35,
OIKONOMIKO =" ATHENS UNIVERSITY

>
MANEMNIEZETHMIO OF ECONOMICS
AOHNON AND BUSINESS

A~
—

School of Information Sciences and Technology
Department of Informatics

Athens, Greece

Bachelor Thesis
in

Computer Science

Retrieval Augmented Generation on Regulatory
Documents

loannis Chasandras

Supervisor: Prof. lon Androutsopoulos
Co-supervisor: Odysseas Chlapanis

June 2025

Ioannis Chasandras
Retrieval Augmented Generation on Regulatory Documents
June 2025

Supervisor: Prof. Ion Androutsopoulos

Athens University of Economics and Business

School of Information Sciences and Technology

Department of Informatics

Information Processing Laboratory, Natural Language Processing Group

Athens, Greece

Abstract

This thesis investigates the application of Retrieval Augmented Generation (RAG) in
regulatory procedures through the emerging field of Regulatory NLP. Based on real-world
regulatory documents, the study evaluates the performance of commercial retrieval models
and introduces advanced, hybrid retrieval techniques tailored for legal compliance tasks.
Given the critical need for precision and completeness in the legal domain, new algorithms
that utilize Large Language Models (LLMs) are developed to enhance regulatory question-
answering. The work also includes an adversarial evaluation of RePASs, a metric focused
on legal obligations. Through participation in the RIRAG-2025 shared task, the thesis
demonstrates both the promise and current limitations of Al systems in regulatory settings,

emphasizing the need for further exploration in this field.

[Teptindm

H mapotoa mruylann epyacio eEepevva tnv epappoyn tng texvoroyiog Retrieval Aug-
mented Generation (RAG) oe diadwaoieg oV POPOVV KOVOVIGHOVS GTO AVEPYOHEVO
nedio tng Eneepyaciog Pvownc FAwoooag yia Pvdpiotud xeipeva (Regulatory NLP). Ba-
oLOPEVY) OE TPOYHOTIHG EYYPOUPA HOVOVIGHOV, 1) HeAETT) avTh) o€loloyel Tnv enidoomn ep-
TOPWUOV HOVTEAWV AVAUTIOTIG TTANPOPOPLOV KO ELCAYEL TTPOTYREVES, LPPLOLKEG TEXVIIKEG
OVANTNONG TTANPOPOPLOVY ELOUA TTPOCOPHOGHEVES YLOL EPYATIEG VOUIKTG CUHHOPPWOTC.
Aedopévng Tng uploung avéyung yio oaxpifeto o TANPOTNTA 6TO VoK Tedio, VEOL oA~
yopiLdpot avosttoydnray ot omoiot alomolovy peyddo yhwoowd povtédo (LLMs) yio tnv
eVioYLOT] TWV ATTOVTHOEWV O8 PLIPLOTIHEG epwThoels. H epyacia mepihapPavet tnv ofL-
oAbynom tov RePASs, plag HETPLUNG TTOV ETMIKEVTPOVETOL G VOUUES DTTOYPEWMTELS. Méow
TNG GLHHETOXNG OTOV OXeTHO dledvr) dtxywviopd RIRAG 2025, 1) cLyrexpuévn mTTUYL-
our] epyooice ovadevieL TOGO TIG VITOOYECELS OGO AL TOVG TEPLOPLOPOVG TWV GUOTH-
patov Texyvntig NonpooOvng oe pudpiotind meptparlovta, Toviovtog tnv avayxn ylo

TEPOLTEPW EPELVA GTO eV AOYw medio.

Acknowledgements

I would like to express my respect and gratitude to my professor and supervisor, Ion
Androutsopoulos, for granting me the opportunity to work alongside him in this fascinating
research field. His mentorship has been instrumental in shaping my academic development
and research perspective. I am also thankful to Ph.D. candidate Odysseas Chlapanis for his
invaluable assistance, constructive feedback and kind advice, which helped me navigate
complex concepts with greater clarity. Finally, I am grateful to my family and friends for

their love, patience, and belief in me.

Vii

Contents

Abstract
Acknowledgements
1 Introduction
1.1 Motivation and Problem Statement
1.2 Thesis Structure
2 Background and Related Work

21 Background
21,1 Regulatory NLP
2.1.2 Retrieval Augmented Generation

22 RelatedWork L
2.2.1 Keyword-Based Lexical Retrieval with BM25
2.2.2 Dense Semantic Retrieval
2.23 HybridRetrieval o oL
224 Re-ranking
2.25 Tterative Improvement
2.2.6 Adversarial Attacks Lo L Lo

RIRAG 2025

3.1 Abouttheshared-task o

32 Datasets

33 RePASs

Implemented methods and systems

4.1 Datapreparation
42 Retrieval
421 BM25. . . .
422 NeuralRetrieval
423 Fusion-BasedRetrieval
424 Reranking
43 Preprocessing e e
4.3.1 Filtering and Obligation Extraction
43.2 Promptoptimization

vii

10
11
12

15
15
16
17

21
21
22
22
23
24
25
26
26
27

44 Generation
441 Naive Obligation Concatenation . . .
442 LLM Obligation Concatenation . . .
443 Verify and Refine with RePASs . . .

5 Experiments
51 Datasets
5.2 Evaluation measures
5.3 Experimentalresults.
53.1 Retrieval
53.2 Preprocessing
53.3 Generation
5.3.4 RIRAG 2025 Results and Comparison

6 Conclusions
Bibliography
Prompts

List of Acronyms
List of Figures
List of Tables

List of Algorithms

33
33
33
34
34
39
40
42

45

47

50

51

53

54

55

Introduction

The increasing complexity and volume of regulatory requirements have made legal com-
pliance a significant and growing challenge for organizations. Regulatory NLP (RegNLP)
[Goa+23] has emerged as a field focused on applying Natural Language Processing tech-
niques to help interpret, manage, and organize regulatory texts. Ensuring compliance with
regulations often requires significant time, expertise, and resources. Between 1980 and
2020, the U.S. public and private sectors collectively spent an estimated approximately
292 billion hours adhering to more than 36,000 regulations, representing roughly 3.2% of
total annual working hours [Kal23]. At the same time, compliance failures can result in
severe financial penalties. For example, FINTRAC recently imposed a 7.5 million Canadian
dollar fine on the Royal Bank of Canada for not reporting suspicious transactions.! These
examples highlight the urgent need for more efficient ways for experts to access relevant
regulatory documents and evaluate compliance with applicable regulations. The main
focus of this thesis is Retrieval-Augmented Generation (RAG), which offers a promising
solution by combining information retrieval and natural language generation. In this
approach, given a question, a retrieval system first identifies and extracts the most relevant
regulatory passages, which are then used by a generation model to produce an accurate,
context-aware answer to the question. This not only reduces the time and effort required
for manual document review, but also helps ensure that responses are grounded in the

actual regulatory text, thus improving both efficiency and reliability in compliance tasks.

In this study, we investigate a range of retrieval methods aimed at identifying relevant
passages from regulatory documents in response to a given question. We evaluate the
performance of commercially available neural retrievers that have promised high-quality
results in domains related to ours. In addition, we incorporate lexical retrieval approaches
and explore hybrid retrieval strategies that combine multiple methods to better adapt to
domain-specific requirements. For the generation component, we implement a set of algo-
rithms designed to produce accurate and well-grounded responses based on the retrieved
content. Furthermore, we conduct an adversarial examination of RePASs [Gok+24], a
reference-free and model-based metric, to assess its suitability for evaluating generated

responses in the context of regulatory compliance.

The work carried out in this thesis was based on the participation of the AUEB NLP Group
in the Regulatory Information Retrieval and Answer Generation shared task (RIRAG-2025)

'https://www.bloomberg.com/news/articles/2023-12-05/
rbc-hit-with-fine-for-breaking-canadian-money-laundering-rules

https://www.bloomberg.com/news/articles/2023-12-05/rbc-hit-with-fine-for-breaking-canadian-money-laundering-rules
https://www.bloomberg.com/news/articles/2023-12-05/rbc-hit-with-fine-for-breaking-canadian-money-laundering-rules

2

Generated LLM

User Response

N —
Regulatory Legal Corpus Relevant Regulations

Question

Fig. 1.1: RAG workflow diagram

[Gok+25], which was part of the RegNLP Workshop that took place in January 2025 in
conjunction with COLING 2025.2% The competition focused on improving regulatory
compliance through intelligent information retrieval and answer generation. The task
is based on the ObliQA (Obligation Question Answer) dataset, consisting of compliance-
related questions and associated regulatory texts from Abu Dhabi Global Markets (ADGM).*
Participants were challenged to build systems capable of accurately retrieving relevant
legal passages and generating precise, coherent answers. The task included two subtasks:
Passage Retrieval and Answer Generation. The first focused on identifying relevant
obligations and rules from regulatory documents in response to a question, while the second
required the synthesis of this information into clear, accurate answers. We submitted
three systems that secured the 4th place in the Passage Retrieval subtask and the 3rd place
in the Answer Generation subtask among 20 competitors. The code developed for this

participation is publicly released.?

1.1 Motivation and Problem Statement

The complexity and high stakes of regulatory compliance demand tools that ensure accu-

rate, complete, and consistent interpretation of large, complex legal texts. RAG provides a

http://nlp.cs.aueb.gr

*https://coling2025.0rg/

‘https://www.adgm.com/
*https://github.com/nlpaueb/verify-refine-repass

Chapter 1 Introduction

http://nlp.cs.aueb.gr
https://coling2025.org/
https://www.adgm.com/
https://github.com/nlpaueb/verify-refine-repass

promising framework by retrieving relevant regulatory passages and generating context-
aware answers. However, standard evaluation metrics often fall short in capturing the
strict precision and obligation coverage required in legal settings. This thesis tackles two
issues: improving RAG systems for regulatory question answering (through RIRAG-2025)
and evaluating RePASs, a reference-free, model-based metric designed to assess grounding,
contradiction, and completeness in generated compliance-related answers. The main pur-
pose of this study is to help advance the development of more robust compliance support

systems by exploring both system design and evaluation in RegNLP.

1.2 Thesis Structure

Chapter 2: Background and Related Work
This chapter provides a short introduction to the field of Regulatory NLP and an overview
of existing RAG pipelines and technologies. It also reviews related work on iterative

improvement and adversarial attacks.

Chapter 3: RIRAG 2025

In Chapter 3, a more detailed overview of RIRAG-2025 is presented. An analysis of the
ODbliQA dataset is conducted, including its structure, differences among documents, and
unique characteristics. An explanation of the RePASs metric, which was introduced along

with the dataset, is also provided.

Chapter 4: Implemented methods and systems

This chapter is dedicated to describing the methods and systems that were implemented
during this thesis. It addresses the retrieval approaches that were tested, as well as the

generation algorithms and their variations.

Chapter 5: Experiments

Chapter 5 presents the experimental setup used to evaluate the proposed systems. It
describes the evaluation measures and results for each component of the pipeline: retrieval,
pre-processing, and generation. The chapter provides insights into the performance of

different configurations and methods.

Chapter 6: Conclusions

The final chapter summarizes the main methods and findings of this thesis. It also highlights

the limitations of reference-free metrics and proposes directions for future work.

1.2 Thesis Structure

Background and Related Work

2.1 Background

2.1.1 Regulatory NLP

Regulatory NLP (RegNLP) is a new subfield of legal artificial intelligence and natural
language processing introduced by Goanta et al. [Goa+23], whose aim is to tackle the
challenges arising at the intersection of NLP technologies and regulatory processes. The
main topic of RegNLP is the investigation of NLP applications in regulatory documents
and the development of systems that can assist regulatory processes in the service of
public interest, legal compliance, and innovation. This includes tasks such as extracting
obligations, mapping risk factors, aligning automated systems with legal frameworks, and

supporting policy analysis.

The development of RegNLP reflects a broader shift in NLP research toward proactively
shaping policy and regulation, rather than passively responding to the risks of new tech-
nologies. Although the NLP community has made significant progress in identifying
and mitigating technical harms, it has often done so without integrating insights from
regulatory studies, which offer well-established methods for assessing and managing risk

and uncertainty in the context of innovation [Goa+23].

At the same time, regulatory bodies are under increasing pressure to respond to rapid
technological change, a challenge often described in the literature as the ‘pacing gap’
between the speed of innovation and the slower evolution of legal and regulatory responses
[Goa+23]. In this context, RegNLP holds promise as a way to bridge this gap by providing
tools and insights that allow regulators to access and interpret technical knowledge ad
hoc, effectively [Goa+23].

Goanta et al. [Goa+23] set the ultimate aim of RegNLP not only to support the regulation of
Al and NLP technologies, but also to enable NLP as a field to contribute more meaningfully

to broader governance and regulatory processes.

