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Abstract

Medical dictation systems are essential tools in modern healthcare, enabling accurate and
efficient conversion of speech into written medical documentation. The main objective of
this thesis is to create a domain-specific system for Greek medical speech transcriptions.
The ultimate goal is to assist healthcare professionals by reducing the overload of manual
documentation and improving workflow efficiency. Towards this goal, we develop a
system that combines automatic speech recognition techniques with text correctionmodels,
allowing better handling of domain-specific terminology and linguistic variations in Greek.
Our approach leverages both acoustic and textual modeling to create more realistic and
reliable transcriptions. We focused on adapting existing language and speech technologies
to the Greek medical context, addressing challenges such as complex medical terminology
and linguistic inconsistencies. Through domain-specific fine-tuning, our system achieves
more accurate and coherent transcriptions, contributing to the development of practical
language technologies for the Greek healthcare sector.

iii



Περίληψη

Η ιατριϰή υπαγόρευση αποτελεί µια πραϰτιϰή λύση που βοηϑά τους επαγγελµατίες
υγείας να µειώσουν τον χρόνο ϰαι την προσπάϑεια που απαιτεί η γραπτή τεϰµηρίωση.
Η παρούσα πτυχιαϰή εργασία έχει ως αντιϰείµενο την ϰατασϰευή ενός συστήµατος
για την αυτοµατη µετατροπή ελληνιϰής ιατριϰής οµιλίας σε ϰείµενο. Υλοποιήϑηϰε ένα
σύστηµα που συνδυάζει τεχνιϰές αυτόµατης αναγνώρισης οµιλίας µε µοντέλα γλωσ-
σιϰής αξιολόγησης για βελτίωση της αϰρίβειας. Με αυτόν τον τρόπο, το σύστηµα δι-
αχειρίζεται αποτελεσµατιϰότερα την εξειδιϰευµένη ιατριϰή ορολογία ϰαι τις γλωσσιϰές
ιδιαιτερότητες της ελληνιϰής γλώσσας, αντιµετωπίζοντας προβλήµατα που προϰύπ-
τουν από την πολυπλοϰότητα της ορολογίας ϰαι τη µεταβλητότητα της προφοριϰής
οµιλίας. Για την αυτόµατη αναγνώριση οµιλίας χρησιµοποιήϑηϰε το µοντέλο Whis-
per, το οποίο εϰπαιδεύτηϰε περαιτέρω σε ελληνιϰά δεδοµένα ώστε να προσαρµοστεί
ϰαλύτερα στις ανάγϰες του συγϰεϰριµένου τοµέα. Επιπλέον, αξιοποιήϑηϰε ένα ειδιϰά
προσαρµοσµένο ελληνιϰό GPT-2 µοντέλο, το οποίο λειτουργεί ως εργαλείο γλωσσιϰής
αξιολόγησης, επιλέγοντας την ϰαταλληλότερη πρόταση ανάµεσα σε πολλαπλές πιϑανές
µεταγραφές που παράγονται από τοWhisper. Η ενσωµάτωση της αϰουστιϰής ϰαι γλωσ-
σιϰής πληροφορίας συµβάλλει σηµαντιϰά στην αύξηση της αϰρίβειας ϰαι της φυσιϰότη-
τας των τελιϰών ϰειµένων. Με αυτή την προσέγγιση, το σύστηµα στοχεύει στη δηµιουργία
αξιόπιστων ϰαι ϰατανοητών µεταγραφών, προσφέροντας ένα χρήσιµο εργαλείο για την
υποστήριξη της ϰαϑηµερινής εργασίας στον τοµέα της υγείας.
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1
Introduction

Medical dictation plays a pivotal role in modern healthcare workflows. Precise and timely
documentation of medical information enhances diagnostic accuracy, ensures continuity of
care, and supports legal protection. Traditional documentation is a very time-consuming
process that places a significant burden on healthcare professionals, requiring them to
spend more time in each case. Dictation systems provide a fast and natural alternative to
manual data entry, reducing documentation workload and improving healthcare profes-
sionals efficiency.

Greek medical dictation is under-resourced compared to English systems. In our era, where
speech technologies are rapidly advancing and widely adopted in healthcare, this gap
highlights the urgent need for dedicated resources and development. Existing speech
recognition systems perform poorly in Greek medical domain due to complex domain-
specific terminology, the linguistic characteristics of the Greek language and possibly due
to variations in individual speech patterns. It becomes very clear that there is a significant
need for medical dictation systems capable of accurately transcribing Greek speech.

In this thesis, we develop a system that combines state-of-the-art automatic speech recog-
nition techniques with domain adapted language models for Greek medical dictation.
The speech recognition process component is based on the pre-trained Whisper model
[Rad+23], further adapted to the Greek language. Additionaly, a Greek version of GPT-2
language model fine-tuned with Greek medical text is used to evaluate and select the
best transcription hypothesis from the multiple candidates generated by the Automatic
Speech Recognition (ASR) system. This approach integrates both acoustic and linguistic
information to improve transcription accuracy and and better handle specialized medical
terminology. Furthermore, we experimented with the mT5 model for automatic sentence
correction. This application uses a different approach, where the model processes the
entire sentence and attempts to correct all possible errors, instead of selecting the best
transcription from multiple candidates. This method focuses on correcting the output by
identifying and fixing mistakes within the text, aiming to improve overall transcription
accuracy and fluency.
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1.1 Motivation and Problem Statement

This thesis is motivated by the need of Greek medical dictation systems, which are essential
in the modern healthcare environment. While English-language systems have seen signifi-
cant progress, Greek medical dictation remains largely underdeveloped. Current speech
recognition models have room for improvement in accurately handling domain-specific
terminology and linguistic characteristics of the Greek language. The ultimate goal is
to contribute to the development of Greek medical speech technologies by providing
solutions that improve transcription accuracy, reduce documentation time, and enhance
the efficiency of healthcare workflows.

1.2 Thesis Structure

Chapter 2: Background and Related Work

This chapter provides background on Greek automatic speech recognition and language
modeling, focusing on their application to medical dictation. It reviews general ASR
systems, domain adaptation techniques, and language models used for transcription re-
finement. The chapter also discusses challenges specific to Greek language processing,
emphasizing the absence of dedicated Greek medical dictation models.

