex, high-stakes domains such as medical image captioning. Qualitative
analysis offers complementary insight by examining how captioning models behave under
different conditions, the types of outputs they generate, and the nature of their errors
or successes. This section presents selected examples that reveal important patterns and

distinctions between models and post-processing techniques.

One such example involves the role of instruction phrasing in guiding model behavior. A
key design feature of instruction-tuned models like InstructBLIP (Section 3.1) is their ability
to adapt responses based on the textual prompt provided. In the context of diagnostic
captioning, the specificity and clarity of the instruction can significantly affect the quality
and relevance of the generated output. To explore this behavior, a controlled experiment
was conducted in which a single medical image was paired with three instruction variants,
ranging from no instruction to a highly descriptive prompt explicitly framing the task. The
results of this experiment are presented in Figure 5.2. In the absence of any instruction,
the model generates a generic and clinically uninformative description that merely notes

the presence of a black and white image without identifying any anatomical structures

5.2 Experimental Results
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or medical findings. When provided with a slightly more specific prompt, asking it to
describe the radiology image, the model produces a more relevant caption indicating
that the chest appears normal with no visible abnormalities. However, it still avoids
clinical terminology and does not refer to any specific features. In contrast, the most
detailed prompt, which frames the task from the perspective of an experienced radiologist
and requests a comprehensive description, leads to a much richer and more clinically
grounded output. This version explicitly mentions the lungs, absence of pathological
signs such as consolidation or pleural effusion, and confirms that the cardiac silhouette
and mediastinum are within normal limits. These results demonstrate the significant
impact that prompt phrasing can have on the semantic depth and clinical utility of the
generated captions. More detailed instructions enable the model to produce outputs that
are not only linguistically fluent but also closer to the expectations of professional medical
reporting. At the same time, this highlights the importance of instruction clarity and design
in guiding the behavior of instruction-tuned models, especially in high-stakes domains

such as medical imaging.

Instruction: '"You are an experienced
radiologist. You are being given radiology
images along with a short medical diagnosis.
Generate a descriptive caption that
highlights the location, nature and severity of
the abnormality of the radiology image.'

Instruction: ' ' Instruction: 'Describe this radiology

image.'

Generated Caption:
Ablack and white image showing the
interior of a human body.

Generated Caption:
The radiograph reveals a normal chest
structure with no obvious abnormalities.

Generated Caption:
The chest radiograph demonstrates clear
lung fields with no visible signs of

consolidation, pneumothorax, or pleural
effusion. Cardiac silhouette and
mediastinum appear within normal limits.

Fig. 5.2: Effect of instruction phrasing on captions generated by InstructBLIP. The same image is
paired with three different instructions, resulting in varying levels of detail and clinical
relevance.

Another aspect of qualitative evaluation focuses on the effectiveness of MedCLIP, described
in Section 3.4, as a test-time reranking mechanism. In this experiment, MedCLIP is applied
on top of the InstructBLIP checkpoint that achieved the highest score on the development
set. A medical image from the development split is selected, and m = 4 diverse captions
are generated using top-p sampling. These candidate captions are then scored by MedCLIP
based on their visual-semantic alignment with the input image. The caption receiving the
highest score is selected as the preferred output. For reference, the original ground truth
caption is also included. Figure 5.3 presents the input image, the four sampled candidate
captions along with their MedCLIP scores, and the corresponding ground truth. In this
example, MedCLIP assigns the highest score to a caption describing a dislocated hip joint,
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which diverges from the annotated reference indicating a superiorly located acetabular
cyst. While the selected caption is syntactically fluent and anatomically reasonable, it
does not capture the specific pathological finding of the reference caption. This outcome
highlights both the benefits and limitations of embedding-based reranking. MedCLIP
effectively promotes captions that are visually grounded and coherent with the image
but may still favor more general or common radiological patterns over less frequent but
clinically important findings. Moreover, inconsistencies in anatomical localization across
captions (e.g., references to both the left and right hip) remain unpenalized, underscoring
the need for more fine-grained factuality-aware mechanisms. Overall, this case illustrates

that while MedCLIP improves visual-textual alignment, it may not be sufficient on its own

for selecting clinically optimal captions.