6

2.1.2 Retrieval Augmented Generation

Retrieval-Augmented Generation (RAG) is a framework that combines large language
models with external knowledge sources to improve the factual accuracy and address
some of the limitations of purely parametric models, such as hallucinations and static
knowledge [Lew+20]. By integrating a nonparametric memory, like a document index,
with a generative language model, RAG enables systems to retrieve and incorporate
relevant information at inference time. This approach has proven especially effective in
knowledge-intensive tasks where up-to-date or domain-specific information is needed
[Gao+24]. Given the dynamic and complex nature of regulatory documents, RAG’s ability
to supplement the generation with reliable external evidence and also keep up with new
regulations by updating its external knowledge base efficiently makes it a compelling fit
for the tasks of RegNLP.

Retrieval is a key step in RAG, where the system identifies relevant text chunks from a large
collection of documents based on the user query. The retrieval step builds on a variety of
traditional and modern information retrieval techniques, with vector-based methods and
neural embeddings now dominating the field. This typically involves representing both
the query and the documents as vectors using the same embedding model and computing
semantic similarity scores between them [Gao+24]. The top ranked chunks are selected
as contextual evidence and passed along to the generation module. Models like Dense
Passage Retriever (DPR) are often used for this purpose due to their effectiveness in dense
retrieval scenarios [Lew+20]. In the context of RegNLP, this retrieval component can be
customized to navigate large legal corpora, making it easier to locate precise legislative or

policy-relevant content.

Generation in RAG takes place after retrieval, where the language model is tasked with
producing a response based on both the query and the retrieved documents. Depending
on the use case, the system may generate responses solely from the retrieved content or
integrate this information with its own parametric knowledge [Gao+24]. This flexibility is
particularly useful for generating explanations grounded in regulatory texts, which often

require both precision and contextual understanding.

Evaluation of RAG systems typically focuses on performance across knowledge-intensive
tasks such as open-domain question answering or fact verification. Usually, the evaluation
of the retrieval and generation components of a RAG system can be evaluated separately.
Experiments have shown that RAG models achieve state-of-the-art results on benchmarks
like Natural Questions [Kwi+19] and WebQuestions [Ber+13], outperforming traditional

extractive methods even in tasks not originally designed for generation [Lew+20].

Chapter 2 Background and Related Work

2.2 Related Work

2.2.1 Keyword-Based Lexical Retrieval with BM25

Okapi BM25 [Rob+95] is a widely used Bag-of-Words ranking function in information
retrieval that estimates the relevance of a document to a query based on term frequency and
document statistics. BM25 addresses two key limitations of earlier models: (1) accounting
for the frequency of query terms in documents, and (2) compensating for variation in

document lengths in full-text corpora.

The BM25 scoring function is based on the idea that the relevance of a document increases
with the frequency of a query term, but with diminishing returns, and that longer doc-
uments should be normalized to prevent length bias [MRS08; Rob+95]. Following the
formulation used in the Okapi system developed by Robertson et al. [Rob+95], the BM25

score of a document d with respect to a query () is calculated as:

. tfit) - (k1 +1)
BM25 d,Q) =) _idfit)-
score(d, Q) %lﬂ) U{(t)+k1-(1—b+b'ag$?)

where:
« tf(t) is the frequency of term ¢ in document d,
« dl(d) is the length of document d,
« avdl is the average document length in the collection,
« k1 is a positive constant that controls term frequency saturation,
« b € [0, 1] controls the strength of document length normalization.

The inverse document frequency (IDF) component is defined as:

N — .
idf(t) = log (M + 1)

2.2

where N is the total number of documents in the collection and n; is the number of
documents containing the term ¢. This IDF formulation is rooted in the Robertson-Sparck-
Jones probabilistic model and provides an effective estimate of term informativeness in
the absence of relevance feedback [Rob+95]. It increases the influence of rarer terms while

suppressing common terms that heavily influence ranking.

2.2 Related Work

8

In essence, BM25 strikes a balance between empirical effectiveness and computational
efficiency. It remains a cornerstone of classical information retrieval, widely adopted in
both academic and industrial settings, and frequently used as a strong non-neural baseline
for retrieval tasks [MRS08].

2.2.2 Dense Semantic Retrieval

Traditional information retrieval systems, such as BM25, rely on sparse bag-of-words
representations to rank documents based on lexical overlap with a query. Although these
methods are efficient and interpretable, they often fail to capture semantic similarity
between words or phrases. This limitation motivated the development of dense retrieval,
where both queries and documents are embedded in a continuous multidimensional vector
space and similarity is calculated using a fixed metric such as cosine similarity. Dense
retrieval allows for better generalization by capturing the meaning of words beyond their

surface forms.

One of the earliest works in dense retrieval is ORQA (Open-Retrieval Question Answering)
by Lee et al. [LCT19], which introduced a fully neural retriever trained using an Inverse
Cloze Task. In ORQA, each question and document is encoded using a BERT-based encoder,
and relevance is measured via the dot product between their embeddings. This method
showed that dense retrievers could outperform BM25 in open-domain QA settings, marking
a significant shift in retrieval paradigms. Building on this, Karpukhin et al. [Kar+20]
introduced Dense Passage Retrieval (DPR), which simplified the architecture by using two
separate encoders (dual encoder) for queries and passages and trained the model using
hard negatives. DPR demonstrated strong improvements over traditional retrievers and

helped establish dense retrieval as a competitive approach.

Although both ORQA and DPR define how to score query-document pairs, Reimers and
Gurevych [RG19] addressed the problem of how to compute sentence embeddings ef-
fectively by proposing Sentence-BERT (SBERT). Unlike the original BERT, which is not
optimized for producing fixed-size sentence representations, SBERT uses a siamese net-
work to map sentences into dense vectors that can be compared using cosine similarity.
This drastically reduces retrieval time while maintaining high accuracy, making it suitable
for semantic search, clustering, and question-answering. SBERT proved especially effec-
tive in capturing semantic similarity between sentences, which is crucial for meaningful

retrieval in many NLP tasks.

Cosine similarity is commonly used to compare dense embeddings in retrieval systems.

Given two vectors u and v, the cosine similarity is defined as

cos(6) vV

v

Chapter 2 Background and Related Work

where ||u|| is the Euclidean norm of u. When embeddings are normalized, cosine similarity
simplifies to the dot product. This metric measures the angle between the two vectors,
indicating how similar their directions are in the high-dimensional embedding space. Since
dense retrieval is based on semantic closeness rather than lexical overlap, cosine similarity
provides an effective and interpretable way to rank documents according to their meaning
[RG19; Kar+20].

2.2.3 Hybrid Retrieval

Hybrid retrieval involves multiple retrieval systems and usually combines the strengths of
lexical and semantic search to improve document relevance ranking [BGI23]. Traditional
lexical methods, such as BM25, rely on exact keyword matching and are practical and
systematic in many cases, but suffer from the vocabulary mismatch problem and fail to
capture semantic meaning. On the other hand, semantic search leverages pre-trained
language models like BERT to embed queries and documents in a dense vector space,
allowing for more nuanced similarity based on meaning. However, a known limitation of
dense embeddings is their tendency to conflate semantically similar but lexically distinct
entities. For example, “I want a flight to Paris” and “I want a flight to London” may be
embedded very closely, making it harder to distinguish between specific named entities.
Sparse retrieval methods like BM25 are often more effective in capturing exact term matches
and entity distinctions. Recognizing that these two approaches offer complementary
strengths, recent research has focused on fusing their outputs into a single-ranked list,
known as hybrid search [BGI23].

A fusion method that combines the results of two retrieval systems is rank-fusion. This
approach works by computing a weighted combination of scores produced by lexical
and neural retrievers, such as BM25 and BERT-based models, respectively [BGI23]. One
of the earliest and most influential techniques for combining retrieval scores is linear
interpolation, introduced by Bartell et al. [BCB94], where the score of each system is
scaled and summed according to the assigned weights. In this work, the interpolation
approach used by Lin et al. [LNY21] and Wang et al. [WZZ21] is adopted, which apply
min-max normalization to ensure that lexical and semantic scores are on a comparable

scale. Specifically, the final document score is computed as:

s(d) = a - Spmzs(d) + (1 — @) - Speural(d), (2.3)

where o € [0, 1] controls the weight between the two systems. The normalized score § is

calculated as:

2.2 Related Work

10

s(d) — Smin

5(d) =
() Smax — Smin

(2.4)

where s(d) is the original score of document d, §(d) is the normalized score, and sp;, and
Smax are the minimum and maximum scores, respectively, among all candidate documents
for the query. Bruch et al. [BGI23] emphasize the importance of normalization, noting
that lexical and semantic scores often have incompatible ranges. Without normalization, a

fixed interpolation weight may lead to inconsistent or biased fusion behavior [BGI23].

Wang et al. [WZZ21] explored the effectiveness of score interpolation between BERT-based
dense retrievers (DRs) and traditional sparse retrieval models such as BM25. Their empirical
analysis shows that while DRs significantly outperform BM25 in shallow evaluation metrics
(e.g., MRR@10), they tend to underperform in deep metrics (e.g., MAP, Recall@1000) when
used alone. This suggests that BM25 provides weak but complementary lexical signals that

dense embeddings often miss and that interpolation can improve retrieval robustness.

Another method that combines the results of several retrieval methods is Reciprocal Rank
Fusion (RRF) [CCBO09]. RRF is an unsupervised rank aggregation technique that assigns a
score to each document based on how highly it is ranked across multiple systems. The

score is calculated using the formula:

1

k+r(d) @5)

RRFscore(d) = Z
reR

where 7(d) is the rank of the document d in the system r, and k is a constant (typically set
to 60) used to reduce the dominance of top-ranked documents. This formula ensures that
documents ranked highly by at least one system are given priority while still accounting
for contributions from other rankings. Despite its simplicity, RRF has been shown to

outperform or match more complex fusion methods.

2.2.4 Re-ranking

Re-ranking is a crucial component in modern information retrieval pipelines, particularly
in two-stage retrieval systems. After an initial retrieval step returns a candidate set of
potentially relevant documents, typically using lexical methods like BM25 or vector-based
similarity search, a re-ranker reorders this list to promote the most relevant results to the
top [Gao+24]. By focusing only on a small candidate set, re-ranking improves accuracy,

acting both as a filter and an enhancer in the retrieval process.

Chapter 2 Background and Related Work

Formally, re-ranking involves taking a list of k documents R = {d;, ds, ..., dj } returned
by a first-stage retriever and producing a new permutation R’ = {d}, d5, ..., d},} such that
the most relevant documents appear earlier in the list [LNY21]. Since applying expensive
transformer-based models to an entire corpus is impractical, re-rankers instead evaluate
only the reduced candidate set, computing fine-grained relevance scores between each
document and the query. Early re-rankers used rule-based heuristics, but recent advances
rely on cross-encoder neural models such as BERT, which jointly encode the query and
each document to capture deep semantic interactions [NC20]. Notable examples include
BERT-based re-rankers [NC20], Cohere rerank and LLMs like GPT [Gao+24].

Re-rankers offer several advantages over first-stage retrievers. Unlike bi-encoders that
separately embed queries and documents, cross-encoder re-rankers process them jointly, al-
lowing the model to attend to complex relationships between words in both texts [Gao+24].
This typically results in much more accurate relevance scoring, especially for subtle or
nuanced queries. Moreover, re-rankers are flexible: they can be applied on top of any
retrieval system, regardless of whether it is lexical or vector-based, making them a practical

and powerful tool for improving retrieval.

2.2.5 lterative Improvement

Recent advances in LLMs have focused on improving their reasoning accuracy and relia-
bility, particularly for complex tasks. Techniques such as self-refinement, self-consistency,
and answer selection have shown significant potential in improving performance without

requiring additional training or external supervision.

Self-refinement refers to an iterative process in which the model generates an initial
output, evaluates it, and then refines the output based on self-generated feedback. This
loop, introduced in the SELF-REFINE framework [Mad+24], enables the model to correct
its own mistakes or improve clarity through structured, internal critique. The refinement
steps can be repeated several times, and human and automatic evaluations across tasks
like dialogue generation, sentiment reversal, and code optimization have demonstrated
significant quality improvements. More specifically, the benefits are amplified when the

feedback is actionable and specific, allowing the model to effectively target its revisions.

Self-consistency is another powerful approach that departs from single-pass, greedy de-
coding. Originally introduced by Wang et al. [Wan+23], this method involves generating
multiple diverse reasoning paths for a given prompt and then selecting the final answer
based on majority voting. The core idea is that complex reasoning problems can be solved
in several valid ways, and correct answers tend to appear more frequently across dif-
ferent reasoning trajectories. This marginalization over reasoning paths results in more

stable and accurate outputs. For example, combining chain-of-thought prompting with

2.2 Related Work

11

12

self-consistency boosted performance on GSM8K by nearly 18%, and showed similar gains
across other reasoning datasets like AQuA and SVAMP. Recent extensions of this idea,
such as using clustering techniques to estimate model confidence [Wan+24], further enable

better calibration and robustness in math reasoning tasks.

