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Abstract

Reliable prediction in high-stakes domains requires methods that can handle complex

outputs and quantify their own uncertainty. Multi-label classification (MLC) provides

the framework to address tasks where multiple labels may be simultaneously relevant,

while conformal prediction (CP) provides principled guarantees on the reliability of its

uncertainty estimates. This thesis investigates ensemble strategies that combine these

two approaches, and in a second part applies multi-label classification methods, including

ensemble-based techniques, to the task of medical concept detection. In the first part, we

present a theoretical and empirical study of conformal ensembles, combining the formal

coverage guarantees of CP with the robustness and diversity benefits of homogeneous

and heterogeneous ensembles. We propose an ensemble conformal prediction (ECP)

framework for multilabel classification, in which individually conformalized models are

aggregated using standard strategies such as majority voting, probability averaging, and

F1-weighted fusion. We adapt existing theoretical results to analyze coverage properties

under these ensembles, and evaluate their performance across benchmark datasets. Results

demonstrate that conformal ensembles consistently improve macro-F1 while maintaining

valid coverage, and at the same time produce more compact and informative prediction

sets compared to single-model or post-hoc conformal baselines. In the second part, we

address the task of multi-label medical image concept detection, examining a range of

architectures and strategies, including ensemble-basedmethods, as part of our participation

in the ImageCLEFmedical Caption 2025 challenge. Our approach employs CNN–FFNN

architectures with various backbone encoders, per-label threshold optimization to address

extreme label imbalance, and diverse ensemble aggregation strategies, including union,

intersection, and consensus-driven methods. Experiments on the ImageCLEFmedical

dataset show that these ensembles achieved highly competitive performance in concept

detection, ranking first in the 2025 competition.
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Περίληψη

Η αξιόπιστη πολυετιϰετιϰή πρόβλεψη είναι ϰρίσιµη σε εφαρµογές υψηλής σηµασίας,

όπου τα µοντέλα πρέπει όχι µόνο να επιτυγχάνουν υψηλή αϰρίβεια αλλά ϰαι να παρέχουν

αξιόπιστες εϰτιµήσεις αβεβαιότητας. Στην εργασία αυτή µελετώνται στρατηγιϰές en-

semble learning για πολυετιϰετιϰή ταξινόµηση, µε έµφαση στη µέϑοδο conformal pre-

diction (CP), ϰαι εξετάζεται η εφαρµογή τους στον εντοπισµό ιατριϰών εννοιών. Στο

πρώτο µέρος παρουσιάζεται ϑεωρητιϰή ϰαι πειραµατιϰή µελέτη των conformal ensem-

bles, που συνδυάζουν τις στατιστιϰές εγγυήσεις ϰάλυψης του CP µε την ανϑεϰτιϰότητα

ϰαι ποιϰιλία οµοιογενών ϰαι ετερογενών συνόλων µοντέλων. Αναλύονται διαφορετιϰές

στρατηγιϰές συνδυασµού (πλειοψηφία, µέσος όρος πιϑανοτήτων, F1-weighted fusion)

ϰαι αξιολογούνται τόσο ως προς την ϰάλυψη όσο ϰαι την αϰρίβεια σε benchmark σύνολα

δεδοµένων. Τα αποτελέσµατα δείχνουν ότι οι conformal ensembles βελτιώνουν συστη-

µατιϰά την απόδοση ϰαι τη βαϑµονόµηση, παρέχοντας πιο συµπαγή ϰαι ϰατατοπιστιϰά

σύνολα προβλέψεων σε σχέση µε µεµονωµένα µοντέλα ή µεταγενέστερες προσεγγίσεις

CP. Στο δεύτερο µέρος, οι παραπάνω ιδέες εφαρµόζονται στον εντοπισµό ιατριϰών εν-

νοιών σε ειϰόνες, στο πλαίσιο της συµµετοχής µας στον διαγωνισµό ImageCLEFmedical

Caption 2025. Χρησιµοποιούνται CNN–FFNN αρχιτεϰτονιϰές µε διαφορετιϰούς back-

bone encoders, βελτιστοποίηση ϰατωφλίων ανά ετιϰέτα για την αντιµετώπιση αϰραίας

ανισορροπίας, ϰαι διάφορες στρατηγιϰές συνδυασµού (ένωση, τοµή, consensus). Τα

πειράµατα στο σύνολο δεδοµένων ImageCLEFmedical έδειξαν ότι τα προτεινόµενα en-

sembles πέτυχαν ϰορυφαία απόδοση, ϰαταϰτώντας την πρώτη ϑέση στον διαγωνισµό

του 2025. Συνολιϰά, η εργασία αναδειϰνύει πώς ο συνδυασµός της στατιστιϰής εγϰυρότη-