Caption 1: Radiograph of the right hip
showing a lytic lesion with a left femoral
neck fracture.

Score: 0.1734

Caption 2: Postoperative X-ray of right
hip showing a dislocated hip joint.

Score: 0.2780

Caption 3: Postoperative AP pelvic X-ray
showing bone graft implantation.

Score: 0.2761

Caption 4: Radiograph of the left hip
showing a lytic lesion involving the
femoral head, acetabulum, and femoral
neck.

Score: 0.2725

Ground Truth Caption:

Anteroposterior x-ray of right hip with
a superiorly located acetabular cyst.

Fig. 5.3: Caption reranking using MedCLIP. Among four sampled candidates, the caption with the
highest alignment score is selected as the final output.

To further investigate model behavior, a final qualitative example is presented in which
multiple captioning systems are prompted with the same medical image from the official
test set. Figure 5.4 shows the input image alongside a table of captions generated by
each system. The outputs illustrate notable variations: some models localize pathology
differently (e.g., right upper lobe mass vs. bilateral effusions), others differ in the level of
detail (specific mass description vs. general effusion), and one highlights imaging modality
more precisely (angiography vs. CT). These differences suggest that while all systems
generate coherent captions, they vary in clinical focus and emphasis, with some prioritizing

common or salient findings over finer pathological details. All models were prompted
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using the same instruction to ensure a fair and controlled comparison, as displayed in the

table on the right side of Figure 5.2.

H Model H -7 Generated Captio - H

InstructBLIP (Instruction) || Computed tomography scan of the chest showing a
[see Section 3.1] mass in the right upper lobe of the thorax.
InstructBLIP (Contrastive) || Computed tomography (CT) scan of the chest show-
[see Section 3.2] ing bilateral pleural effusions.

Mixer [see Section 3.3] Computed tomography (CT) scan of the chest show-

ing a pleural effusion.

InstructBLIP (Instruction) + || Computed tomography angiography of the chest
MedCLIP [see Section 3.4] showing a mass in the right upper lobe of the thorax.

Fig. 5.4: Input image and corresponding captions generated by different models. The models vary
in architecture, tuning strategy, and inference behavior. The gold caption is: “Computed
tomography scan of the chest showing a right hilar mass with associated mediastinal
lymphadenopathy.”

5.2.2 Quantitative Evaluation

Quantitative analysis provides a systematic evaluation of model performance using prede-
fined metrics. As described in Chapter 4, the dataset was partitioned into three subsets: a
training set of 73,027 samples, a validation set of 9,736 samples, and a development set
of 14,605 samples. The training set was used to optimize models that required parameter
updates, while the validation set served to monitor generalization performance during
training. In particular, validation loss was used to determine early stopping points based
on a predefined patience threshold. The development set, which remained untouched
during training, was used as a private test set to evaluate all implemented models and their

variations under consistent conditions.

The InstructBLIP model was trained for up to 40 epochs for the instruction-tuned version
and 20 epochs for the contrastive version, using a batch size of 4. Training followed the
detailed instruction prompt illustrated in Figure 5.2. Early stopping with a patience of 3
epochs was employed, terminating training at epochs 38 and 17 for the instruction-tuned
and contrastive models, respectively, once validation loss showed no further improve-

ment. The Mixer model was trained under two configurations. The first configuration
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corresponds to the submission reported in Section 5.2.3, where training was limited to just
3 epochs due to time constraints associated with the ImageCLEFmedical 2025 deadline.
The second configuration extended training to 12 epochs and aimed to fully leverage the
reinforcement signal as described in Section 3.3. Due to the resource-intensive evaluation
routine, particularly its memory demands, training was conducted with a batch size of 1.
In addition, a stratified subset of the training and validation sets was used, selected based
on the distribution of Concept Unique Identifiers (CUIs) provided in the Concept Detection
task. Both configurations are reported to highlight the difference between undertrained
and adequately trained models, with the latter gradually transitioning from optimizing
for linguistic fluency to focusing on metric-based clinical accuracy as the reinforcement

coefficient « increased.