In addition, response selection mechanisms play a critical role in verifying and improving
generated content. Explanation-Refiner [Qua+24] demonstrates how formal logical feed-
back from theorem provers can be used to refine natural language explanations iteratively.
By converting explanations into formal axioms and using symbolic logic to check validity,
the system identifies and removes redundant or logically invalid statements, refining them

until a consistent and valid explanation is formed.

Instruction evolution frameworks such as WizardLM [Xu+24] complement these ap-
proaches by focusing on the quality and diversity of training data. WizardLM automatically
generates increasingly complex instructions using LLMs, evolving tasks to push model lim-
its and improve their ability to follow complex, multi-step instructions. This self-generated,
diverse instruction data has been shown to outperform human-written data in terms of

downstream model performance, particularly in math and reasoning-heavy benchmarks.

These methods establish a new paradigm in large language model development, empha-
sizing not only the generation of answers but also their careful refinement, verification,
and selection through self-directed and iterative processes. This approach significantly
enhances reasoning robustness, calibrates confidence levels, and facilitates improved

alignment with user intent across progressively complex tasks.

2.2.6 Adversarial Attacks

Adversarial attacks are techniques that involve subtly modifying inputs to machine learning
models in order to trick them into producing incorrect outputs. In the context of deep
learning, these perturbations are often minimal and imperceptible to humans, yet can cause
models to misclassify data or produce inconsistent results. Such attacks have exposed major
vulnerabilities in systems that rely on deep neural networks, especially in safety-critical
applications like autonomous driving, biometric security, and language understanding.
Common forms of adversarial attacks include evasion attacks, which manipulate inputs
during inference time, and poisoning attacks, which tamper with the training data itself.
These attacks are studied both to better understand model weaknesses and to develop

defense mechanisms that make models more robust to adversarial behavior [Cha+18].

In recent work, two papers applied adversarial attacks for very different purposes in NLP.
Huang and Baldwin [HB23] used adversarial attacks to test the robustness of machine
translation (MT) evaluation metrics such as BLEURT, COMET, and BERTScore. They used

Chapter 2 Background and Related Work

word-level and character-level attacks to generate minimally perturbed translations that
retain the same meaning but receive significantly lower scores from these metrics. They
found that these metrics often overpenalize the perturbed sentences and may even behave
inconsistently (e.g., BERTScore rating a degraded sentence as semantically similar to the
original, but much worse compared to the unperturbed version) [HB23]. Meanwhile, Li
et al. [Li+20] proposed BERT-Attack, a method that uses BERT itself as a masked language
model to generate fluent and semantically consistent adversarial examples. Their goal
was to fool fine-tuned BERT classifiers by replacing key words in the input with context-
aware alternatives. They showed that this method had a higher attack success rate and
better language quality than previous approaches [Li+20]. These works use adversarial
techniques not to "attack" in a malicious sense but to probe the limits of what language
models understand and to build more trustworthy systems; the same philosophy was
adopted in this thesis, where adversarial examples are used as a tool to test the robustness

of RePASs, an evaluation metric explained in Section 3.2 of the following chapter.

2.2 Related Work

13

RIRAG 2025

This chapter provides an overview of the RIRAG 2025 shared task [Gok+25], including the
datasets provided by the organizers and utilized in system development. It also presents
a detailed explanation of RePASs, a reference-free, model-based evaluation metric. The
datasets described here serve as the foundation for experiments throughout this thesis,
while RePASs is employed as the primary metric for evaluating generation quality, offering

insights into its applicability and effectiveness in regulatory NLP tasks.

3.1 About the shared-task

The Regulatory Information Retrieval and Answer Generation (RIRAG) task was introduced
in 2024 to support the development of systems that can understand and respond to complex
regulatory questions. It is framed as a two-stage process: first, identifying all relevant
obligations from a large collection of regulatory documents, and second, synthesizing
a complete and accurate answer based on the retrieved content [Gok+24]. What makes
RIRAG especially challenging is the requirement to locate information that may be scattered
across multiple documents and then combine that information into a clear response that is

concise and comprehensive.

The shared task was officially launched as RIRAG 2025, organized at the RegNLP 2025
workshop to benchmark and compare different approaches [Gok+25]. The task was
divided into two subtasks: the first, Information Retrieval, involved returning the most
relevant passages for each query, while the second, Answer Generation, required systems
to generate answers that reflect all key obligations found in the retrieved passages. To
support training and evaluation, participants were provided with the ObliQA dataset,
which contains more than 27,000 regulatory questions annotated with their supporting
passages, derived from the Abu Dhabi Global Market (ADGM) legal framework. The dataset
includes both single-passage and multi-passage questions, encouraging the development

of retrieval methods that can handle varying levels of complexity.

15

3.2 Datasets

The ObliQA dataset [Gok+24] is a regulatory question-answering benchmark that includes
27,869 questions, each paired with one or more relevant regulatory passages.! These
passages, totaling 13,732 across 40 legal documents provided by ADGM, are predominantly
hierarchically structured and contain clause-level obligations, which serve as the grounding
material for question generation. The hierarchy of the documents is reflected in the
PassagelD, capturing their multilevel structure. On average, each document contains
343.3 passages and a mean token count of 24,930.48 tokens, as measured using the NLTK
tokenizer [BL04].? At the passage level, each passage comprises an average of 2.11 sentences
and 72.62 tokens. This hierarchical passage structure, with clause-level granularity and
multilevel numbering, enables the development of systems that can retrieve individual
passages or aggregate multiple passages for complex questions. ObliQA’s design allows
for precise evaluation of retrieval accuracy and reasoning, by linking each question to the

exact passages that contain the relevant obligations.

{

"ID": "e3515a08-2bd7-4da4-b0ff-9044873943b6",

"DocumentID": 11,

"PassageID": "1.1.2",

"Passage": "Where a Rule prescribes a requirement on a Listed Entity
or an Undertaking, each Director, Partner or other Person charged
with the management of that Listed Entity or Undertaking must take
all reasonable steps within its control to secure compliance with
the requirement by the Reporting Entity or Undertaking."

}

Fig. 3.1: Example passage from the document corpus.

{

"QuestionID": "d34e3516-f053-4652-a0ac-ede703144b%a",

"Question": "What type of procedures must a Third Party Provider
establish and maintain to handle issues such as major operational
and security incidents?",

"Passages": [

{

"DocumentID": 3,

"PassageID": "20.14.1.(2)",

"Passage": "As part of that framework, the Third Party Provider
must establish and maintain effective incident management
procedures, including for the detection and classification of
major operational and security incidents."

}
1,
"Group": 1
}

Fig. 3.2: Example question from the test set.

'https://github.com/RegNLP/ObliQADataset/blob/main/README.md
*https://www.nltk.org/

16 Chapter 3 RIRAG 2025

https://github.com/RegNLP/ObliQADataset/blob/main/README.md
https://www.nltk.org/

To create this dataset, Gokhan et al. [Gok+24] employed a three-step pipeline involving
document curation, synthetic question generation with an LLM, and validation based on
natural language inference (NLI). Only passages explicitly expressing regulatory obligations
were considered suitable for question generation. For single-passage questions, a direct
one-to-one relationship between a question and a clause was preserved. For multi-passage
questions, several relevant passages were grouped together using topic-based clustering.
After that, passages from the same group were randomly selected to generate questions
reflecting the complexity of real-world regulatory queries. Each question, can be answered

with 1.32 passages on average and has an mean token count of 26.9.

To ensure the quality of the generated question-passage pair generated, the dataset under-
went semantic validation using an NLI model (nli-deberta-v3-xsmall). The model evaluated
whether the retrieved passage or passages (premise) entailed the question text (hypothesis),
or whether there was contradiction or neutrality. Only pairs that demonstrated entailment
or strong alignment were retained. This automated filtering contributed to the overall
quality of the dataset, with manual evaluations from ADGM experts confirming that more
than 86% of the selected passages were relevant and that nearly 100% of the questions

represented realistic and expected compliance queries.

The final dataset includes over 21,000 single-passage questions and more than 6,000 multi-
passage questions, with a controlled distribution across training, development, and test sets
as seen in Table 3.1. By providing a richly high-quality annotated dataset, ObliQA enables
experimentation with a variety of regulatory NLP tasks, including retrieval, generation,
summarization, and obligation detection, making it a key resource for advancing automated

regulatory compliance systems.

Split #Questions 1 2 3 4 5 6
Train 22295 16946 4016 975 202 100 56
Development 2888 2215 514 116 30 12 1
Test 2786 2126 506 105 36 9 4
Total 27869 21187 5036 1196 268 121 61

Tab. 3.1: Distribution of questions in the ObliQA dataset across training, testing, and development
sets, categorized by the number of associated passages.

3.3 RePASs

In vital domains like legal or compliance tasks, accuracy, consistency and completeness are
critical characteristics. The Regulatory Passage Answer Stability Score or RePASs for short
[Gok+24] is a reference-free evaluation metric that aims to ensure these characteristics by

assessing generated responses in regulatory settings.

3.3 RePASs 17

18

More specifically, the metric is decomposed into three components: the Entailment Score
(Fs), the Contradiction Score (C5) and the Obligation Coverage Score (OC5). Each compo-
nent focuses on a different dimension of answer quality, ensuring the robust evaluation
that regulatory texts demand. The Entailment Score examines whether each sentence
in the generated answer is based on the content of at least one sentence of the source
passages. This component guarantees the accuracy of the response and its factual demands.
Contradiction Score quantifies how much the generated answer contradicts the informa-
tion in the source passage. Contradictory outputs in legal or compliance settings can lead
to severe misinterpretations, and thus, minimizing contradiction is critical. The Obligation
Coverage Score addresses the dimension of completeness by checking if all regulatory
obligations present in the source are mentioned in the answer. This score captures the

scope of legal responsibilities ensuring that no mandatory requirement is omitted.

Calculating RePASs consists of three distinct steps that each contribute to evaluating
a different dimension of answer quality. In the first step, a sentence-level NLI analysis
is conducted between the generated answer and the source passage. Using the cross-
encoder/nli-deberta-v3-xsmall model [HGC23], each answer sentence is paired with every
sentence in the passage to compute probabilities for entailment, contradiction, and neu-
trality with the neutral class being discarded. These are organized into two matrices:
an entailment matrix and a contradiction matrix. For each answer sentence, the highest
entailment and contradiction probabilities across all passage sentences are extracted, cor-
responding to that sentence. The Entailment Score (Ej) is calculated as the average (over
the sentences of the answer) of these maximum entailment scores, and the Contradiction
Score (C;) is similarly derived using the maximum contradiction values. Mathematically,

these are defined as follows:

1 N
E, = N Z max Pentailment (pj’ ai) (3'1)
=1 7
1 N
Cs = N Z max Peontradiction (pj’ ai) (3.2)
=1 7

In the above equations, N denotes the total number of sentences in the generated answer.
Each a; represents the i-th sentence in the answer, while p; refers to the j-th sentence in
the source passage. Pentailment (Pj, @i) and Preongradiction (P, @) are the probabilities predicted
by the model, that sentence a; is entailed by or contradicts sentence p;, respectively. The
max; operator selects the maximum probability over all source sentences p; for each

answer sentence a;.

Chapter 3 RIRAG 2025

In the second step, the Obligation Coverage Score (OC;) is computed to assess com-
pleteness. An obligation classifier is used to label each sentence in the passage as either
an obligation or non-obligation. This classifier is a LegalBERT model [Cha+20] fine-
tuned on a synthetic dataset generated by prompting GPT-4 Turbo in a zero-shot setting.
Each labeled obligation sentence is then compared with the answer sentences using the
microsoft/deberta-large-mnli model [He+21]. If the maximum entailment probability for
an obligation exceeds 0.7, it is considered covered. The OCj is defined as the fraction of

covered obligations out of all obligations present:

M
1
oC, = Vi ’;H‘ (mlax Peptailment (0%, ag) > 0.7> (3.3)

where M is the total number of obligation sentences in the source passage. Peptailment (O, 1)
denotes the probability that the k-th obligation sentence in the source passage (oy) is en-
tailed by the [-th sentence in the answer (a;). The max; function selects the highest
entailment probability for each obligation sentence across all sentences in the answer. The
indicator function ¥ returns 1 if the highest entailment score exceeds 0.7, meaning the

obligation is considered covered.

Finally, the overall RePASs score integrates these three components in a normalized form:

E, — 1
RePASs = —2 Cs J?: OCs + (3.4)

This equation rewards grounding and obligation coverage while penalizing contradictions,
producing a single score between 0 and 1 that reflects the quality of regulatory answers in

accuracy, consistency, and completeness.

3.3 RePASs

19

Implemented methods and
systems

This chapter describes the methods and systems implemented in this thesis. The methods
presented in Sections 4.2.3 and 4.4 are based on AUEB NLP group’s submissions to the
retrieval and generation sub-tasks for RIRAG 2025 respectively, forming a complete RAG
system. The group ranked 4th in the retrieval sub-task and 3rd in the generation sub-task
among 19 participants. The chapter is divided into four sections that mirror the workflow

and pipeline of a RAG system.