Chapter 3: Implemented methods and Systems

This chapter discusses the approaches and the models that was used as part of the thesis.
The primary focus is on the fine-tuning of two pre-trained models, Whisper for automatic
speech recognition (ASR) and GPT-2 for post-processing and correction of transcribed
text.

Chapter 4: Data

This chapter presents an overview of the different datasets that was used for this task. It
outlines their structure and key features, along with the preprocessing methods used to
make the data suitable for training and evaluation.

Chapter 5: Experiments and Results

This chapter discusses the results of applying those models. It covers the training proce-
dures, the evaluation metrics and the performance of different models.

Chapter 6: Conclusions and Future Work

This concluding chapter recaps the main findings and contributions of the thesis. It also
proposes directions for future work, such as incorporating more speech data within the
medical domain.

2 Chapter 1 Introduction



2
Background and Related Work

Automatic speech recognition and medical data processing are two important and rapidly
evolving fields within artificial intelligence and machine learning. The implementation
of trustworthy systems that can convert speech in the medical domain into accurate and
readable text is crucial for improving the quality of healthcare services and supporting the
work of medical professionals. This chapter briefly addresses the basics techniques related
to automatic speech recognition, the uniqueness of medical speech and the language
models that can be utilized to achieve more accurate results.

2.1 Automatic Speech Recognition

2.1.1 Traditional methods

The very first implementations of automatic speech recognition where statistical models,
which aimed to capture the dynamics of human speech using probabilities and simplified
assumptions. The most wide used technique was the Hidden Markov Models (HMMs),
that often combined with Gaussian Mixture Models (GMMs) for acoustic modeling.

HMMs represent the sequence of spoken words using a limited set of hidden states, each
corresponding to a specific phonetic unit. These states are linked by probabilities that
describe how likely it is to move from one state to another, and how likely each state is to
produce certain sounds. GMMs are used to estimate these sound probabilities, helping the
system decide how well a set of audio features matches a specific phonetic state.
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Fig. 2.1: An illustration of theHMM-GMMarchitecture. Each hidden state in theHMM is associated
with a Gaussian Mixture Model that calculates the probability of observing a specific set
of acoustic features for that state.

Although for many years HMM with GMM was the standard practice for ASR systems,
they had a number of limitations. Those models relied on strong assumptions, such as the
independence of observations and linear transitions between states, which do not fully
reflect the nature of human speech. Moreover, their ability to learn complex phonetic and
linguistic patterns was limited, fact that led to the need for more flexible and no linear
models.

2.1.2 Neural network approaches

The rapid development in the field of machine learning, and especially deep learning, has
led to the emergence of new approaches to speech recognition based on artificial neural
networks. These models are able to learn more complex relationships between acoustic
features and words, overcoming the limitations of statistical models.

Recurrent Neural Networks (RNNs) were adopted due to their ability to process sequential
data, such as speech. Long Short-Term Memory (LSTMs) networks was a significant
advancement, as they were able to keep long-term dependencies and avoid the vanishing
gradient problem, which is common in standard RNNs. Furthermore, the emerge of the
Transformer architecture changed the approach to sequence processing. Transformers
rely on attention mechanisms which allow the model to focus on important parts of the
input regardless of their position in the sequence. This makes it possible to process entire

4 Chapter 2 Background and Related Work



sentences or even whole paragraphs simultaneously without the temporal dependence of
RNNs, accomplishing faster training and better utilization of the information.

Fig. 2.2: An illustration of an RNN model used in speech recognition, showing sequential input
processing, hidden state propagation and softmax based word prediction

Convolutional Neural Networks (CNNs) are often used to improve how features are
extracted from raw audio, helping to identify important local patterns in the sound. Addi-
tionally, modern speech recognition systems tend to combine acoustic, pronunciation, and
language models into one unified system that can be trained all at once. This approach
simplifies the overall process, reduces the chance of errors, and leads to better results.

Fig. 2.3: A high-level view of an end-to-end ASR architecture. This approach uses a unified neural
network to map audio features directly to text, simplifying the traditional pipeline by
combining the acoustic and language models.

2.1 Automatic Speech Recognition 5



In medical dictation, adapting models to the specific domain and using specialized language
models is essential. Recent advances in self-supervised learning enable models to first train
on large amounts of unlabeled speech and then fine-tune on smaller, specialized datasets.
This method is particularly useful for languages like Greek, where labeled medical speech
data is limited. These models also handle different speakers, accents, and background
noise better, which are common challenges in clinical environments.

Overall, neural network techniques provide effective solutions to improve medical dictation
by increasing accuracy, speeding up processing, and better handling specialized terms and
varied audio conditions.

2.2 Medical Speech Recognition

Automatic speech recognition in the medical domain poses unique challenges and demands
due to the nature and complexity of the spoken content it processes. Medical language is
characterized by specialized terminology, complex sentence structures, and a wide range
of expressions that differ significantly from everyday speech.

2.2.1 Unique features of medical speech

Medical speech often includes technical terms, abbreviations, acronyms, and context-
specific phrases that are rarely found in general language data. These elements require
more advanced language models and domain-specific lexicons for accurate processing. Ad-
ditionally, the clinical environment introduces variability in speaker roles, time-constrained
communication, and background noise, all of which add complexity to the transcription
task.

Accurate recognition of medical speech is essential for ensuring proper clinical documen-
tation, improving workflow efficiency, and reducing the risk of medical errors. However,
most general purpose ASR systems struggle in this context due to their lack of expo-
sure to medical vocabulary and real world clinical conditions. The problem is even more
pronounced in low-resource languages such as Greek, where annotated medical speech
corpora are scarce. These challenges underline the importance of developing ASR systems
specifically trained and adapted for the medical domain.

6 Chapter 2 Background and Related Work



2.3 Language Models in Medical Transcription

The use of Language Models in speech recognition has become very important, especially
in environments where accuracy and understanding of the content are critical, such as in
the medical field. While ASR models convert spoken language into text, language models
help process the generated text by correcting errors and improving coherence.