τας των conformal ensembles µε τις απαιτήσεις του ιατριϰού εντοπισµού εννοιών µπορεί

να οδηγήσει σε πιο αξιόπιστες ϰαι αϰριβείς πολυετιϰετιϰές προβλέψεις.
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1Introduction

Medical imaging is a cornerstone of modern healthcare, essential for diagnosis, treatment

planning, and patient monitoring across virtually all medical specialties. The rapid evolu-

tion of imaging technologies—spanning X-rays, MRIs, PET/CT scans, and ultrasounds—has

led to a surge in both the volume and complexity of imaging data [Naj22]. This exponential

growth presents a pressing challenge: developing automated systems capable of inter-

preting medical images accurately and efficiently, to alleviate the burden on radiologists

without compromising diagnostic precision.

A key task in this space is medical concept detection—automatically identifying and tagging

anatomical structures, pathological findings, and imagingmodalities withinmedical images.

This task falls under multi-label classification (MLC), where each image may correspond

to multiple, often interdependent, labels. Complicating matters further is the severe

class imbalance typical of medical datasets, where rare but critical findings are vastly

outnumbered by more common cases.

Designing robust multi-label classification (MLC) systems for medical imaging entails

several core challenges. First, models must represent dependencies among labels, whereby

the presence of one condition can alter the likelihood of others. Second, they must address

severe class imbalance so that rare but clinically important findings are not missed. Finally,

in safety-critical settings such as healthcare, systems should couple high predictive accuracy

with well-calibrated uncertainty. When the evidence is weak or ambiguous, a robust model

should modulate its output—by flagging low confidence, deferring, or presenting a compact

set of plausible labels with coverage guarantees (e.g., via conformal prediction)—so that

clinicians can adjudicate among a narrow, clinically meaningful set of alternatives. This

behavior preserves utility on difficult cases, supports clinician oversight, and reduces the

risk of high-stakes errors by aligning the model’s expressed confidence with the strength

of the underlying evidence.

This thesis addresses these challenges by bridging theoretical advances in uncertainty-

aware machine learning with practical applications in medical image analysis. The first

part focuses on enhancing conformal prediction (CP) for MLC through ensemble learning.

CP is a model-agnostic framework that constructs prediction sets with formal coverage

guarantees under minimal assumptions, making it well-suited for high-stakes applications

[VGS05]. However, standard CP often yields overly conservative sets and fails to capture

label dependencies. To address this, we develop novel ensemble conformal methods with
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new coverage bounds and aggregation strategies. Empirical evaluations on MS-COCO,

Yeast, and Emotions datasets show our methods consistently outperform single-model

and post-hoc calibrated baselines, achieving higher F1-scores, valid coverage, and more

compact predictions.

The second part of this thesis focuses on the application of these methods to medical

concept detection, using the ImageCLEFmedical Caption challenges of 2024 and 2025 as a

real-world case study. In those competitions, our team developed a high-performing system

based on deep convolutional neural networks (CNNs) for feature extraction, combined with

feed-forward neural network (FFNN) classifiers and a suite of ensemble techniques. We

introduced per-label threshold optimization using coordinate ascent and designed custom

aggregation strategies—such as dual-threshold and partial intersection methods—to im-

prove robustness. These systems achieved top-tier results in the competitions, ranking 2nd

in 2024 and 1st in 2025 in the Concept Detection task. In this thesis, we extend our previous

work by integrating ensemble conformal prediction into the medical concept detection

pipeline. This allows us to assess whether the statistical rigor and coverage guarantees of

CP translate effectively to clinical multi-label tasks. In doing so, we not only build upon

our competition-tested architectures but also explore the trade-offs between predictive

performance and uncertainty calibration in real-world, imbalanced, and high-dimensional

medical datasets. The broader significance of this research lies in demonstrating that

theoretical advances in uncertainty-aware learning can be successfully applied to practical,

safety-critical problems. Our methods offer a general framework for combining accuracy,

robustness, and calibrated uncertainty in MLC, with particular relevance to healthcare

applications. The integration of CP into deep learning-based medical imaging opens

promising avenues for future work, including context-aware prediction sets, uncertainty-

guided explainability, and multimodal AI systems that account for clinical risk in their

outputs.