4.1 Data preparation

A common - if not necessary - initial step in RAG systems is the analysis and preparation
of the retrieval corpus upon which the retriever will operate. In this work, the retrieval
corpus consists of the 13,732 passages provided by the ObliQA dataset, which is described
in Section 3.2. This section outlines how the dataset was pre-processed, enriched, and
embedded to support semantic retrieval within the proposed system. The neural retrievers
examined in this work include text-embeddings-3-large by Openai and voyage-law-2,

voyage-finance-2 and voyage-3 by VoyageAI.!2

To enrich the passages with additional features useful for chunking and retrieval, a series
of preprocessing steps were applied. Firstly, context was added to the passage text by
prepending it with its identifier (which can be found in the "PassageID" field; see Figure 3.1),
resulting in a single combined string field. This approach ensures that questions explicitly
referencing a passage by its identifier can be accurately grounded in the corresponding
text. Next, sentence segmentation was performed using the SpaCy sentencizer, which
helped to split the text into sentences.®> Based on this segmentation, several useful statistics
were computed: the total number of characters, the number of tokens (as counted by each
model’s respective tokenizer) and sentence count per passage. These metrics were later

used for token-aware chunking.

'https://platform.openai.com/docs/models/text-embedding-3-large
*https://docs.voyageai.com/docs/embeddings
*https://spacy.io/api/sentencizer

21

https://platform.openai.com/docs/models/text-embedding-3-large
https://docs.voyageai.com/docs/embeddings
https://spacy.io/api/sentencizer

22

Due to the maximum input length of each embedding model, a custom chunking algorithm
was employed to split longer passages into smaller, model-compatible segments, ensuring
that all resulting chunks retained the same identifier. The algorithm iteratively grouped
sentences while keeping the total token count per chunk within the predefined limit. This
method ensured that sentence boundaries were respected and that no sentence was split
in the middle, preserving semantic coherence. However, due to the difference in context
length between OpenAI’s model and VoyageAI’s models, the total passage chunks were
different, which resulted in problems with rank-fusion during retrieval. These problems
are described in Section 4.2.3. Each resulting chunk was also annotated with metadata,
such as character count, word count, and token count, to support downstream inspection
and filtering. This chunking strategy was adopted given the fact that information in legal
and especially regulatory contexts should not be lost; as it is critical to the success of the

system and the satisfaction of the user.

Following the chunking process, all sentence-based chunks were embedded using each
of the four embedding models. The resulting embeddings were stored both as PyTorch
tensors and as part of a structured pandas DataFrame. This DataFrame, containing both
vector and textual metadata, was saved to disk as a .csv file for easy integration into the

retrieval component of the system.

A similar embedding procedure was followed for the questions in the ObliQA dataset
development and test splits. Each question was encoded using the same model but in query
mode in the case of the Voyage models. This ensured that the vector representations of the
questions were aligned with those of the passage chunks, allowing for effective similarity
computation via the cosine similarity/dot product. The question embeddings were also

stored in a separate DataFrame for use during parameter tuning, evaluation and testing.

4.2 Retrieval

421 BM25

To establish a strong baseline for passage retrieval, the BM25 ranking function was imple-
mented using the rank_bm25 library.4 BM25, described in Section 2.2.1, is a retrieval model
based on term-frequency that assigns a relevance score between a query and a document
based on the frequency with which query terms appear in the document, adjusted by
document length. This method does not rely on learned embeddings and instead focuses
on exact term matching, making it a competitive baseline against more complex neural
retrievers. The use of multiple tokenizers can help investigate the impact of different

tokenization methods on BM25 retrieval performance.

‘https://pypi.org/project/rank-bm25/

Chapter 4 Implemented methods and systems

https://pypi.org/project/rank-bm25/

Each sentence chunk in the retrieval corpus was tokenized using one of several tokenizers,
depending on the experimental configuration. For the baseline, nltk.word_tokenize was
applied to both passage chunks and the development and test questions. In other settings,
tokenization was performed using OpenAI’s tiktoken with the c1100k_base tokenizer, or the
respective tokenizers of the voyage-finance-2, voyage-law-2, and voyage-3 models from
the Hugging Face Transformers library.>® These tokenizers correspond to the embedding
models used in later stages. Fach tokenizer influenced token-level features such as stop

words, punctuation, and domain-specific terms, thus affecting retrieval behavior.

After tokenization, the tokenized sentence chunks were passed into the BM250kapi model,

which pre-computes term frequency statistics across the corpus. At query time, each

question was tokenized in a similar way and scored against all available passage chunks.

The top-scoring chunks were then sorted by score in descending order. Although multiple
chunks might originate from the same passage, the system only retained the top scoring
chunk per PassagelD in the final results. This ensured completeness in the returned

answers and better alignment with the passage-level evaluation metrics used later.

For each configuration, the top-k results (k = 10) were written to .trec files using the TREC

format. The same procedure was applied to the test set for generalization assessment.

4.2.2 Neural Retrieval

In addition to lexical retrieval, neural retrievers based on dense representations were
employed to measure semantic similarity between questions and passage chunks. Semantic
similarity was calculated using the dot product, as the embeddings were L2-normalized.
This approach operates on precomputed vector embeddings of passages and questions, as

described in Section 4.1.

Each question in the development and test sets was embedded into a vector and then
compared with the entire set of passage chunk embeddings using a dot product operation.
This produced a similarity score for each passage chunk. Following the approach used in
the BM25 experiments, the top-scoring passages were then sorted and filtered to include

only the top-k most relevant passages per query, where k = 10.

This process was repeated across all embedding models to evaluate how different vector
representations influence neural retrieval performance. Each retrieval run produced a
ranked list of results written in a frec file in the standard TREC format, making the results
compatible with official evaluation tools such as trec_eval. As in the BM25 experiments,

the same procedure was applied to the test set to assess generalization performance.

*https://github.com/openai/tiktoken
Shttps://huggingface.co/voyageai

4.2 Retrieval

23

https://github.com/openai/tiktoken
https://huggingface.co/voyageai

24

4 2.3 Fusion-Based Retrieval

In the context of regulatory question-answering, combining lexical and semantic retrieval
methods can significantly enhance performance by capturing different aspects of relevance.
More specifically, lexical models such as BM25 are effective in matching exact terms and
phrases, while neural retrievers utilize dense vector representations to capture broader
meaning and paraphrastic variations. Hybrid retrieval systems that combine these two
ways can exploit their strengths and mitigate individual weaknesses. In this study, hybrid
retrieval was examined by pairing each dense retriever with a BM25 retriever tokenized
using the same tokenizer employed for generating its dense embeddings. This alignment
ensured consistency in input representation. In addition, other combinations of retrievers
were explored to provide a complete analysis of how different retrieval strategies interact.
Although special emphasis was placed on hybrid retrieval involving lexical and semantic

signals, purely semantic combinations were also examined to assess their performance.

As already described in Section 2.2.3, Reciprocal Rank Fusion (RRF) is a rank-based fusion
method that aggregates rankings from multiple retrieval systems by assigning higher
importance to results that appear near the top of any individual ranked list. It has become
a standard approach in retrieval systems due to its simplicity and robustness. In this work,

RRF was used to combine retrieval outputs in several configurations.

First, hybrid retrieval using RRF was implemented by fusing each semantic retriever with its
BM25 counterpart, i.e., BM25 models tokenized text using the same tokenizer as the dense
embedding model. This hybrid setup allowed the system to combine exact term matching
with semantic similarity upon the same tokenization basis. Next, all pairwise combinations
of neural retrievers were tested using RRF, offering insight into how models with different
domain specializations (e.g., legal, financial, general-purpose) could complement each
other. To further explore the potential of rank fusion, triple combinations were tested.
These included hybrid triples combining two neural retrievers and a single BM25 retriever
with the best-performing BM25 variant (based on prior evaluations) and purely semantic

triples formed by fusing three neural retrievers.

Unlike RRF, which operates on ranks, score-based rank fusion, which was described in
Section 2.2.3, aggregates the raw similarity scores from different retrievers using weighted
combinations. This method allows for more control over the influence of each retriever.
Score-based fusion was applied to the same retrieval configurations examined under RRF,
including BM25-dense hybrids, dense retriever pairs, and mixed combinations of hybrid
and dense retriever triples. To handle three retrievers instead of two, the score-based

fusion described by Equation 2.3 was expanded as follows:

Chapter 4 Implemented methods and systems

s(d) = a - $e(d) +b- 3,(d) + (1 — (a + b)) - 3,(d), (4.1)

where a, b € [0, 1] are fusion weights with the constraint a + b < 1, 3¢(d), 3y(d) and 5,(d)
are the normalized scores produced by the retrievers for document d, and s(d) is the final

fused score assigned to document d.

However, It was not feasible to combine the OpenAl embedding model with the Voyage-
based neural retrievers because they use different embedding dimensions and context
lengths. These differences led to a mismatch in the number of passage chunks created
during the data preparation phase. Aligning them would have required a projection or
alignment step that falls outside the scope of this work. Therefore, hybrid and fused
retrieval experiments involving OpenAl were only conducted using BM25 with OpenAlI

tokenization or within standalone semantic combinations.

In general, these fusion experiments highlight the effectiveness of hybrid retrieval systems,
particularly in complex domains like regulatory QA. By combining domain-specific models
such as voyage-law-2 and voyage-finance-2 with more general models like voyage-3 and
OpenATl’s text-embeddings-3-large, the system can achieve a more nuanced understanding
of the content. This is especially important for datasets like ObliQA, which span both
legal and financial domains, and thus benefit from models trained across different yet

overlapping areas of expertise.

4.2.4 Re-ranking

In information retrieval pipelines, a two-stage architecture is often used. In such systems,
the initial retrieval phase casts a wide net using fast lexical or semantic search techniques
to gather potentially relevant candidates. These candidates are then passed on to a second-
stage reranker, which performs a more fine-grained analysis to reorder and refine the
results based on their actual relevance. This approach enables systems to benefit from the
recall of broad retrieval methods while leveraging the precision of more computationally

expensive models like cross-encoders.

To implement this architecture, the best performing retrieval method from those presented
above was chosen. In the retrieval system the number of initially retrieved passages chunks
was increased to 100, allowing a wider pool of candidates and increasing recall. From this

expanded set, only the top-k unique PassagelDs were preserved.

After the first stage, the top retrieved passages were passed to a second-stage reranker to

refine their ordering. This reranker was based on the voyage-rerank-2 model provided

4.2 Retrieval

25

26

by Voyage Al a transformer-based cross-encoder.” Unlike bi-encoders, which embed
queries and documents independently, cross-encoders process each query-document pair
jointly through multiple attention layers. This architecture allows the model to capture
fine-grained interactions between the question and the passage, typically yielding more
accurate relevance estimates. In this setup, the reranker was applied to the retrieval results
from the first stage. The reranker returned the final 10 passages per query, ensuring that
the most relevant content was surfaced, while maximizing recall via the broader first-stage

search.

The re-ranking pipeline was executed for various initial retrieval cut-offs ranging from
10 to 100 passage chunk candidates. The goal was to explore how expanding the initial

retrieval depth impacts the quality of the re-ranked results.

This modular approach to retrieval demonstrates how combining lexical and neural re-
trievers through rank fusion methods, followed by a powerful reranker, can significantly
enhance retrieval performance in complex domains such as legal and financial compliance.
The ability to combine domain-specific models with broader models and to refine retrieval
through cross-encoder-based re-ranking proved crucial for adapting to the mixed nature
of the ObliQA dataset.

4.3 Preprocessing

4.3.1 Filtering and Obligation Extraction

Before passing the retrieved results to the answer generation module, a preprocessing step
was applied to filter the candidate set of passages and focus on sentences that explicitly
refer to obligations. This step was motivated by the nature of the ObliQA dataset, which is
comprised of regulatory documents. Obligation clauses in these documents are central to
answering compliance-related questions and essential for minimizing the risk of excluding

them in generated responses.

The preprocessing step consists of two main components: passage filtering and obligation
extraction. For the filtering step, the passages retrieved for each query were first ranked by
their relevance scores. A filtering function was then applied to retain only those passages
that (i) exceeded a fixed minimum relevance threshold and (ii) did not exhibit a sudden
drop in relevance compared to the preceding passage chunk in the ranking. The maximum
allowed drop in score was controlled by a hyperparameter. This strategy follows the
approach described by Gokhan et al. [Gok+24] and helps to ensure that only top-quality

passages are considered for downstream processing. If no passage remained after filtering,

"https://blog.voyageai.com/2024/09/30/rerank-2/

Chapter 4 Implemented methods and systems

https://blog.voyageai.com/2024/09/30/rerank-2/

the highest-ranked one was kept to guarantee that at least one candidate was available In
the second step, each passage that passed the filter was processed to extract sentences that
contained explicit obligations. For this purpose, a LegalBERT-based obligation classifier
was used, which had been fine-tuned on regulatory texts and is the same classifier that
is used to evaluate RePASs (Section 3.3). The classifier labeled each sentence as either
containing an obligation or not. If at least one obligation sentence was found, this was kept
and stored as refined evidence set. If no obligations were detected in any of the retrieved

passages, the original passage was preserved in full.