2.3.1 Language Models for Post-processing

Language Models play a crucial role in the post-processing of texts generated by automatic
speech recognition systems. After the initial conversion from speech to text, the resulting
text often contains errors, omissions or inconsistencies, especially when the original
speech comes from demanding environments such as medical field. Language models
help with the correction of those errors, resulting in a more coherent and well-structured
transcription.

More specific, modern models that are based on transformer technologies, like GPT-2 and
mT5, have the capability to understand the context of each sentence and provide improve-
ments that make the text more natural and understandable. By training these models on
large volumes of text, they can identify incorrect sentences or unusual expressions, and
improve the flow and clarity.

Using these models for post-processing is especially important in this field, where accurate
transcription and clear understanding of texts are critical. Moreover, the ability to adapt
these models to specialized medical terminology and writing styles enhances the reliability
and precision of the final transcript.

2.3.2 Importance in medical transcription contexts

In medical field, speech transcription is not just about capturing words but requires a
high level of accuracy and adaptation to the specific context. Transcriptions are used
official documents that impact patient health decisions making their reliability crucial. The
presence of specialized terminology and complex phrasing poses challenges that general
ASR systems cannot effectively handle.

The use of specialized language models that have been trained or fine-tuned on medical
texts significantly helps maintain terminological consistency and reduces errors that could
lead to negative consequences. Furthermore, improving the readability and clarity of the
transcriptions can help communication among healthcare professionals and increase the
efficiency of clinical documentation. The implementation of these technologies strengthens

2.3 Language Models in Medical Transcription 7



the reliability of healthcare systems and contributes to better organize and manage medical
records, thereby enhancing the quality of care provided.

2.4 Fine-Tuning and Adaptation Techniques

In modern machine learning systems the process of fine-tuning and adapting models to
specific domains is a crucial step for improving performance. Instead of training models
from scratch, a process that demands large amounts of data and computational resources,
we use pretrained models and adapt them to the specific domain. This approach allows
faster and more efficient training, because the model leverages the general knowledge it
has already obtained.

2.4.1 Transfer Learning and Domain Adaptation

Transfer learning refers to the process where a model, trained on a large and general
dataset, is reused and adapted to perform a specific task in a specialized domain. In the
field of automatic speech recognition for medical applications transfer learning allows the
model to leverage its knowledge of general language and apply it to the recognition of
specialized medical terminology and phrasing.

This process plays a crucial factor because the language used in the medical field has
specific uniqueness that general models do not cover. Through domain adaptation, the
model is learning to recognize and transcribe specialized content more accurately, reducing
errors and enhancing the overall quality of the transcription. This makes possible the
utilization of existing powerful models, like Whisper, and adjusting them for the specific
needs of medical speech, we can achieve better results without requiring extensive training
from zero.

2.4.2 Parameter-Efficient Fine-Tuning (LoRA)

Low-Rank Adaptation (LoRA) [Hu+22] is a parameter-efficient fine-tuning technique
designed to adapt large pre-trained models to specific tasks without updating all their
parameters. Traditional fine-tuning retrains the full set of parameters, which becomes
impractical for very large models due to high computational and storage costs.

To overcome this, LoRA introduces two learnable low-rank matrices, A and B, which
approximate the weight updates within specific dense layers. Instead of modifying the
original weight matrix W ∈ Rd×d, LoRA keeps it frozen and injects a learnable low-rank
update ∆W = BA, applied to the input x. This modification is shown in Figure 2.1.
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During training, only the small matrices A and B
are optimized, significantly reducing the number
of trainable parameters. At inference time, the
learned adaptation can be merged with the orig-
inal weights, introducing no additional latency.
This makes LoRA an efficient approach for fine-
tuning, especially when working with large mod-
els such as Whisper.

Fig. 2.4: We only train A and B
[Hu+22].

In our work, we employed LoRA to fine-tune each model, enabling task-specific adaptation
with minimal computational overhead.

2.4 Fine-Tuning and Adaptation Techniques 9



3System Design and
Implementation

This chapter present the design and implementation of the Automatic Speech Recognition
(ASR) system for Greekmedical dictation. The core of this work involves adapting OpenAI’s
Whisper model to the specific features of the Greek language through a controlled fine-
tuning process. A key aspect of our methodology is the comparative analysis of three
different sizes of the Whisper model, small, medium, and large-v2. To further enhance
transcription quality, we integrated a re-ranking mechanism based on a fine-tuned GPT-2
model, which was used to select the most contextually appropriate transcription among
Whisper’s alternatives. In this chapter, we present the design of these models, how we
adapted them, and the steps involved in the transcription process.

3.1 Automatic Speech Recognition System

The foundation of our system is a advanced ASR model designed to accurately transcribe
spoken Greek into text. We selected a state-of-the-art, pre-trained model and fine-tuned it
on a extensive collection of Greek speech data. This process was repeated across three
model scales to evaluate their performance and resource requirements.

3.1.1 Whisper Model

Whisper [Rad+23] is a state-of-the-art automatic speech recognition model developed by
OpenAI. It follows an encoder-decoder architecture and has been trained on a wide range
of labeled data from the web that supports multiple languages and various tasks. Due
to this large variety of data, whisper shows excellent results in noisy environments and
across different languages and voice tones.

This model is comprised of two main parts: the encoder, which receives the audio signals
and turns it into feature representations, and the decoder, which uses these representations
to generate the final text. Figure 3.1 shows an overview of Whisper’s architecture and
how data moves from the initial audio signal to the final text output. This figure helps to
understand the key parts of the system and how they work together.

10



Fig. 3.1: The end-to-end architecture of the Whisper model, which is based on a transformer
encoder-decoder framework. Audio is first converted to a log-Mel spectrogram, processed
by convolutional layers and sinusoidal positional encodings, then passed through Trans-
former encoder blocks. The decoder uses learned positional encodings and cross-attention
to generate text token-by-token, enabling tasks like transcription and translation in a
multitask setup [Rad+23].