1.1 Motivation and Problem Statement

The motivation for this thesis arises from the need to develop reliable, uncertainty-aware

methods for multi-label classification that are both theoretically grounded and practically

applicable in high-stakes domains. While the first part of this work advances ensemble-

based conformal prediction methods and validates them across diverse benchmark datasets,

the second part focuses on large-scale medical concept detection, where robustness, cal-

ibration, and domain-specific optimization are crucial. By applying the CP ensemble

methodology developed in the general MLC setting to the medical domain—alongside a

broader deep learning framework incorporating CNN–FFNN architectures, per-label thresh-

old optimization, and specialized ensemble strategies—this thesis bridges methodological

innovation with real-world deployment. The central problem addressed is how to design
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and adapt ensemble-based prediction systems that achieve high accuracy, maintain valid

and informative uncertainty estimates, and remain effective under the severe imbalance,

label dependencies, and operational constraints characteristic of clinical applications.

1.2 Thesis Structure

This thesis is organized into the following chapters:

Chapter 2: Related Work

This chapter reviews the literature on multi-label classification, conformal prediction, and

ensemble learning, with a focus on their applications in medical imaging and uncertainty

quantification. It also discusses key benchmarks, methodological trends, and the limitations

of current approaches that motivate the contributions of this thesis.

Chapter 3: Methodology

This chapter details the methodology developed in this thesis. The first part introduces

ensemble-based conformal prediction methods for multi-label classification, including

theoretical justifications and aggregation strategies. The second part describes the medical

concept detection framework used in the ImageCLEFmedical competitions and explains

how conformal prediction is integrated into this pipeline.

Chapter 4: Data

This chapter presents the datasets used in both the theoretical and applied parts of the

thesis. It includes benchmark MLC datasets (MS-COCO, Yeast, Emotions) as well as the

ImageCLEFmedical Caption 2024 and 2025 datasets. Dataset characteristics, preprocessing

steps, label distributions, and data splits are described in detail.

Chapter 5: Experiments and Evaluation

This chapter presents the experimental setup and results. It includes evaluations of the

proposed conformal ensemble methods on benchmark datasets and their application to

medical concept detection. Performance is assessed using accuracy, F1-score, coverage,

prediction set size, and robustness under class imbalance. Comparisons with baselines are

also included.

Chapter 6: Conclusions and Future Work

The final chapter summarizes the key contributions of the thesis and reflects on its im-

plications for uncertainty-aware machine learning in medical imaging. It also outlines

directions for future research, including adaptive and multimodal conformal methods,

clinical integration, and broader deployment in high-stakes domains.

1.2 Thesis Structure 3





2Background and Related Work

2.1 Multi-Label Classification (MLC)

Multi-label classification (MLC) is a supervised learning paradigm in which each instance

may be associated with multiple labels simultaneously, in contrast to single-label classifi-

cation where exactly one class is assigned [TKV10]. This setting arises naturally in many

domains: a photograph may contain both a person and a bicycle, a news article may belong

to both politics and economy, and a chest X-ray may exhibit cardiomegaly and pleural
effusion. Such cases highlight that co-occurring labels are not incidental but often encode

meaningful dependencies, especially in medical imaging where the presence of one finding

can increase or decrease the likelihood of another.

Formally, let X ⊆ Rd
denote the input feature space and L = {λ1, . . . , λL} the finite label

set. The output space is Y = {0, 1}L
, where yℓ = 1 indicates the presence of label λℓ.

A dataset D = {(xi, yi)}n
i=1 consists of feature vectors xi ∈ X and binary label vectors

yi ∈ Y . The goal is to learn a function f : X → [0, 1]L producing label-wise scores, which

are converted into predictions via a thresholding rule

ŷℓ(x) =

1 if fℓ(x) ≥ τℓ,

0 otherwise,

with thresholds τℓ set globally or per label.

The complexity of MLC stems from three main aspects. First, label imbalance: most

datasets exhibit a few highly frequent “head” labels alongside many rare “tail” ones.

Second, label dependencies: labels often co-occur (e.g., pneumonia with lung opacity)
or are mutually exclusive. Third, scalability: the exponential size of the label space

complicates both modeling and evaluation, motivating the use of metrics such as micro-

and macro-averaged F1 instead of simple accuracy.

Traditional approaches fall into two categories. Problem transformation methods reduce

MLC to standard classification tasks, e.g., Binary Relevance (BR), which trains one classifier

per label, Classifier Chains (CC), which model dependencies by propagating predictions

across labels [Rea+11], and Label Powerset (LP), which treats each unique label combination

5



as a class. In contrast, algorithm adaptation methods extend existing algorithms directly to

the multi-label setting, such as ML-kNN [ZZ07] or ranking-based SVMs [EW01].

More recently, deep learning has become dominant for MLC, as neural architectures

can learn shared feature representations and capture complex inter-label relationships.

Approaches leveraging attention mechanisms, graph neural networks, and transfer learn-

ing have shown strong results, while cost-sensitive learning addresses the challenges of

imbalance [Liu+21; Wan+17].