The output of the preprocessing stage is a structured list of dictionaries, one per question,
each containing the question text, the top filtered retrieved passage chunks, and, optionally,
the extracted obligation sentences. This setup provided a cleaner and more focused context
for downstream modules, particularly beneficial in regulatory question-answering where

precise legal obligations often form the basis of correct answers.

4.3.2 Prompt optimization

Prompt optimization is applied as the final step in the preprocessing pipeline to complete
and evaluate the obligation extraction process, ensuring that the extracted obligations
presented to the LLM can truly maximize the quality of the response. The system prompt
(see Prompts) proposed in the original paper [Gok+24] was designed to be more general,
enabling it to handle entire passages rather than focusing exclusively on obligations, which
are central to answering compliance questions. Consequently, it became necessary to

optimize the system prompt to better suit the new context provided to the LLM.

This optimization process was carried out through manual experimentation with GPT-
40. Initially, questions from the development set — already answered using the original
prompt applied to the golden passages — were used as a starting point. GPT-40 was
provided with the question, its corresponding answer, the golden passages, the values
of the RePASs components as well as the composite score for that specific answer, and
a short explanation about each component of the metric (Section 3.3). The optimization
involved asking GPT-4o to suggest modifications or additions to the prompt that could
improve each specific component of RePASs or the composite score.This process was
iterative, using three different question-answer pairs and the necessary data for each
cycle. With each improved prompt, the answers to these questions were regenerated and
re-evaluated. The iteration continued until GPT-40’s suggestions became repetitive and
no further improvements in the composite score were observed. Due to its length, an
example without each question’s information for an iteration of this process can be seen in
Figure 4.1. Alternatively, libraries that provide prompt optimization, such as DSPy, could

be used.?

*https://dspy.ai/

4.3 Preprocessing

27

https://dspy.ai/

28

Your task is to help me improve the system prompt for the generation
component of a RAG system that uses gpt-4o. You will be given three
answers and the information given to generate them as well as their
evaluation scores.

Generated answers are evaluated on RePASs (Regulatory Passage An-
swer Stability Score) that evaluates how well an answer aligns with
regulatory source passages by combining three components:

Entailment Score:

For each answer sentence, the system finds the strongest supporting
sentence in the source passage using an NLI model. This score reflects
how well each answer sentence is justified by the source. A higher value
means the answer is well-grounded in the passage.

Contradiction Score:

For each answer sentence, the system checks whether any passage sen-
tence contradicts it. The strongest contradiction probability is kept per
answer sentence. The average of these values shows how much the
answer conflicts with the source. A lower value is better.

Obligation Coverage Score:

Regulatory passages often contain obligations. A LegalBERT-based
classifier detects obligation sentences in the passage. Each obligation
is checked against the answer using NLL If the answer covers (entails)
that obligation with sufficient confidence, it is considered covered. The
score is the fraction of obligations from the passage that the answer
correctly reflects.

Final RePASs Score:

The three components are combined into one stability score. Contra-
dictions reduce the score, while entailment and obligation coverage
increase it. The result is normalized to fall between 0 and 1, preferring
answers that are accurate, contradiction-free, and complete.

Answer 1:

[Prompt] [Question and Retrieved Passages] [Answer]
[Evaluation scores]

Answer 2:

[Prompt] [Question and Retrieved Passages] [Answer]
[Evaluation scores]

Answer 3:

[Prompt] [Question and Retrieved Passages] [Answer]

[Evaluation scores]

Tell me how to improve the prompt so that you/gpt-40 can un-
derstand better how to cover obligations more efficiently and increase
the Obligation Coverage Score.

Fig. 4.1: Prompt structure for manual prompt optimization

Chapter 4 Implemented methods and systems

4.4 Generation

4.4.1 Naive Obligation Concatenation

The Naive Obligation Concatenation (NOC) method is a simple adversarial approach to
answer generation that directly leverages the output of the obligation extraction step
described in Section 4.3.1 and exploits the fact that RePASs, as a reference-free metric,
does not verify alignment with gold-standard passages. For each question, it constructs

an answer by simply concatenating the sentences identified as obligations within the top

retrieved passages. If no obligations are detected for a passage, the passage itself is used.

This process generates one answer per question without any form of generative modeling

or language inference, relying just on the extracted content.

This technique adopts the spirit of adversarial evaluation, as discussed in the related work
chapter (Section 2.2.6). Rather than attacking the QA model directly, NOC is designed to
challenge the evaluation metric RePASs, which emphasizes obligations as a core component
of answer quality. Given that the answers are composed entirely of obligation sentences,
the expected RePASs obligation sub-metric score should be almost perfect. Additionally,
since obligations typically represent non-conflicting regulatory statements, it is anticipated

that the generated responses would also yield a low contradiction score.

NOC uses the structure of the retrieval and evaluation steps to test how well RePASs
can tell the difference between good, understandable and accurate answers, and the ones
that just collect related facts. It should be stressed that NOC represents a method that is
not intended for practical deployment but for testing the limits and sensitivities of the

proposed scoring framework.

4.4.2 LLM Obligation Concatenation

The LLM Obligation Concatenation (LOC) algorithm builds upon the adversarial nature
of NOC (Section 4.4.1), addressing its main limitation: the lack of contextualization and
direct relevance to the posed question. While NOC merely aggregates obligation sentences,
LOC introduces an LLM-based reasoning step that attempts to generate question-specific
responses grounded in each extracted obligation. The motivation behind this method
is to maintain the high obligation coverage scores expected under the RePASs metric,
while at the same time improving the entailment score and making the answers more

understandable by a non-expert.

For each extracted obligation associated with a question, the model prompts an LLM, which

in this case is Gemini 2.5 Flash-Lite, to generate a partial answer using that obligation as

4.4 Generation

29

30

context and a specialized prompt (see Prompts).” If the generated answer does not satisfy
the required obligation coverage, as measured by the same coverage-checking mechanism
used in RePASs (see Equation 3.3), the model is re-prompted with the same input. In this
setting, each partial answer corresponds to a single obligation and the coverage criterion
reduces to checking that the answer entails the obligation with probability above 0.7. This
retry process is repeated up to a predefined number of attempts, set to K = 3 in the
current implementation. Once the partial answer passes the coverage check or the retry
limit is reached, it is accepted and added to the list of partial responses. After processing

all obligations, the final answer is formed by concatenating all verified partial answers.

Algorithm 1 LLM Obligation Concatenation (LOC)

Require: Preprocessed dataset with extracted obligations
Require: LLM model, max retries K : integer

1: for all item in preprocessed set do

2: Initialize empty list answers_per_obligation

3 for all obligation in item.Obligations do

4 answer < empty string

5 coverage_flag < False
6: tries <— 0
7
8
9

while not coverage_flag and tries < K do
prompt <— GeneratePrompt(question=item.Question, context=obligation)
answer ¢— CallLLM(prompt)

10: coverage_flag < IsCovered(obligation, answer)
11: tries < tries + 1

12: Append answer to answers_per_obligation

13: Set item.PartialAnswers <— answers_per_obligation

4.4.3 Verify and Refine with RePASs

The Verify and Refine with RePASs (VRR) algorithm introduces an iterative answer gener-
ation process inspired by self-consistency and self-refinement methods proposed in recent
work on large language models [Wan+23; Mad+24]. Unlike previous methods that either
concatenate obligations or generate per-obligation responses, VRR formulates answer
generation as a two-phase optimization process aimed at maximizing compliance with

RePASs criteria. The two key phases are verification and refinement.

In the verification step, the model first generates N different answers using the full set
of extracted obligations, the given question as context (Section 4.3.2) and the optimized
prompt (see Prompt 6). These answers are independently evaluated based on the retrieved
passages using RePASs as a proxy metric. Among the IV candidate answers, the one
achieving the highest composite RePASs score is selected for further refinement. This
selection mechanism draws on the principles of self-consistency, where multiple reasoning

paths are explored and the most reliable output is kept.

*https://cloud.google.com/vertex-ai/generative-ai/docs/models/
gemini/2-5-flash-1lite

Chapter 4 Implemented methods and systems

https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash-lite
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-flash-lite

Once the best answer is identified, the refinement stage begins. First, the algorithm com-
putes a sentence-level contradiction profile using natural language inference (NLI) models,
comparing the answer against the original retrieved passages. Sentences exhibiting a con-
tradiction score higher than the average or a predefined threshold are flagged for removal.
In this work, the threshold is set as the average contradiction score computed across the
dataset for the purposes of RIRAG 2025. However, in order to maintain compliance, the
algorithm checks whether these sentences also fulfill any obligation. Otherwise, they are

removed to ensure better factual alignment and to increase obligation coverage.

Next, the model addresses any remaining gaps in the coverage of obligations through the
insertion of obligations. Using the same coverage function as in RePASs, the algorithm
detects whether all obligations from the original passages are reflected in the current
answer. If uncovered obligations are found, a prompt different from the one in the first
phase is constructed in which the LLM is tasked with rewriting or expanding the current
answer to include the missing information (see Prompts). This final step is inspired by
iterative refinement techniques from recent instruction evolution frameworks [Xu+24]
and ensures both faithfulness and completeness in regulatory responses. Experiments
showed that adding obligations reduces the overall RePASs score. Therefore, in the final

VRR iteration, this step is omitted and only contradiction refinement is applied.

Algorithm 2 Verify and Refine with RePASs (VRR)

Require: Preprocessed dataset with obligations and passages
Require: RePASs evaluation function, LLM generation functions
1: for all item in preprocessed do

2: Generate N answers using all obligations as context
3 fori=1to N do

4 Prompt LLM with question and obligations

5 Append generated answer to item.Answers

6 Evaluate all answers using RePASs
7 Select best answer based on highest score
8: Set item.Answer to selected answer
9: fori = 1toref_iter do
10: Compute dataset average contradiction score
11: Set average contradiction score as the threshold
12: for all item in preprocessed do
13: Compare answer and retrieved passages using NLI
14: Remove high-contradiction sentences if not covering obligations
15: if ¢ < ref_iter then
16: Identify uncovered obligations
17: Prompt LLM to revise answer with missing obligations
18: Set item.Answer to updated version

The VRR method demonstrates particular effectiveness in domains like regulatory compli-
ance, where ensuring high precision and accurate alignment with obligations is not only
technically challenging but also crucial for downstream applications such as automated

legal reasoning and risk mitigation.

4.4 Generation

31

Experiments

In this chapter, the experimental framework used to assess each stage of the proposed
pipeline is presented. The evaluation focuses on three main components: retrieval, pre-
processing, and generation. For each one, relevant metrics are applied and the results of
various system configurations are analyzed. The results offer a comparative view of their

performance and help highlight the strengths and limitations of methodological choices.

5.1 Datasets

All experiments in this thesis were performed using the ObliQA dataset [Gok+24], a
benchmark specifically designed for evaluating question-answering systems in regulatory
contexts, as discussed in Section 3.2. The development set was utilized for hyperparameter
tuning and comparative validation of retrieval and generation variants. For the prepro-
cessing and generation components, only the first 100 questions of the development set
were used for hyperparameter tuning, the rest were discarded. After selecting the best-
performing configurations, the test set was reserved for the final evaluation to ensure a

fair assessment of the effectiveness of each method under standardized conditions.

5.2 Evaluation measures

For the evaluation of the methods developed for the retrieval component, Recall @ 10 and
MAP @ 10 were used following the framework defined by RIRAG 2025 (Chapter 3). Both
metrics are widely adopted in IR and question-answering tasks for quantifying the quality
and completeness of retrieved results. For the preprocessing and generation steps, RePASs,

which is thoroughly explained in Section 3.3, was used.

Recall@10 (R@ 10) measures the proportion of relevant documents that are successfully
retrieved among the top-10 results. It reflects how well the system is able to identify the

documents that matter most for each query. Formally, it is defined as:

Recall@k = |{relevant documents} N {retrieved documents}|

|{relevant documents}|

33

34

A score of 1 means that all relevant documents appear in the top-k, while a score of 0 means
that none do. Although, a high recall can be achieved easily by retrieving many documents,

using a fixed top-k cutoff like Recall@10 ensures a realistic and fair comparison.

Mean Average Precision at 10 (MAP@ 10) evaluates both whether relevant documents
are retrieved and how high they appear in the ranking. For a single query, the average
precision is calculated by averaging the precision values at each rank where a relevant
document is found (up to the 10th result). MAP@10 is then the mean of the average

percision scores across all queries:

Q] 1 k;

L Z = Z Precision(Rj;) (5.2)

MAP@k =
@ j=1"7 i=1

Here, || is the total number of queries, k; is the number of relevant documents for query j,
and Precision(R};) is the precision at the rank position where the i-th relevant document
occurs for query j. Unlike recall, MAP rewards systems that retrieve relevant documents

early in the ranking, making it a strong indicator of overall ranking quality.