All models were assessed using the six evaluation metrics described in Section 5.1. In
addition to reporting individual metric scores, the results also include group-wise averages
across relevance-based and factuality-based metrics, as well as an overall average defined

as the mean of these two groups.

Model Method || Overall | Similarity | BERTScore | ROUGE-1 || BLEURT | Rel. Avg. | UMLS F1 | AlignScore || Fact. Avg.
InstructBLIP (Instruction) SFT 0.2977 0.7996 0.5919 0.2161 0.3023 0.4775 0.1448 0.0913 0.1180
InstructBLIP (Contrastive) SFT 0.3031 0.8354 0.5904 0.1928 0.2939 0.4781 0.1442 0.1123 0.1282

Mixer (3 epochs) RL 0.2959 0.6863 0.5461 0.1779 0.2544 0.4162 0.1059 0.2453 0.1756
Mixer (12 epochs) RL 0.3086 0.7365 0.5591 0.1861 0.2618 0.4359 0.1250 0.2376 0.1813
InstructBLIP + MedCLIP TTS 0.2986 0.7979 0.5974 0.2110 0.2899 0.4740 0.1436 0.1031 0.1233
Mixer (12 epochs) + MedCLIP TTS 0.3078 0.7354 0.5667 0.1821 0.2596 0.4359 0.1271 0.2324 0.1797

Tab. 5.1: Evaluation results for all implemented methods on our held-out development set. Met-
rics are grouped into relevance-based (Similarity, BERTScore, ROUGE-1, BLEURT) and
factuality-based (UMLS F1, AlignScore), with average scores computed per group and an
overall average.

Table 5.1 summarizes the quantitative performance of all implemented models, with each
system additionally tagged by its post-training method (SFT, RL, or TTS). Several patterns
emerge. First, the two InstructBLIP variants perform strongly on relevance-based metrics,
namely Similarity, BERTScore, ROUGE-1, and BLEURT, with the contrastive version
achieving the highest similarity score (0.8354), while the instruction-tuned model leads
on ROUGE-1 (0.2161) and BLEURT (0.3023). However, both variants show comparatively
low scores on the factuality-based AlignScore metric (0.0913 and 0.1123), suggesting that
they prioritize fluent and semantically close captions but often overlook finer clinical
correctness. In contrast, the Mixer models stand out on factuality-oriented evaluation:
despite lower similarity scores (0.6863 and 0.7365 compared to > 0.79 for InstructBLIP),
the 12-epoch Mixer and its MedCLIP variant achieve some of the highest AlignScore values
(0.2376 and 0.2324), reflecting more accurate alignment with clinical entities. Interestingly,
extending Mixer training from 3 to 12 epochs yields clear improvements in both overall
score (from 0.2959 to 0.3086) and factuality average (from 0.1756 to 0.1813), underscoring
the role of adequate training time. TThe addition of MedCLIP has a modest but mixed
effect on factuality: it slightly increases UMLS F1 (from 0.1250 to 0.1271) but reduces

AlignScore (from 0.2376 to 0.2324), without major gains in relevance. Overall, these

5.2 Experimental Results

41



42

results highlight a trade-off between relevance and factual accuracy: InstructBLIP excels in
producing linguistically and semantically coherent captions (e.g., Similarity > 0.79 across
both variants), whereas Mixer models, especially when sufficiently trained, better capture

clinically meaningful information (AlignScore > 0.23).