In this thesis, we examine three pre-trained versions of Whisper: small, medium, and
large-v2. The primary motive for training three distinct models was to analyze the trade-
off between performance and computational cost. While larger models like large-v2 are
expected to have higher accuracy due to their increased parameters and greater represen-
tational capacity, they are also more computationally expensive and harder to deploy in
resource-constrained environments. By fine-tuning and evaluating all three models we
can determine the optimal one that meets our desired accuracy benchmarks while being
practical and efficient for real-world medical dictation.

3.1.2 Adaptation to Greek Language

To adapt Whisper model to the Greek language we applied a fine-tuning methodology
to each of the three models. This involved a extensive data preparation and training
process.

A diverse set of different Greek speech datasets was aggregate to create a robust corpus of
data, containing speech data with different domains, with varying acoustic environments,
and from multiple speakers. While a detailed description of these datasets is provided
in the next chapter, they include sources such as Mosel (Greek 2009) [Gai+24], Mozilla

3.1 Automatic Speech Recognition System 11



Common Voice 11.0 (Greek) [Ard+19], and Google Fleurs (Greek) [Con+22]. The audio
files were first resampled to 16 kHz, and the transcriptions were cleaned and normalized
so that formatting and style were consistent across the dataset.

Each Whisper model variant was fine-tuned using Hugging Face’s Seq2SeqTrainer. We set
the learning rate to 5e − 5 so that the models could adapt gradually without overfitting.
The batch size was 16 per device, and we used gradient accumulation over two steps to
effectively reach a batch size of 32. This setup helped keep training stable while staying
within memory limits. AdamW [LH19] optimizer with a weight decay of 0.1 was used for
regularization and gradient checkpointing was enabled to reduce memory usage. Training
was conducted using mixed precision (bf16) to reduce GPU memory requirements and
accelerate computation. To make fine-tuning more efficient, Low-Rank Adaptation (LoRA)
[Hu+22] was applied to reduce the number of trainable parameters. Specifically, LoRA
was introduced to the q_proj, k_proj, v_proj, and out_proj layers using a rank of 32 and
α = 64. In this way, only about 2% of the full model’s trainable parameters are trainable,
allowing efficient fine-tuning under limited resources.

Tab. 3.1: Trainable Parameters Comparison of Whisper Models Using LoRA

Model Parameters (Billion) Trainable Params (Million)
Whisper Small 0.249 ∼7.1 (2.8%)
Whisper Medium 0.783 ∼18.9 (2.4%)
Whisper Large-v2 1.574 ∼31.5 (2%)

To handle Greek transcription properly, we adjusted the processor so that decoding used
Greek-specific prompt IDs. This way, the model was explicitly guided to generate text
in Greek. For tokenization, we avoided adding extra special tokens and built the final
label sequence by combining the decoder prompt IDs, the transcription tokens, and an
end-of-sequence (EOS) token. This setup kept Whisper’s decoding process intact while
making it more suitable for Greek. During inference, we used greedy decoding with a
maximum output length of 250 tokens, which was more than enough for typical Greek text.
For training, we kept caching disabled so the model would process sequences consistently,
though caching can be turned back on in deployment to speed up inference.

3.2 Greek GPT-2

The Greek GPT-2 model is based on OpenAI’s Generative Pre-trained Transformer 2 (GPT-
2), a wide recognized language model acknowledged for its ability produce contextually
relevant text [Rad+19]. GPT-2 uses the Transformer architecture, which consists of stacked
layers combining multi-head self-attention with feed-forward networks [Vas+17]. This
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design enables themodel to capture dependencies in text, making it adept at auto-regressive
tasks like text generation and completion.

In our work we utilized a Greek specific vertion of GPT-2, developed by the the Hellenic
Army Academy (SSE) and the Technical University of Crete (TUC). This variant, accessible
as lighteternal/gpt2-finetuned-greek 1 on Hugging Face, was pre-trained on a huge corpus
of Greek text, optimizing it for the linguistic characteristics of the Greek language. To
tailor this model further for specialized applications, we fine-tuned it using Low-Rank
Adapta-tion (LoRA), to minimize computational overhead.

3.2.1 GPT-2 Architecture

GPT-2 follows a transformer decoder architecture, consisting of multiple stacked layers of
masked multi-head self-attention and point-wise feed-forward networks [Rad+19]. Unlike
the original Transformer model [Vas+17], which includes both an encoder and a decoder
(Figure 3.2), GPT-2 keeps only the decoder component, making it a unidirectional model
that processes input sequences from left to right in an auto-regressive manner [Rad+19].

Fig. 3.2: The original Transformer architecture, the model is composed of an encoder (left) and a
decoder (right), both consisting of N identical layers. Each encoder layer includes multi-
head self-attention and a feed-forward network, while each decoder layer incorporates
masked multi-head self-attention, encoder-decoder attention, and a feed-forward network.
Residual connections and layer normalization are applied after each sub-layer. Positional
encodings are added to the input and output embeddings to preserve the sequential order
of tokens [Vas+17].

1Hugging Face – lighteternal/gpt2-finetuned-greek
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In each decoder layer, masked multi-head self-attention ensures that the model can only
attend to the current and previous tokens, enabling causal language modeling [Rad+19].
Residual connections and layer normalization are applied after each sub-layer to ensure
training stability. Token embeddings are combined with positional encodings to capture
word order, and the final hidden states are projected into the vocabulary space for next-
token prediction.

The architecture allows GPT-2 to generate text iteratively, given an initial context, the
model samples the most likely next token, appends it to the sequence, and repeats the
process [Rad+19]. In this work, we used a Greek GPT-2 model with 124M parameters,
consisting of 12 decoder layers, each with 12 attention heads and a hidden size of 768. This
configuration provides a balance between computational efficiency and modeling capacity
for domain-specific fine-tuning.

3.2.2 Fine-Tuning Process

Fine-tuning large language models like GPT-2 traditionally involves updating all parame-
ters, which can be very resource-intensive. Low-Rank Adaptation (LoRA) offers a more
efficient alternative by introducing low-rank matrices to selected layers, allowing the
model to adapt with far fewer trainable parameters [Hu+22]. In our implementation, we
applied LoRA to the attention (c attn) and projection (c proj) modules of the Greek GPT-2
model, using a rank of 16 and an alpha value of 32. This reduced the trainable parameters
to 1,622,016, approximately 1.29% of the model’s total 126,061,824 parameters.