5.3 Experimental results

5.3.1 Retrieval

BM25

The results of BM25-based lexical retrieval experiments, shown in Table 5.1, confirm the
robustness of this classical lexical approach. In all the experiment the default values for k;
and b were used (see Figure 2.1), without any specific tuning. Among all tokenizers tested,
the variant using the voyage-law-2 tokenizer achieved the highest Recall@10 score in the
test set, while the NLTK tokenizer achieved the highest MAP@10 score. This suggests
that aligning the tokenizer with the domain improves retrieval effectiveness, likely due to
better handling of domain-specific terminology. Although differences between tokenizers
are small, the performance of voyage-law-2 demonstrates the importance of matching tok-
enization schemes to the vocabulary of the corpus and queries. In general, the BM25 model
proved to be a competitive baseline, even against more complex semantic retrieval models,

showcasing its long-standing usefulness in traditional information retrieval tasks.

Chapter 5 Experiments

Tokenizer Recall@10 MAP@10
Nltk 0.699 0.558
tiktoken-cl100k_base 0.700 0.547
voyage-law-2 0.707 0.548
voyage-finance-2 0.701 0.545
voyage-3 0.697 0.543

Tab. 5.1: Retrieval performance of BM25 with different tokenizers on the test set.

Dense retrievers

The results in Table 5.2 highlight the effectiveness of neural retrieval methods using com-
mercially available embedding models for semantic search in regulatory NLP. Achieving
a Recall@10 score of 0.789, voyage-finance-2 ranked highest in recall, while voyage-3
achieved the best MAP@10 score. This supports the hypothesis that specialized commercial
models trained on financial or legal corpora, such as voyage-finance-2 and voyage-law-
2, are better suited for retrieving semantically relevant regulatory content, likely due
to their alignment with domain-specific language. Compared to the strong baseline of
text-embedding-3-large, which lags behind in both metrics, the results suggest that even
famous general-purpose neural retrievers can be outperformed by commercially fine-tuned
alternatives. Ultimately, these experiments confirm the practical utility of commercial

neural retrievers in high-stakes, knowledge-intensive domains like law and finance.

Embedding model Recall@10 MAP@10
text-embedding-3-large 0.738 0.573
voyage-law-2 0.770 0.627
voyage-finance-2 0.789 0.655
voyage-3 0.788 0.656

Tab. 5.2: Performance of single neural retrievers on the test set.

Fusion methods

Table 5.3 highlights that the combination of multiple retrievers using Reciprocal Rank
Fusion (RRF) leads to strong improvements over individual models, confirming what has
been discussed in the literature about hybrid search (Section 2.2.3). The best performing
combinations were those that fused neural retrievers with complementary domain exper-
tise, such as voyage-finance-2 and voyage-3, or even better, when combined with a BM25
retriever using the best tokenizer (voyage-law-2). For example, the triple combination
of BM25 with voyage-finance-2 and voyage-3 reached the highest Recall@10 of 0.805 on
the test set. This shows that even though neural retrievers perform well on their own,
combining them, especially with a lexical model, adds robustness and helps retrieve a more
complete set of relevant passages. These results clearly suggest that smart combinations

using RRF can outperform even the best single embedding model.

5.3 Experimental results

35

36

Method Recall@10 MAP@10
BM25-text-embedding-3-large 0.763 0.598
BM25-voyage-law-2 0.782 0.625
BM25-voyage-finance-2 0.782 0.631
BM25-voyage-3 0.776 0.629
text-embedding-3-large-voyage-law-2 0.779 0.619
text-embedding-3-large-voyage-finance-2 0.782 0.629
text-embedding-3-large-voyage-3 0.790 0.634
voyage-law-2-voyage-finance-2 0.790 0.654
voyage-law-2-voyage-3 0.795 0.659
voyage-finance-2-voyage-3 0.798 0.667
BM25-text-embedding-3-large-voyage-law-2 0.797 0.638
BM25-text-embedding-3-large-voyage-finance-2 0.801 0.645
BM25-text-embedding-3-large-voyage-3 0.802 0.648
BM25-voyage-law-2-voyage-finance-2 0.801 0.653
BM25-voyage-law-2-voyage-3 0.801 0.656
BM25-voyage-finance-2-voyage-3 0.805 0.659
text-embedding-3-large-voyage-law-2-voyage-finance-2 0.789 0.643
text-embedding-3-large-voyage-law-2-voyage-3 0.794 0.648
text-embedding-3-large-voyage-finance-2-voyage-3 0.796 0.654
voyage-law-2-voyage-finance-2-voyage-3 0.798 0.664

Tab. 5.3: Reciprocal Rank Fusion RRF) results across lexical and neural retrievers on the test set.

The results shown in Tables 5.4 and 5.5 are based on the best-performing configurations
for each rank-fusion method, identified through extensive hyperparameter tuning. A grid
search was carried out over the interpolation weights a and b (Equation 4.1), with values
ranging from 0.05 to 0.95 in increments of 0.05, using the development set. This process
ensured that each retrieval configuration was evaluated under its most effective weighting
scheme. Figure 5.1 provides a representative example of this tuning procedure for the
BM25-voyage-finance-2 combination, where Recall@10 peaked at 0.807 for @ = 0.15. The

same tuning strategy was applied uniformly across all tested combinations.

Once the optimal interpolation weights were determined, they were used to assess gen-
eralization performance on the test set. Score-based rank fusion consistently led to per-
formance gains, especially when integrating BM25 with neural retrievers that utilized
the same tokenizer, as evidenced by the results in Tables 5.4 and 5.5. Among pairwise
setups, BM25-voyage-finance-2 achieved the highest Recall@10 of 0.800, highlighting the
strength of lexical and semantic complementarity. Notably, purely semantic combinations
such as voyage-finance-2-voyage-3 also performed competitively, suggesting that model
specialization plays a key role even without lexical signals. The best overall performance
was achieved by the triple combination BM25-voyage-finance-2-voyage-3, reaching a
Recall@10 of 0.808 and MAP@10 of 0.684 on the test set. These findings reinforce the
idea that well-calibrated hybrid systems are highly beneficial for complex domains like

Chapter 5 Experiments

regulatory QA, where complementary lexical and semantic signals in the legal and financial

domains, contribute to improved performance.

0.81 -

0.79 |-

0.77 |-

Recall@10

0.75 |-

0.73 |-

0.71 .

|

|

|

| il Il

Fig. 5.1: Performance of BM25-voyage-finance-2 under varying interpolation weight a on the

20

development set.

30

40

50

60 70 80

Interpolation weight a in score fusion

90 100

Method a Recall@10 MAP@10
BM25 - text-embedding-3-large 0.25 0.783 0.637
BM25 - voyage-3 0.20 0.797 0.676
BM25 - voyage-finance-2 0.15 0.800 0.676
BM25 - voyage-law-2 0.35 0.797 0.665
voyage-finance-2 - voyage-3 0.45 0.800 0.671
voyage-law-2 - voyage-3 0.50 0.797 0.665
voyage-law-2 - voyage-finance-2 0.30 0.790 0.660

Tab. 5.4: Performance of rank fusion combinations of lexical and neural retrievers on the test set.

Method a b | Recall@10 | MAP@10
BM25 - voyage-law-2 - voyage-3 0.25 | 0.30 0.805 0.680
BM25 - voyage-law-2 - voyage-finance-2 0.20 | 0.25 0.805 0.681
BM25 - voyage-finance-2 - voyage-3 0.15 | 0.50 0.808 0.684
voyage-law-2 - voyage-finance-2 - voyage-3 | 0.10 | 0.40 0.800 0.671

Tab. 5.5: Triple rank fusion performance combining lexical and neural retrievers on the test set.

The inclusion of BM25 in both fusion strategies generally resulted in improved performance
across both evaluation metrics. However, it should be noted that, in certain instances
involving RRF in Table 5.3, the interpolation of ranks led to a decline in performance when
BM25 was combined with individual neural retrievers. In contrast, the score-based rank
fusion method, which relies on weighted interpolation of retrieval scores, did not have
this issue, consistently yielding more stable and effective results. Among all evaluated

combinations, the fusion of BM25, voyage-finance-2, and voyage-3 emerged as the most

effective configuration under both fusion methods.

5.3 Experimental results

37

38

Re-ranking

The re-ranking experiment constitutes an additional stage of hyperparameter tuning, this
time focusing on the retrieval depth parameter N, which determines how many top-ranked
passages from the first-stage retriever are forwarded to the reranker. As shown in Figure 5.2,
various values of N ranging from 10 to 100 were evaluated on the development set using
the previously best-performing retrieval method: rank fusion of BM25, voyage-finance-2,
and voyage-3. The reranker, voyage-rerank-2, was applied on the top-NN passages for
each query, and the final re-ranked results were assessed using Recall@10. The highest
performance was observed at N=20, achieving a Recall@10 of 0.818, slightly outperforming
deeper candidate sets. As the initial retrieval pool expands, recall initially increases,
peaking at 0.818 for a cut-off of 20 before gradually declining. This pattern suggests
that while increasing the candidate pool allows the reranker to access more potentially
relevant passages, beyond a certain point the benefits taper off due to the introduction of

lower-quality candidates that introduce noise into the ranking.

0.819

0.818

0.817

0.816

0.815

Recall@10

0.814

0.813

0.812

0.811

i i i i i i i i i i
10 20 30 40 50 60 70 80 90 100

Top- N reranked passages

Fig. 5.2: Recall@10 for varying top-N passage cutoffs during re-ranking using voyage-rerank-2 on
the development set.

Based on this development-set tuning, N=20 was selected as the optimal cutoff and sub-
sequently applied to the test set. The resulting system achieved a Recall@10 of 0.813
and a MAP@10 of 0.710. This marks a clear improvement over the same set-up without
re-ranking, which previously reached Recall@10 = 0.808 and MAP@10 = 0.684. These
gains illustrate the effectiveness of cross-encoder re-ranking in refining document rankings
after initial retrieval, validating its role as a critical component in two-stage architectures
for regulatory QA. The observed improvements also reinforce the benefits of modular
pipeline design, where even small adjustments to retrieval depth or ranking strategy can

yield meaningful performance boosts in complex domain-specific tasks.

Chapter 5 Experiments

5.3.2 Preprocessing

The first step of the preprocessing pipeline involved filtering the set of retrieved passages
based on their relevance scores, following a strategy inspired by Gokhan et al. [Gok+24].
Each candidate passage chunk was retained only if its relevance score surpassed a fixed
threshold and did not exhibit a steep drop compared to the previous passage, with both
parameters being subject to hyperparameter tuning. As shown in Table 5.6, the optimal
configuration was found to be a threshold of 0.80 and a maximum drop of 0.1, which
achieved the highest RePASs score of 0.512. It was also observed that larger maximum
drop values tended to allow less relevant and potentially contradictory passages into the
set, as evidenced by the increase in contradiction scores when max-drop increased. This

supports the view that high-quality, precise passages are key in regulatory QA.

Threshold | Max-Drop | RePASs | Obligations | Entailment | Contradiction
0.5 0.1 0.487 0.194 0.477 0.207
0.5 0.2 0.470 0.204 0.529 0.323
0.5 0.3 0.459 0.228 0.509 0.357
0.6 0.1 0.482 0.179 0.463 0.195
0.6 0.2 0.480 0.207 0.493 0.258
0.6 0.3 0.474 0.219 0.496 0.292
0.7 0.1 0.502 0.216 0.475 0.185
0.7 0.2 0.468 0.199 0.441 0.234
0.7 0.3 0.481 0.198 0.486 0.242
0.8 0.1 0.512 0.237 0.453 0.154
0.8 0.2 0.503 0.247 0.450 0.187
0.8 0.3 0.489 0.205 0.459 0.196
0.9 0.1 0.497 0.219 0.398 0.126
0.9 0.2 0.502 0.222 0.396 0.111
0.9 0.3 0.507 0.230 0.401 0.109

Tab. 5.6: Performance of various threshold and max-drop configurations across different scoring
dimensions for the development set.

In the second step, each filtered passage was further refined through the extraction of
obligation-bearing sentences using a LegalBERT-based classifier trained on regulatory
texts. This step aimed to reduce input noise by narrowing the focus of the context to legally
meaningful content. To ensure compatibility with this refined input, the original prompt
used in the baseline system (see Prompts) was re-optimized through iterative manual
experimentation with GPT-4o, the resulting prompt can be seen in Figure 5.3. As reported in
Table 5.7, three prompting strategies were compared: (i) the original prompt with unfiltered
passages, (ii) the original prompt with extracted obligation sentences, and (iii) the optimized
prompt with extracted obligations. Using the new prompt with extracted obligations
significantly improved performance across most evaluation dimensions. Specifically, the
entailment score increased from 0.611 to 0.723 and the overall RePASs score rose from 0.468
to 0.483, confirming that combining focused evidence with a task-adapted prompt yields

more accurate and relevant answers. Interestingly, while obligation coverage decreased

5.3 Experimental results

39

40

slightly, the gain in semantic alignment (expressed by the entailment score) outweighed

the trade-off, making this setting the configuration with the best performance.