5.2.3 ImageCLEFmedical Caption 2025 Submissions

A key part of this thesis was developed in the context of the AUEB NLP Group’s par-
ticipation in the ImageCLEFmedical 2025 Caption Prediction sub-task. We submitted a
series of systems based on the methods described in Sections 3.1, 3.3, and 3.4, either as
standalone models or in various combinations. These models incorporate instruction
tuning (InstructBLIP), reinforcement-driven optimization (Mixer), and caption reranking
(MedCLIP), aiming to improve both linguistic quality and clinical fidelity in diagnostic
caption generation.

Our best-performing submission ranked 5%

out of 8 participating teams, demonstrating
competitive performance across a wide range of evaluation criteria. Table 5.2 summarizes
the metric scores achieved by our systems on the competition’s official test set. These
scores differ from those reported elsewhere in this thesis, as the competition used a distinct

held-out test set that was not publicly accessible.

When interpreting these results, it is important to note that the MedCLIP component
was used strictly as a post-processing reranker rather than being integrated into training,
which partly explains the modest gains observed. Moreover, the Mixer-based systems
were trained for only three epochs due to time constraints, meaning that their reported
scores are not fully representative of the method’s potential. As shown in our quantitative
experiments in Section 5.2.2, the same approach achieves substantially stronger results on
the development set when trained for a sufficient number of epochs. This suggests that the

relative competitiveness of Mixer is likely underestimated in the official leaderboard.

ID || System Overall || Similarity || BERTScore | ROUGE-1 || BLEURT || Rel. Avg. || UMLS F1 || AlignScore || Fact. Avg. || Rank

1403 || InstructBLIP 0.3068 0.7947 0.5884 0.2176 0.3030 0.4759 0.1429 0.1325 0.1377 48
1724 || InstructBLIP + MedCLIP Reranker 0.3026 0.7896 0.5939 0.2122 0.2897 0.4714 0.1421 0.1257 0.1339 61
1960 || Mixer ( ling) 0.2853 0.6778 0.5453 0.1814 0.2583 0.4157 0.1038 0.2058 0.1548 83
1962 || Mixer (Sampling) + MedCLIP Reranker || 0.2757 0.6539 0.5621 0.1868 0.2585 0.4153 0.1037 0.1684 0.1361 88
1961 || Mixer (Beam) 0.2747 0.6649 0.5472 0.1814 0.2637 0.4143 0.0998 0.1706 0.1352 89
1963 || Mixer (Beam) + MedCLIP Reranker 0.2732 0.6498 0.5560 0.1886 0.2579 0.4140 0.1022 0.1627 0.1324 91

Tab. 5.2: Evaluation metrics for all submissions to the ImageCLEFmedical 2025 Caption Prediction
task. Metrics are grouped into Relevance (Similarity, BERTScore, ROUGE-1, BLEURT)
and Factuality (UMLS F1, AlignScore). The Relevance and Factuality columns report the
average score within each group, and the Overall score is the mean of those two averages.
Including system names directly with IDs avoids the need for a separate mapping table.

Table 5.1 provides additional context for interpreting the official ImageCLEFmedical 2025
results shown in Table 5.2. The trends observed on our held-out development set mirror

those on the competition leaderboard: InstructBLIP variants excel on relevance-based met-
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rics, while Mixer models, especially when trained for 12 epochs, achieve higher factuality
scores. This pattern helps explain why the official submissions with Mixer trained for only
three epochs appear less competitive; given sufficient training, Mixer’s factual accuracy,
and overall performance, would likely improve further. The modest impact of MedCLIP
observed in both tables also confirms its role as a post-processing reranker: it provides
small but consistent gains in factuality without substantially affecting relevance. Together,
these results highlight the trade-off between linguistic relevance and clinical fidelity and
demonstrate how development-set experiments can illuminate the relative strengths and

limitations of each method in the official leaderboard.