We fine-tuned the model on a custom Greek medical text dataset. Hyperparameters are
summarized in Table 3.2. Model performancewas evaluated using perplexity on a validation
set after each epoch, with lower perplexity indicating improved predictive accuracy.

By applying LoRA specifically to attention and projection layers, we were able to efficiently
adapt the model to the domain without updating the full set of parameters. Across 30
epochs, perplexity steadily decreased, showing that the model became more confident in
predicting the next token. This approach reduced computational cost and memory usage
compared to full fine-tuning.
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Tab. 3.2: Training Configuration and Hyperparameters

Parameter Value

Learning Rate 5 × 10−5

Batch Size 16
Gradient Accumulation Steps 2
Epochs 30
Optimizer AdamW
Weight Decay 0.01
LoRA Rank 16
LoRA Alpha 32
Trainable Parameters 1,622,016 (1.29%)

3.3 mT5

3.3.1 Model Overview

The multilingual T5 (mT5) model is a sequence-to-sequence transformer architecture,
extending the original T5 framework [Raf+20] to support over 100 languages. Unlike
decoder-only models such as GPT-2, mT5 includes both an encoder and a decoder, allowing
it to look at the entire input sequence before generating output. Its architecture makes
it well-suited for text-to-text tasks such as translation, summarization, and grammatical
error correction, even in low-resource languages like Greek.

Fig. 3.3: Overview of the T5 model handling multiple NLP tasks using a unified text-to-text
framework. Examples include translation, sentence acceptability classification, semantic
textual similarity, and summarization, each represented with a specific input prompt and
corresponding output[Raf+20].

3.3.2 Model Adaptation

We explored an alternative approach to automatic text correction using the multilingual
T5 model [Xue+21]. The objective was to correct noisy Greek sentences generated by the
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ASR model. These sentences typically contain a lot of misspellings, missing or incorrect
punctuation, grammatical mistakes, and occasionally omitted or repeated words.

The task was framed as a supervised sequence-to-sequence problem, where each training
sample consisted of a corrupted sentence as input and its corrected version as the target.
More specific, we used an instruction-style prompting approach, where inputs were
formatted as "correct: <corrupted sentence>", guiding the model to perform grammatical
correction. An example of this input-output format is shown in Table 3.3. For this purpose,
we fine-tuned the google/mt5-base, a transformer-based encoder-decoder model pretrained
on a diverse multilingual corpus. By conditioning on the full input sequence before
generating output, themodel is able to capture long-range dependencies, which is especially
important for effective grammatical correction.

Input (prompt) Model Output

correct:Ποσο ϑα διαρϰέσει η αποϰατάσ-
ταση µιτα από το χιρουργειο.

Πόσο ϑα διαρϰέσει η αποϰατάσταση
µετά από το χειρουργείο;

Tab. 3.3: Example of model input prompt and its corrected output.

3.4 Pipeline Design

Building a robust pipeline for automatic speech recognition (ASR) and transcription cor-
rection requires combining advanced models to process audio input and refine the output.
This section describes the pipeline shown in Figure 3.4, which integrates Whisper ASR
and GPT-2 re-ranking to produce an accurate final transcription.

Fig. 3.4: Pipeline for generating and refining speech transcriptions

The pipeline begins with the Whisper ASR model [Rad+23] which processes the audio
input. It generates a set of N candidate hypotheses, representing possible transcriptions.
Whisper converts raw audio waveforms into text using its pre-trained encoder-decoder
architecture and produces multiple transcription variants to capture potential ambiguities
in the audio.

The Greek GPT-2 model [Rad+19] evaluates the N candidate hypotheses. Each candidate
is scored based on grammatical correctness, contextual relevance, and semantic coherence.
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Through this re-ranking process, the most accurate candidate is selected, ensuring that
the final transcription aligns well with Greek language conventions. This step enhances
the pipeline’s accuracy by refining the initial Whisper outputs. The selected candidate
from GPT-2 is used as the final transcription corrected output. The output of this step
becomes the corrected transcription, representing the most reliable vertion of the original
audio. The pipeline’s design ensures that the final text is both linguistically accurate
and contextually appropriate, making it suitable for Greek medical dictation and other
Greek-language processing tasks.

A critical design choice is the selection of the optimal value of N. This parameter determines
the number of hypotheses candidates generated byWhisper. The selection of N is a balance
between computational load and the diversity of transcription options, enabling GPT-2 to
effectively re-rank and select the best candidate. The optimal value of N was determined
through empirical testing, ensuring robust performance for Greek audio inputs.
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4Data

This chapter describes the datasets used to train and evaluate the models developed in this
thesis. We cover the preparation and processing of several Greek audio datasets used to
fine-tune the Whisper model, a medical text corpus for adapting the Greek GPT-2 model,
and a custom dataset with manually introduced errors for training the mT5 model in
sentence correction. Each dataset was assembled with the needs of its respective task in
mind, aiming to support effective training, reliable evaluation, and accurate representation
of Greek linguistic features. Below we describe the origin, structure, and processing
methods for each dataset.

4.1 Greek Speech Dataset for Whisper

For Whisper, we fine-tuned the model on a composite dataset of Greek speech audio paired
with transcriptions. This dataset combined three publicly available sources to ensure a
variety of speakers, accents, and acoustic conditions:

• VoxPopuli & MOSEL: VoxPopuli is a multilingual speech dataset released by Face-
book AI, composed of European Parliament recordings across 23 languages, including
Greek [Wan+21]. For Greek, we used the MOSEL dataset [Gai+24] , which provides
transcriptions aligned with a subset of VoxPopuli audio. However, the alignments
are not always precise, necessitating additional processing as described below.

• Mozilla Common Voice 11.0: A crowd-sourced dataset containing Greek speech
samples from volunteer contributors, covering various accents and recording envi-
ronments [Ard+20].