Prompt for Obligation-Based Answer Generation

You are a regulatory compliance assistant. Your task is to provide a brief
but concise and detailed answer to the Question, ensuring that all Obli-
gations are fully addressed. Directly integrate each obligation into the
response, ensuring no obligation is missed or implied. Avoid adding infor-
mation beyond what is explicitly stated in the Obligations, and cite specific
rules when necessary. Use the exact terminology and structure from the
obligations where applicable, to ensure high alignment and logical consis-
tency. Focus solely on the provided obligations to craft a response that is
well-structured, concise, and free of contradictions.

Fig. 5.3: Obligation-focused prompt for regulatory QA.

Method RePASs | Obligations | Entailment | Contradiction
Original prompt + passages 0.429 0.189 0.516 0.417
Original prompt + obligations | 0.468 0.161 0.611 0.367
New prompt + obligations 0.483 0.177 0.723 0.451

Tab. 5.7: Comparison of prompting strategies for regulatory question answering. “+ passages”
refers to providing the model with entire retrieved passages, while “+ obligations” refers
to providing only obligation sentences extracted by the LegalBERT classifier.

In general, the pre-processing pipeline consisting of optimized passage filtering and focused
obligation extraction, enhanced by a customized prompting strategy, led to measurable
improvements in retrieval-based answer quality. These two steps acted synergistically to
reduce irrelevant content and amplify signal strength around regulatory obligations. Mov-
ing forward, all answer generation experiments build upon this optimized preprocessing
configuration, leveraging the best-performing filtering setup (threshold = 0.80, max-drop =
0.1) and the newly optimized prompt applied on extracted obligations. This configuration
not only improves coverage of relevant obligations but also enhances the semantic align-
ment between questions and retrieved content. As a result, it serves as a strong foundation

for downstream evaluations and ensures consistency across experimental conditions.

5.3.3 Generation

Naive Obligation Concatenation

The Naive Obligation Concatenation (NOC) method serves as an adversarial probe into the
robustness of the RePASs evaluation metric, exploiting its reference-free nature to construct
superficially compliant answers. As shown in Table 5.8, NOC achieves an almost perfect
RePASs score of 0.939, substantially outperforming both the GPT-40 baseline (0.470) and

even human experts (0.859). This superhuman performance extends across all sub-metrics:

Chapter 5 Experiments

Method RePASs Obligations Entailment Contradiction
GPT-40 baseline* 0.470 0.222 0.320 0.131
Human experts* 0.859 1.000 0.837 0.260
NOC 0.939 0.964 0.985 0.131
VRR 0.799 0.658 0.833 0.093
LOC 0.613 0.424 0.666 0.250

Tab. 5.8: Comparison of different generation methods using the RePASs metric on the test set.
*Scores taken from Gokhan et al. [Gok+24].

the obligation coverage score nears the upper bound at 0.964, contradiction is minimized
to 0.131, and entailment reaches an unexpected high of 0.985 despite the method’s lack of
generative reasoning. These results highlight a key limitation of RePASs: while designed
to reward answers that align closely with regulatory obligations, it can be easily misled by
methods that simply aggregate these obligations without providing coherent and human-
readable answers, as such obligations commonly rely on domain-specific legal and financial
language. The fact that NOC surpasses human performance without any understanding or
curation confirms that RePASs, although useful for obligation-focused QA, is vulnerable

to manipulation, mistaking surface-level lexical alignment for actual answer quality.

LLM Obligation Concatenation

The LLM Obligation Concatenation (LOC) method was developed to test whether ground-
ing answers in obligation sentences while still allowing the LLM to reason improves
generation quality. Unlike NOC, which simply concatenates obligation sentences, LOC
leverages the LLM to reformulate and integrate these obligations into a coherent response
conditioned on the question. It is important to recognize that NOC functions as an adversar-
ial upper bound; by presenting every obligation at once, it artificially maximizes entailment
in a way that is not practical for real-world question-answering, since it may not always
be clear how an obligation sentence can help answer a question. The obligations in LOC’s
answer are no longer presented as disjoint sentences, but are contextualized and phrased
in a way that aligns better with an answer format. As shown in Table 5.8, LOC achieves
a RePASs score of 0.613, marking an improvement of +0.143 over the GPT-40 baseline
(0.470). This improvement is primarily attributed to a substantial increase in obligation
coverage (+0.202), suggesting that grounding responses in obligation content improves
regulatory alignment. While this comes with an increase in contradiction (+0.121), the
overall alignment still improves, as reflected in the entailment score that rises by +0.346,
which is more than double from the baseline. These results suggest that, while LOC does
not match the artificially strong performance of NOC, it provides adherence to regulatory

content and thus significant improvement over the baseline.

5.3 Experimental results

41

42

Verify and Refine with RePASs

The Verify and Refine with RePASs (VRR) method demonstrates substantial improvements
across all evaluation dimensions, as shown in Table 5.8. Compared to the GPT-40 baseline,
VRR increases the RePASs score by +0.329 (from 0.470 to 0.799), obligation coverage by
+0.436, entailment by +0.513, and reduces contradiction by -0.038. Unlike methods such as
NOC or LOC, which rely on direct extraction or per-obligation prompting, VRR introduces
an iterative, metric-driven generation process. As shown in Table 5.9, the initial verification
step, which selects the best out of NV = 5 generated answers, yields the greatest performance
gain (+0.104 in RePASs), highlighting the effectiveness of candidate selection based on
self-consistency principles and guided by RePASs scores.

Further improvements are achieved through the refinement phase, where contradiction
removal reduces factual inconsistency by 0.079 (from 0.172 to 0.093) while preserving
high entailment values above 0.83. Simultaneously, obligation-focused refinement raises
obligation coverage to 0.658, a substantial +0.436 increase over the baseline and +0.154
over the verification step in the iteration with the highest RePASs. Each refinement stage,
alternating between contradiction and obligation adjustments, contributes incrementally,
with diminishing returns becoming evident by the fourth iteration, after which the process
was stopped and the version with the highest RePASs is picked, as shown in the final rows
of Table 5.9. In general, VRR ranks as the generative system with the highest performance,
excluding LOC, which adversarially attacks RePASs, validating the importance of structured

iterative refinement to achieve both completeness and factual precision in regulatory QA.

Step RePASs | Obligations | Entailment | Contradiction
Preprocessing 0.624 0.375 0.670 0.172
Verify 0.728 0.504 0.802 0.119
Refine Contradictions 1 0.753 0.508 0.825 0.072
Refine Obligations 1 0.770 0.596 0.826 0.112
Refine Contradictions 2 0.779 0.600 0.826 0.087
Refine Obligations 2 0.770 0.596 0.826 0.112
Refine Contradictions 3 0.798 0.655 0.832 0.093
Refine Obligations 3 0.792 0.657 0.833 0.113
Refine Contradictions 4 0.799 0.658 0.833 0.093
Refine Obligations 4 0.797 0.677 0.831 0.116

Tab. 5.9: RePASs progression across VRR steps on the test set.

5.3.4 RIRAG 2025 Results and Comparison

For the evaluation of participants in RIRAG 2025 [Gok+25], the organizers released an
evaluation set comprising 446 previously unseen questions, notably without providing
their corresponding golden passages. The reference-free design of the RePASs metric

enables a meaningful comparison between the results achieved in RIRAG 2025 and those of

Chapter 5 Experiments

System / Group RePASs Obligations Entailment Contradiction
GPT-4o0 baseline* 0.583 0.220 0.769 0.238
Human experts* 0.859 1.000 0.837 0.260
Indic aiDias 0.973 0.993 0.987 0.062
Ocean’s Eleven 0.971 0.991 0.986 0.065
AUEB NLP - NOC 0.947 0.951 0.986 0.096
Thesis - VRR 0.807 0.688 0.827 0.093
AUEB NLP - VRR 0.639 0.502 0.446 0.031
AICOE 0.601 0.230 0.827 0.254
AUEB NLP - LOC 0.562 0.423 0.375 0.110

Tab. 5.10: Subtask 2 leaderboard on the evaluation set. *Baseline and expert scores from Gokhan
et al. [Gok+24].

the system presented in this study, which establishes a new benchmark for non-adversarial
methods. However, since the golden passages remain unavailable, a direct comparison
between the retrieval component of the newly best-performing system and that of our

submission is unfortunately not feasible.

Two submissions surpassed AUEB’s baseline system on the RePASs leaderboard as seen in
Table 5.10, both achieving near-perfect scores. Indic aiDias achieved the highest overall
score (0.973), outperforming human experts in entailment while maintaining a low contra-
diction rate. Ocean’s Eleven followed closely (0.971), with comparable scores across all
metrics. Both systems appear to adopt similar strategies based on passage concatenation,
optimizing surface-level alignment with gold answers. This approach likely contributes
to their exceptional RePASs performance. However, these groups neither propose a con-
crete solution nor introduce a novel framework to enhance Repass; rather, they simply

concatenate existing passages.

Step Submission Thesis
Preprocessing 0.506 0.626
Verify 0.611 0.734
Refine Contradictions 1 0.638 0.753
Refine Obligations 1 0.634 0.772
Refine Contradictions 2 0.643 0.782
Refine Obligations 2 0.637 0.788
Refine Contradictions 3 0.643 0.797
Refine Obligations 3 0.642 0.797
Refine Contradictions 4 0.647 0.807
Refine Obligations 4 0.641 0.801

Tab. 5.11: Comparison between the system submitted to RIRAG 2025 and the system developed in
this thesis based on RePASs scores on the evaluation set.

This VRR method is further refined in the thesis system, which significantly improves
on the original submission. A key difference lies in the use of Gemini 2.5 Flash-Lite as

the generation model instead of GPT-40. This change leads to more stable and accurate

5.3 Experimental results

43

44

completions when integrated with the verification and refinement stages. The performance
advantage is evident from the preprocessing stage, where the thesis system begins with
higher RePASs score of 0.626. This stronger initial baseline enables the refinement pipeline
to produce more consistent improvements at each step, ultimately reaching a new peak
performance of 0.807 (Table 5.11). These findings demonstrate that the change in generation
model was instrumental in boosting performance and that VRR is a realistic approach that

achieves the strongest results among all evaluated methods.

Chapter 5 Experiments

Conclusions

This thesis explored the field of Regulatory NLP, focusing on the development and evalua-
tion of Retrieval-Augmented Generation systems for question-answering in compliance-
sensitive domains. A central aim was to assess how effectively such systems can be adapted
or built for highly specialized regulatory contexts, where precision is critical. Through sys-
tematic experimentation within the framework of the RIRAG-2025 shared task, the study
demonstrated that specialized neural retrievers, particularly those fine-tuned on financial
or legal corpora, can significantly outperform general-purpose models. Furthermore, the
integration of dense and lexical models via rank fusion methods such as Reciprocal Rank
Fusion and score-based interpolation was shown to produce competitive retrieval results.
The addition of re-ranking modules further refined top-ranked results, validating the

efficacy of two-stage retrieval architectures in regulatory domains.

Regarding answer generation, the thesis introduced and evaluated a variety of answer
synthesis strategies, culminating in the Verify and Refine with RePASs (VRR) method. This
iterative pipeline successfully improved grounding, entailment, and obligation coverage,
while minimizing contradiction. Importantly, the thesis also provided a critical examination
of the RePASs evaluation metric, showing that although it is well-suited for reference-free
assessment of answers containing obligations, it is vulnerable to superficial optimization
strategies such as the Naive Obligation Concatenation (NOC) method. In general, the
findings highlight the importance of modular, domain-adaptive system design and robust

evaluation practices for building reliable, high-precision QA systems in Regulatory NLP.

Future work

Future work could focus on improving evaluation by addressing the limitations of RePASs,
which remains vulnerable to superficial response strategies. Developing more robust,
semantically aware metrics would improve system reliability, particularly in high-stakes
compliance scenarios. Another direction is creating similar benchmarks for non-English
regulatory corpora, with Greek serving as a compelling example. Progress in this area
would also benefit from the development of localized legal retrieval systems, language

models, and obligation extraction tools tailored to specific jurisdictions.

45

Bibliography

[BCBY4]

[Ber+13]

[BGI23]

[BL04]

[CCB09]

[Cha+18]

[Cha+20]

[Gao+24]

Brian T. Bartell, Garrison W. Cottrell, and Richard K. Belew. “Automatic combination
of multiple ranked retrieval systems”. In: Proceedings of the 17th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval. Berlin,
Heidelberg, 1994, pp. 173-181.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. “Semantic Parsing on Free-
base from Question-Answer Pairs”. In: Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. Seattle, Washington, USA, 2013, pp. 1533-1544.

Sebastian Bruch, Siyu Gai, and Amir Ingber. “An Analysis of Fusion Functions for Hybrid
Retrieval”. In: ACM Trans. Inf. Syst. 42.1 (Aug. 2023).