5.2 Experimental Results
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Conclusions and Future Work

6.1 Conclusions

This thesis examined post-training strategies for adapting general-purpose vision-language
models to the task of diagnostic captioning. The motivation stems from the domain-specific
requirements of medical imaging, where clinical accuracy, factual consistency, and inter-
pretability are essential. To this end, the work focused on three post-training approaches:
Supervised Fine-Tuning (SFT), which included both standard cross-entropy training and
a variant augmented with a contrastive loss to improve alignment between image and
text representations, Reinforcement Learning (RL) with metric-driven optimization, and
Test-Time Scaling (TTS) through caption reranking mechanisms. A series of methods were
implemented and evaluated on the ImageCLEFmedical 2025 dataset, with a primary focus
on quantitative metrics and a limited qualitative assessment. The experimental results
revealed the complementary strengths of different strategies. Instruction tuning produced
fluent and adaptable outputs when guided by well-crafted prompts. RL contributed to im-
proved alignment with evaluation metrics, particularly those measuring factual correctness,
as shown in Table 5.1. Caption reranking with a domain-specific vision-language model
helped prioritize outputs that were more consistent with the visual content, improving
factual grounding even when the selected caption did not fully match the ground truth
description, as shown in Figure 5.3. The findings highlight the potential of integrating
multiple post-training strategies to address different aspects of model behavior, offering a
comprehensive framework for developing diagnostic captioning systems. Participation
in the ImageCLEFmedical 2025 challenge further validated the developed systems, with
competitive rankings demonstrating their effectiveness in real-world evaluation settings.
Overall, this work reinforces the value of targeted adaptation in high-stakes applications
of AL By bridging the gap between generic pretrained models and specialized clinical
requirements, it lays the foundation for further research into robust, explainable, and

trustworthy medical captioning systems.

6.2 Future Work

While this thesis has demonstrated the potential of post-training techniques for improving

diagnostic captioning performance, several promising directions remain for future explo-
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ration. One such direction involves incorporating Curriculum Reinforcement Learning,
where training is structured to progress from simpler to more complex diagnostic examples.
In the context of the ImageCLEFmedical dataset, case difficulty could be estimated using
factors such as caption length, the number of UMLS concepts mentioned, or the rarity
of those concepts across the dataset. Simpler cases could be prioritized early in training,
while more complex or rare ones could be introduced later or assigned greater weight in
the reward computation. Such a curriculum could be integrated into the existing reward
function used in the RL-based Mixer model, enabling the system to gradually improve its

clinical reasoning and robustness.

Another promising avenue lies in extending TTS with search-based methods such as
Monte Carlo Tree Search (MCTS). Unlike the MedCLIP-based caption reranking, which
evaluates a fixed set of candidate captions post hoc to select the most visually grounded one,
MCTS actively guides the generation process by exploring multiple candidate sequences in
parallel during decoding. At each step, MCTS evaluates partially generated captions using
a reward function, potentially incorporating metrics for relevance, factuality, or clinical
accuracy, allowing the search to prioritize paths that are likely to produce high-quality
final outputs. In this way, MCTS is not merely a replacement of the scoring function after
generation, but a dynamic decoding strategy that iteratively informs which tokens to
generate next, offering a more fine-grained control over fluency and clinical correctness

compared to standard greedy, beam, or post-hoc reranking approaches.

Lastly, the continued evolution of large-scale multimodal language models opens the door
to further improvements. Recent models like MedGemma!, developed specifically for
biomedical visual-language tasks, offer domain-specialized knowledge that could be highly
beneficial for diagnostic captioning. Future work could investigate their capabilities either
as standalone models or as initialization points for fine-tuning. Additionally, evaluating
and adapting newly introduced general-purpose LLMs to the medical setting remains an
exciting research opportunity, particularly as instruction tuning and zero-shot prompting
continue to evolve. Overall, these directions highlight the potential for building diagnostic
captioning systems that are more accurate, adaptive, and aligned with the demands of

real-world clinical environments.

'https://medgemma.org/
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Overall score is the mean of those two averages. Including system names

directly with IDs avoids the need for a separate mapping table. . . . . . . ..
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