• Google Fleurs : A multilingual dataset including Greek speech, focusing on read-
aloud sentences across diverse domains [Con+22].

The total duration and number of recordings for each dataset are shown in Table 4.1.
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Dataset Total Hours Number of Recordings
Mosel 30.34 3876
Common Voice 11.0 6.06 5311
FLEURS 12.72 4136
Total 49.12 13323

Tab. 4.1: Total speech duration and number of recordings per Greek dataset.

The VoxPopuli subset [Wan+21] of the Mosel dataset had several challenges, such as
missing transcriptions for some audio files and missing specific timestamps necessary for
accurate alignment. These issues caused difficulty in creating a fully aligned speech-to-
text dataset. To address this, we used the Aeneas toolkit 1, a forced alignment system
that synchronize audio with text. While Aeneas helped create approximate alignments,
background noise, speaker variability, and transcription errors sometimes led to poor or
partially overlapping segments

To improve data quality, we applied the original Whisper model to validate the align-
ment quality by comparing Whisper’s output with the existing transcriptions. Audio-
transcription pairs that didn’t match or agree with Whisper’s output were discarded.
Only pairs with high alignment accuracy and strong consistency between the original
transcription and Whisper’s output were kept. This filtering made the dataset of well-
aligned speech-text pairings cleaner and more trustworthy, so it was ready for training
and testing.

4.2 Greek Medical Text Dataset for GPT-2

The Greek GPT-2 model was trained on a custom dataset 2. This dataset contains 20,430
samples and was constructed from three different sources to ensure a comprehensive
representation of medical language in Greek:

• Medical E-books: These e-books provided detailed clinical terminology, covering
topics such as medical procedures, diagnostics, and patient care. The texts were rich
in domain-specific vocabulary, making them suitable for fine-tuning a model for
medical text generation [Ιατ15; Σφη+15; Τσι+15].

• QTLP Greek CC Corpus for the Medical Domain: This corpus, sourced from
Greek web documents automatically classified as medical included a variety of genres

1Aeneas is freely available at https://www.readbeyond.it/aeneas/
2Medical Text Dataset
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such as reference materials, news/journalism, discussions, commercial content, and
other medical texts [24].

• Istorima Podcast Dialogues: Dialogues from medical-domain podcasts, sourced
from istorima.org, were included to capture conversational medical con-
tent. These dialogues introduced informal and contextually rich language, helping
dataset’s diversity.

This custom dataset helped the GPT-2 model become familiar with the specific vocabulary
and terminology used in Greek medical sentences. As a result, it was better able to rank
the candidate sentences produced by the Whisper model according to perplexity, allowing
the pipeline to select the most accurate and contextually appropriate transcriptions.

4.3 Error-Augmented Dataset for mT5

In an initial experiment, we also trained a mT5 model for Greek text correction using a
custom dataset of 56,000 sentence pairs. The dataset was created by introducing artificial
errors, such as vowel swaps, duplicated letters, grammatical issues, and punctuation
mistakes into clean Greek text sourced from the previous medical corpus and Wikipedia.
Each example consisted of a corrupted sentence paired with its correct version, formatted
as input-output pairs for sequence-to-sequence training. An example of this setup is shown
in Table 4.2.

Corrupted Sentence Clean Sentence

Ιδανηϰο για προληψοη αλλαα ϰαι ϑερ-
απεια των ϰαταϰλισεων.

Ιδανιϰό για πρόληψη αλλα ϰαι ϑεραπεία
των ϰαταϰλίσεων.

H πιεση του αερα ρυϑµιζετα ανυλιογα µε
το βαρος του ασϑενη.

H πίεση του αέρα ρυϑµίζεται ανάλογα µε
το βάρος του ασϑενή.

Tab. 4.2: Examples of corrupted–clean pairs from the error-augmented dataset.

While the model learned to correct a variety of errors effectively in this synthetic environ-
ment, the artificial nature of the data limited its ability to generalize to real-world mistakes.
For this reason, the approach was ultimately not adopted in the final system.
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5Evaluation

This chapter presents the evaluation metrics and the results obtained from the models
that we developed within the scope of this thesis. It first introduces the evaluation metrics
used to assess the performance of the models, followed by detailed results for each model
and the integrated pipeline, highlighting their effectiveness in processing Greek medical
speech.

5.1 Evaluation Metrics

To evaluate the performance of our models we employed a set of standard metrics tailored
to their respective tasks. Each metric is described below, providing the foundation for the
results that we obtained.

5.1.1 WER and CER

Word Error Rate (WER) and Character Error Rate (CER) are standard metrics for evaluating
the accuracy of automatic speech recognition systems, such as the Whisper models used
in our work. WER measures the percentage of errors in the transcribed text at the word
level, calculated as:

WER = S + D + I

N
× 100 (5.1)

where S is the number of incorrect words, D is the number of missing words, I is the
number of insertions extra words, and N is the total number of words in the reference
transcription.

CER is similar but operates at the character level, making it more sensitive to fine-grained
errors such as misspellings or punctuation mistakes:

CER = Sc + Dc + Ic

Nc
× 100 (5.2)
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where Sc, Dc, and Ic represent character-level substitutions, deletions, and insertions, and
Nc is the total number of characters in the reference.

Both metrics were used to evaluate the original and fine-tuned Whisper models, as well as
the Whisper-GPT-2 pipeline, on the test set of the dataset. Lower WER and CER values
indicate higher transcription accuracy, critical for medical dictation applications where
precise terminology is essential.

5.1.2 Perplexity

Perplexity is a key metric for evaluating language models, such as the Greek GPT-2 model.
It measures the model’s predictive uncertainty, quantifying how well it predicts the next
token in a sequence. Perplexity is defined as:

PPL(W) = exp
(

− 1
N

N∑
i=1

log p(wi | w1:i−1)
)

(5.3)

where p(wi|w1:i−1) is the probability of token wi given the previous tokens, and N is the
total number of tokens in the test set.