Steven Bird and Edward Loper. “NLTK: The Natural Language Toolkit”. In: Proceedings
of the ACL Interactive Poster and Demonstration Sessions. Barcelona, Spain, 2004, pp. 214-
217.

Gordon V. Cormack, Charles L A Clarke, and Stefan Buettcher. “Reciprocal rank fusion
outperforms condorcet and individual rank learning methods”. In: Proceedings of the
32nd International ACM SIGIR Conference on Research and Development in Information
Retrieval. New York, NY, USA, 2009, pp. 758-759.

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Debdeep
Mukhopadhyay. Adversarial Attacks and Defences: A Survey. 2018. arXiv: 1810.00069
[cs.LG].

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis, Nikolaos Aletras, and Ion
Androutsopoulos. “LEGAL-BERT: The Muppets straight out of Law School”. In: Findings
of the Association for Computational Linguistics: EMNLP 2020. Online, 2020, pp. 2898-
2904.

Yunfan Gao, Yun Xiong, Xinyu Gao, et al. Retrieval-Augmented Generation for Large
Language Models: A Survey. 2024. arXiv: 2312.10997 [cs.CL].

47

https://arxiv.org/abs/1810.00069
https://arxiv.org/abs/1810.00069
https://arxiv.org/abs/2312.10997

48

[Goa+23]

[Gok+24]

[Gok+25]

[HB23]

[He+21]

[HGC23]

[Kal23]

[Kar+20]

[Kwi+19]

[LCT19]

[Lew+20]

[Li+20]

Catalina Goanta, Nikolaos Aletras, Ilias Chalkidis, Sofia Ranchordas, and Gerasimos
Spanakis. “Regulation and NLP (RegNLP): Taming Large Language Models”. In: Pro-
ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.
Singapore, 2023, pp. 8712-8724.

Tuba Gokhan, Kexin Wang, Iryna Gurevych, and Ted Briscoe. RegNLP in Action: Facil-
itating Compliance Through Automated Information Retrieval and Answer Generation.

2024. arXiv: 2409.05677 [cs.CL].

Tuba Gokhan, Kexin Wang, Iryna Gurevych, and Ted Briscoe. “Shared Task RIRAG-2025:
Regulatory Information Retrieval and Answer Generation”. In: Proceedings of the 1st

Regulatory NLP Workshop (RegNLP 2025). Abu Dhabi, UAE, 2025, pp. 1-4.

Yichen Huang and Timothy Baldwin. “Robustness Tests for Automatic Machine Transla-
tion Metrics with Adversarial Attacks”. In: Findings of the Association for Computational
Linguistics: EMNLP 2023. Singapore, 2023, pp. 5126-5135.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. “{DEBERTA}: {DECODING}-
{ENHANCED} {BERT} {WITH} {DISENTANGLED} {ATTENTION}". In: International

Conference on Learning Representations. 2021.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTaV3: Improving DeBERTa using
ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing. 2023. arXiv:
2111.09543 [cs.CL].

Joseph Kalmenovitz. “Regulatory Intensity and Firm-Specific Exposure”. In: The Review
of Financial Studies 36.8 (Jan. 2023), pp. 3311-3347. eprint: https://academic.
oup.com/rfs/article-pdf/36/8/3311/50908023/hhad001.pdf.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, et al. “Dense Passage Retrieval for Open-
Domain Question Answering”. In: Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP). Online, 2020, pp. 6769-6781.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, et al. “Natural Questions: A

Benchmark for Question Answering Research”. In: (2019), pp. 452-466.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. “Latent Retrieval for Weakly
Supervised Open Domain Question Answering”. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. Florence, Italy, 2019, pp. 6086—
6096.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, et al. “Retrieval-augmented generation
for knowledge-intensive NLP tasks”. In: Proceedings of the 34th International Conference
on Neural Information Processing Systems. Red Hook, NY, USA, 2020, pp. 9459-9474.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. “BERT-ATTACK:
Adversarial Attack Against BERT Using BERT”. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Online, 2020, pp. 6193-6202.

Bibliography

https://arxiv.org/abs/2409.05677
https://arxiv.org/abs/2111.09543
https://academic.oup.com/rfs/article-pdf/36/8/3311/50908023/hhad001.pdf
https://academic.oup.com/rfs/article-pdf/36/8/3311/50908023/hhad001.pdf

[LNY21]

[Mad+24]

[MRS08]

[NC20]

[Qua+24]

[RG19]

[Rob+95]

[Wan+23]

[Wan+24]

[WZZ21]

[Xu+24]

Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. Pretrained Transformers for Text
Ranking: BERT and Beyond. 2021. arXiv: 2010.06467 [cs.IR].

Aman Madaan, Niket Tandon, Prakhar Gupta, et al. “SELF-REFINE: iterative refine-
ment with self-feedback”. In: Proceedings of the 37th International Conference on Neural

Information Processing Systems. Red Hook, NY, USA, 2024, pp. 46534-46594.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduction to

Information Retrieval. Cambridge University Press, 2008.

Rodrigo Nogueira and Kyunghyun Cho. Passage Re-ranking with BERT. 2020. arXiv:
1901.04085 [cs. IR].

Xin Quan, Marco Valentino, Louise A. Dennis, and Andre Freitas. “Verification and
Refinement of Natural Language Explanations through LLM-Symbolic Theorem Prov-
ing”. In: Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing. Miami, Florida, USA, 2024, pp. 2933-2958.

Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks”. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Hong Kong, China, 2019, pp. 3982-3992.

Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu, and
Mike Gatford. “Okapi at TREC-3”. In: Overview of the Third Text REtrieval Conference
(TREC-3). Gaithersburg, Maryland, USA, 1995, pp. 109-126.

Xuezhi Wang, Jason Wei, Dale Schuurmans, et al. “Self-Consistency Improves Chain of
Thought Reasoning in Language Models”. In: The Eleventh International Conference on

Learning Representations. 2023.

Ante Wang, Linfeng Song, Ye Tian, et al. “Self-Consistency Boosts Calibration for Math
Reasoning”. In: Findings of the Association for Computational Linguistics: EMNLP 2024.
Miami, Florida, USA, 2024, pp. 6023-6029.

Shuai Wang, Shengyao Zhuang, and Guido Zuccon. “BERT-based Dense Retrievers
Require Interpolation with BM25 for Effective Passage Retrieval”. In: Proceedings of the
2021 ACM SIGIR International Conference on Theory of Information Retrieval. New York,
NY, USA, 2021, pp. 317-324.

Can Xu, Qingfeng Sun, Kai Zheng, et al. “WizardLM: Empowering Large Pre-Trained Lan-
guage Models to Follow Complex Instructions”. In: The Twelfth International Conference

on Learning Representations. 2024.

Bibliography

49

https://arxiv.org/abs/2010.06467
https://arxiv.org/abs/1901.04085

50

Prompts

Baseline prompt [Gok+24]

You are a regulatory compliance assistant. Provide a detailed answer for the question that
fully integrates all the obligations and best practices from the given passages. Ensure your
response is cohesive and directly addresses the question. Synthesize the information from all

passages into a single, unified answer.

Prompt for obligations in the context (VRR)

You are a regulatory compliance assistant. Your task is to provide a brief but concise and
detailed answer to the Question, ensuring that all Obligations are fully addressed. Directly
integrate each obligation into the response, ensuring no obligation is missed or implied. Avoid
adding information beyond what is explicitly stated in the Obligations, and cite specific
rules when necessary. Use the exact terminology and structure from the obligations where
applicable, to ensure high alignment and logical consistency. Focus solely on the provided

obligations to craft a response that is well-structured, concise, and free of contradictions.

Prompt for inserting obligations (VRR)

You are a regulatory compliance assistant. Your task is to integrate the following Obligations
that are missing from the Answer. You may change sentences or add new ones to cover
all Obligations. Avoid adding changes or sentences that contradict the Answer and/or the

Obligations.

Prompt that rewrites an obligation (LOC)

You are a regulatory compliance assistant. Your task is to construct a brief but concise response
that addresses the Question by focusing exclusively on the specified Obligation. Ensure your
response clearly identifies and explains the obligation, including any relevant conditions or
restrictions. Avoid addressing unrelated aspects of the Question, and limit your response

strictly to what is explicitly stated in the provided passage.

List of Acronyms

ADGM

Al

AQuA

AUEB

BM25

BLEURT

COLING

COMET

Csv

DPR

GPT

GSMS8K

IDF

IR

LOC

LLM

Abu Dhabi Global Markets

Artificial Intelligence

Annotation Quality Assessment

Athens University of Economics and Business

Best Matching 25

Bilingual Evaluation Understudy with Representations from Transformers

Conference on Computational Linguistics

Crosslingual Optimized Metric for Evaluation of Translation

Comma-Separated Values

Dense Passage Retrieval

Generative Pretrained Transformer

Grade School Math 8K

Inverse Document Frequency

Information Retrieval

LLM Obligation Concatenation

Large Language Model

51

52

MAP

MRR

MT

NLI

NLP

NLTK

NOC

ObliQA

ORQA

QA

RegNLP

RePASs

RIRAG

RRF

SBERT

SVAMP

TREC

VRR

Mean Average Precision

Mean Reciprocal Rank

Machine Translation

Natural Language Inference

Natural Language Processing

Natural Language Toolkit

Naive Obligation Concatenation

Obligation-based Question-Answering

Operating Room Question Answering)

Question Answering

Retrieval-Augmented Generation

Regulatory Natural Language Processing

Regulatory Passage Answer Stability Score

Regulatory Information Retrieval and Answer Generation

Reciprocal Rank Fusion

Sentence-BERT

Simple Variations on Arithmetic Math word Problems

Text REtrieval Conference

Verify and Refine with RePASs

Bibliography

List of Figures

1.1

3.1
3.2

4.1

5.1

5.2

5.3

RAG workflow diagram 2
Example passage from the document corpus. 16
Example question from the testset. 16
Prompt structure for manual prompt optimization 28

Performance of BM25-voyage-finance-2 under varying interpolation weight
a on the developmentset. 37
Recall@10 for varying top-N passage cutoffs during re-ranking using voyage-
rerank-2 on the developmentset. 38

Obligation-focused prompt for regulatory QA. 40

53

54

List of Tables

3.1

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9
5.10

5.11

Distribution of questions in the ObliQA dataset across training, testing, and

development sets, categorized by the number of associated passages.

Retrieval performance of BM25 with different tokenizers on the test set. . . .
Performance of single neural retrievers on the testset.
Reciprocal Rank Fusion RRF) results across lexical and neural retrievers on
thetestset.
Performance of rank fusion combinations of lexical and neural retrievers on
thetestset.
Triple rank fusion performance combining lexical and neural retrievers on
thetestset.
Performance of various threshold and max-drop configurations across differ-
ent scoring dimensions for the developmentset.
Comparison of prompting strategies for regulatory question answering. “+
passages” refers to providing the model with entire retrieved passages, while
“+ obligations” refers to providing only obligation sentences extracted by the
LegalBERT classifier..
Comparison of different generation methods using the RePASs metric on the
test set. *Scores taken from Gokhan et al. [Gok+24].
RePASs progression across VRR steps on the testset..
Subtask 2 leaderboard on the evaluation set. *Baseline and expert scores
from Gokhan et al. [Gok+24].
Comparison between the system submitted to RIRAG 2025 and the system

developed in this thesis based on RePASs scores on the evaluation set.

List of Algorithms

1 LLM Obligation Concatenation (LOC)
2 Verify and Refine with RePASs (VRR)

55

	Titlepage
	Abstract
	Abstract
	Acknowledgements
	Acknowledgements
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Thesis Structure

	2 Background and Related Work
	2.1 Background
	2.1.1 Regulatory NLP
	2.1.2 Retrieval Augmented Generation

	2.2 Related Work
	2.2.1 Keyword-Based Lexical Retrieval with BM25
	2.2.2 Dense Semantic Retrieval
	2.2.3 Hybrid Retrieval
	2.2.4 Re-ranking
	2.2.5 Iterative Improvement
	2.2.6 Adversarial Attacks

	3 RIRAG 2025
	3.1 About the shared-task
	3.2 Datasets
	3.3 RePASs

	4 Implemented methods and systems
	4.1 Data preparation
	4.2 Retrieval
	4.2.1 BM25
	4.2.2 Neural Retrieval
	4.2.3 Fusion-Based Retrieval
	4.2.4 Re-ranking

	4.3 Preprocessing
	4.3.1 Filtering and Obligation Extraction
	4.3.2 Prompt optimization

	4.4 Generation
	4.4.1 Naive Obligation Concatenation
	4.4.2 LLM Obligation Concatenation
	4.4.3 Verify and Refine with RePASs

	5 Experiments
	5.1 Datasets
	5.2 Evaluation measures
	5.3 Experimental results
	5.3.1 Retrieval
	5.3.2 Preprocessing
	5.3.3 Generation
	5.3.4 RIRAG 2025 Results and Comparison

	6 Conclusions
	Bibliography
	Prompts
	Acronym
	List of Acronyms
	List of Figures
	List of Tables
	List of Algorithms