Lower perplexity indicates better model performance, reflecting stronger adaptation to the
target domain, such as Greek medical text. Perplexity was used to assess GPT-2’s ability to
rank Whisper transcriptions by assigning lower perplexity scores to more contextually
appropriate outputs. This metric was critical for evaluating the Whisper-GPT-2 pipeline’s
ranking effectiveness.

In practice, perplexity can also serve as a proxy for cross-entropy loss, since:

PPL = exp(CrossEntropy) (5.4)

This equivalence helps interpret model performance in terms of both information theory
and practical error rates. For language modeling tasks, perplexity directly reflects how
"surprised" the model is by the test data. A perfect model assigning a probability of 1 to
the correct next token would have a perplexity of 1, whereas a model making uniform
predictions would have a perplexity equal to the vocabulary size.
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In our work, comparing perplexity across outputs allowed us to identify transcription
variants that better aligned with the model’s learned representations of fluent and domain-
specific Greek.

5.1.3 BLUE

Bilingual Evaluation Understudy (BLEU) metric [Pap+02] is a widely used method for
evaluating the quality of machine-generated text by comparing this text to reference texts.
It measures the similarity by calculating the overlap of n-grams, which are sequences of n
consecutive words. A higher number of matching n-grams indicates better quality, with
BLEU scores ranging from 0 to 1, where a score of 1 represents a perfect match between
the candidate and reference texts. BLEU is calculated for multiple values of n, and the
scores are combined using the geometric mean. The precision pn for each n-gram length
is calculated as:

pn = Number of matched n-grams
Total number of n-grams in candidate (5.5)

The precision scores for different n-gram lengths are combined into a geometric mean to
balance their contributions. The geometric mean is calculated as:

Geometric Mean = exp
(

N∑
n=1

wn log pn

)
(5.6)

To account for differences in length between the candidate and reference texts, a brevity
penalty (BP) is applied. The brevity penalty is defined as:

BP =

1 if c > r

e1− r
c if c ≤ r

(5.7)

where c is the length of the candidate text and r is the length of the reference text.

The final BLEU score is obtained by multiplying the geometric mean by the brevity
penalty:

BLEU = BP · exp
(

N∑
n=1

wn log pn

)
(5.8)
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This formula ensures that both precision and length appropriateness are considered in the
evaluation.

The BLEU metric is valued for its computational simplicity and interpretability, making
it a standard in machine translation and text generation tasks. However, its reliance
on exact n-gram matches limits its ability to capture semantic or contextual similarities.
Moreover, the brevity penalty may penalize longer candidate texts that are semantically
valid, potentially lowering scores despite high quality. These limitations suggest that BLEU
is best used alongside other metrics for a comprehensive evaluation.

5.2 Experimental Results

In this section we are going to present the evaluation results for the Whisper and Greek
GPT-2, with a focus on the final Whisper-GPT-2 pipeline. Each model was evaluated on its
respective test dataset to assess its effectiveness in handling Greek medical speech tasks.
The results justify the selection of the pipeline as the final system.

5.2.1 Whisper ASR Performance

The Whisper model was fine-tuned in three configurations (Small, Medium, Large-v2) on
a composite dataset comprising Mosel, Mozilla Common Voice 11.0, and Google Fleurs,
standardized to 16,000 Hz with an 80/10/10 split [Wan+21; Gai+24; Ard+19; Con+22]. To
evaluate the performance of those models we compered the original pre-trained models
with those that were fine-tuned on our data. The results are summarized in Table 5.1, show-
ing the Word Error Rate (WER), the normalized Word Error Rate (nWER) and Character
Error Rate (CER) across different sizes.

Tab. 5.1: Comparison of Whisper Model Configurations for Greek ASR

Model/Configuration Model Size WER (%) nWER (%) CER (%)

Original Whisper Small 242M 43.62 36.69 21.61
Original Whisper Medium 764M 34.71 27.21 19.30
Original Whisper Large-v2 1.54B 26.41 18.86 14.55
Fine-tuned Whisper Small 242M 30.31 26.54 13.28
Fine-tuned Whisper Medium 764M 19.45 16.17 8.96
Fine-tuned Whisper Large-v2 1.54B 14.90 12.06 8.45

It becomes visible that the fine-tuning process improves the performance across all model
sizes. In particular, Whisper Small reduces the WER from 43.62% to 30.31%, while Whis-
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per Medium achieves an even greater improvement from 34.71% to 19.45% and Whisper
Large from 26.41% to 14.90%. Similarly, the CER values are nearly halved, confirming the
effectiveness of fine-tuning.

In addition to the raw WER, we also report the normalized Word Error Rate (nWER),
which is computed on transcripts that have been lowercased, with punctuation removed,
and standardized for whitespace. This normalization reduces the impact of surface-level
orthographic variations that do not affect clarity, ensuring that the evaluation focuses on
real transcription errors rather than formatting differences. As shown in Table 5.1, the
nWER values consistently follow the same improvement trends as WER and CER.

Overall, the experiments indicate that fine-tuning on Greek data is a key factor in achieving
lower error rates and in improving Whisper’s adaptation to the Greek language.

5.2.2 Greek GPT-2 Performance

The Greek GPT-2 model was fine-tuned on a domain-specific corpus designed to adapt
the model to the medical context. Since no large-scale Greek medical speech corpus
was available, we constructed a training set by combining two complementary types of
data: medical texts sourced from books and other written resources, which provided the
necessary domain-specific terminology, and transcribed speech data, which exposed the
model to the idiomatic structures and variations of spoken Greek. This hybrid approach
allowed the model to learn not only specialized vocabulary but also the stylistic and
syntactic patterns typical of oral communication, which are highly relevant for correcting
automatic speech recognition (ASR) outputs.

The evaluation of the fine-tuned model was conducted using perplexity on both the
medical text dataset, the speech transcription dataset, and their combination. Perplexity
measures how well a language model predicts a sequence of words, with lower values
indicating stronger predictive capacity. Across all three evaluation settings, the fine-
tuned model consistently outperformed the original pre-trained Greek GPT-2. More
specifically, perplexity was substantially reduced on both medical texts and speech data,
confirming that the model successfully learned domain-specific terminology as well as the
idiomatic patterns of spoken language. The combined results further highlight the overall
effectiveness of the fine-tuning strategy in adapting GPT-2 for error correction in Greek
medical ASR (Table 5.2).
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Tab. 5.2: Perplexity of Greek GPT-2 (Pre-trained vs Fine-tuned) on Medical and Speech Datasets

Dataset Pre-trained GPT-2 Fine-tuned GPT-2 Improvement (%)

Medical Texts 45.73 35.36 22.7
Speech Transcriptions 103.21 67.67 34.4
Combined (All Data) 53.15 39.86 25.0

5.2.3 Whisper-GPT-2 Pipeline Performance

The performance of the Whisper-GPT-2 pipeline for Greek ASR was evaluated using WER,
CER, and BLEU metrics, as shown in Table 5.3. The evaluation was conducted on the test
dataset, which was considered representative of the overall distribution.

Tab. 5.3: Whisper-GPT-2 Pipeline Performance for Greek ASR

Pipeline Configuration WER (%) nWER (%) CER (%) BLEU (%)

Whisper Small (Baseline) 30.31 26.54 13.27 82.35
Whisper Small + GPT-2 (Reranked) 27.38 23.57 11.80 84.17
Whisper Medium (Baseline) 19.45 16.17 8.96 88.93
Whisper Medium + GPT-2 (Reranked) 18.23 14.86 8.35 89.60
Whisper Large-v2 (Baseline) 14.90 12.06 8.45 92.03
Whisper Large-v2 + GPT-2 (Reranked) 14.69 11.98 8.66 92.06

The pipeline incorporates a re-ranking step in which the Whisper model first generates
N candidate transcriptions for each audio segment. Subsequently, the fine-tuned GPT-
2 model evaluates these candidates and selects the most probable sentence. We tested
several values for N (3, 5, and 8) and found that N=5 provides the best balance between
transcription quality and computational efficiency. Increasing N further offered only
marginal improvements while significantly increasing computation time, while smaller N
values did not allow the GPT-2 model to fully leverage its re-ranking capabilities.

From the results, can be understood that re-ranking consistently improves performance
across all tested Whisper model sizes. The WER reduction is approximately 9.66% for
the Whisper Small model, 6.27% for the Whisper Medium model, and 1.41% for the Whis-
per Large-v2 model. Corresponding gains are also observed in CER and BLEU scores,
highlighting that re-ranking enhances both word-level accuracy and overall sentence
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quality. Looking at the full pipeline compared to the original models, the full Whisper-
GPT-2 pipeline achieved WER reductions of 37.23% for Whisper Small, 47.45% for Whisper
Medium, and 44.38% for Whisper Large-v2.

Another important consideration is choosing the ideal model for practical usage. In
environments where transcription needs to be fast and computational resources are limited,
it is important to select the model with the best balance between performance and efficiency.
As presented in the Table 5.3 while Whisper Large-v2 achieves a lower WER, it requires
significantly more computational resources, making it less practical for routine deployment.
Whisper Medium, on the other hand, provides strong performance with substantially
reduced WER and CER, while being faster than Large-v2, making it the optimal model for
real-world applications.

These findings highlight the effectiveness of combining a strong pre-trained ASR model
with a domain-adapted language model. The re-ranking stage is very important especially
for medical dictation, where even small improvements in transcription accuracy can be
vital for understanding specialized terminology and avoiding critical misinterpretations.
Overall, this demonstrates that the Whisper-GPT-2 pipeline is an effective approach for
improving transcription accuracy and producing higher quality outputs in Greek medical
dictation.
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6Conclusions and Future Work

6.1 Conclusions

The primary objective of this thesis was to develop and evaluate an effective pipeline
for Automatic Speech Recognition (ASR) tailored to Greek medical dictation. The pro-
posed Whisper-GPT-2 pipeline integrates fine-tuned Whisper models (Small, Medium, and
Large-v2) for transcription with a fine-tuned Greek GPT-2 model for re-ranking, leverag-
ing domain-specific medical texts and transcribed speech data to improve transcription
accuracy.

The fine-tuned Whisper models achieved major reductions in Word Error Rate (WER) and
Character Error Rate (CER) as shown in (Table 5.1). The Greek GPT-2 model, fine-tuned
on a hybrid corpus of medical texts and speech transcriptions, showed reduced perplexity
indicating enhanced predictive capability for medical domain-specific language. The
integrated Whisper-GPT-2 pipeline further improved performance by incorporating a re-
ranking step. This approach yielded consistent gains across all testedmodel sizes (Table 5.3),
highlighting the value of combining a robust ASR model with a domain-adapted language
model to address challenges in Greek medical dictation, such as specialized terminology,
homophones, and spoken-language variations. The exclusion of the mT5 model from the
final pipeline was justified by its underperformance.

A key contribution of this work is the curation of a high-quality speech-to-text dataset,
addressing issues in the VoxPopuli subset of the Mosel dataset [Wan+21], such as missing
transcriptions and timestamps. This dataset, released openly to promote reproducibility 1,
enhanced the pipeline’s performance and supports its potential to reduce the workload of
medical professionals by improving the accuracy and fluency of clinical documentation.
The Whisper-GPT-2 pipelines (Small, Medium, and Large-v2 configurations) are publicly
hosted on Hugging Face Spaces 2, where they currently run on CPU. For optimal real-time
transcription, deployment on GPU hardware such as an NVIDIA GPU with at least 16GB
memory is recommended.

1Hugging Face – Vardis/Greek_Mosel
2Hugging Face Spaces
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6.2 Future Work

The main priority for future research is to incorporate actual medical speech data, which
was not available for this study. The current pipeline relied on general speech transcrip-
tions and medical texts rather than real-world clinical dialogue. Incorporating authentic
Greek medical speech data, such as recordings from doctor-patient interactions or clinical
dictations, is essential for capturing the specialized terminology and acoustic variations in
medical environments. This would significantly enhance the pipeline’s robustness and
accuracy, enabling it to better manage the complexities of real-world medical dictation and
reduce errors in critical contexts, such as diagnostic reports or treatment plans. Collecting
and annotating such data would be a transformative step toward practical deployment in
healthcare environments.
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