In summary, MLC provides a flexible framework for modeling real-world problems with

overlapping categories, but its challenges—imbalance, dependencies, and scale—require

methods that go beyond naive extensions of single-label classification. These challenges

motivate the uncertainty-aware and ensemble-based methods studied in this thesis.

2.1.1 Descriptive Properties of Multi-Label Data

The statistical characteristics of multi-label datasets strongly influence both model design

and evaluation. In particular, label cardinality and density, class imbalance, and inter-label

dependencies are central descriptors that affect predictive performance and the choice of

appropriate metrics [TKV10; ZZ14].

Label Cardinality and Density. Two standard measures quantify the extent of multi-

labelness in a dataset. The label cardinality is the average number of labels per instance:

Cardinality(D) = 1
n

n∑
i=1

|Yi|,

while the label density normalizes this value by the number of labels L:

Density(D) = 1
n

n∑
i=1

|Yi|
L

.

High cardinality and density imply that models must output multiple active labels per

example, whereas low values indicate sparse assignments where false positives are more

critical.
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Class Imbalance and Long-Tail Distributions. Label frequencies in real-world MLC

corpora often follow a long-tail distribution [HG09]. A few labels occur frequently, while

many appear rarely or only once. This can be expressed through the marginal probability

p(λℓ) = 1
n

n∑
i=1

yiℓ,

which is typically highly skewed. In medical imaging, frequent descriptors such as chest
or plain X-ray dominate, whereas rare but clinically important labels like pulmonary
embolism may occur in less than 1% of cases. Such imbalance biases models toward

common classes and motivates remedies such as re-sampling, cost-sensitive learning, or

threshold calibration.

Label Correlations. Labels in MLC are rarely independent, but often exhibit strong

dependencies [Rea+11]. These can be positive (e.g., pneumonia with lung opacity), nega-
tive (e.g., normal finding versus pathology), or conditional. Correlations are commonly

quantified via a co-occurrence matrix

Cℓm =
n∑

i=1
I{yiℓ = 1 ∧ yim = 1},

or normalized indices such as the Jaccard similarity

J(λℓ, λm) = Cℓm

Cℓ· + C·m − Cℓm
.

Exploiting these dependencies through methods like Classifier Chains [Rea+11] or graph-

based models has been shown to significantly improve predictive performance.

Illustrative Analyses. To analyze these properties, researchers typically inspect: (i)

label frequency histograms to expose long-tail imbalance, (ii) co-occurrence heatmaps to

highlight correlations, and (iii) distributions of label cardinality to gauge per-instance label

load. Such visualizations are provided for this thesis’ datasets in Chapter 4, grounding the

above concepts in empirical evidence.

2.1.2 Challenges in Multi-Label Classification

While multi-label classification (MLC) enables the modeling of complex, multi-faceted

phenomena, it also introduces several challenges absent or less pronounced in single-label

settings [ZZ14; TKV10].

2.1 Multi-Label Classification (MLC) 7



Inter-label dependencies. Labels often exhibit structured co-occurrence patterns that

can be positive (e.g., pneumonia with lung opacity), negative (e.g., normal finding vs.

pathology), or conditional on features or other labels. Simple methods such as Binary

Relevance treat labels independently, thereby discarding valuable relational information.

Methods that explicitly model dependencies—such as Classifier Chains [Rea+11] or graph-

based approaches [Hua+20]—tend to achieve superior performance.

Class imbalance. Real-world datasets typically follow a long-tail distribution where

a few “head” labels dominate and many “tail” labels are rare [HG09]. This imbalance is

especially problematic in medical imaging, where rare but critical conditions may occur

in less than 1% of cases. Without corrective strategies, models achieve poor recall for

rare labels. Remedies include resampling, cost-sensitive loss weighting, and threshold

calibration [Cha+15].

Scalability. As the number of labels L grows, the label space {0, 1}L
expands expo-

nentially, making exhaustive modeling infeasible. Even training one classifier per label

can be computationally prohibitive for large L. To address this, dimensionality-reduction

strategies such as low-rank label embeddings [TL12], sparse output coding [Hsu+09], and

hierarchical partitioning [CGZ06] have been proposed.

Evaluation complexity. No single metric captures all aspects of performance in MLC.

Metrics such as Hamming loss, subset accuracy, and micro-/macro-averaged F1 emphasize

different trade-offs [ZZ14]. In high-stakes domains, metric choice is application-driven:

medical imaging often prioritizes recall for rare labels, whereas recommendation systems

may emphasize precision to preserve user trust.

2.1.3 Classical Approaches to Multi-Label Classification

Before the rise of deep learning, research on multi-label classification (MLC) primarily ex-

tended single-label paradigms to handle multiple outputs. Classical methods are commonly

divided into problem transformation techniques, which reduce MLC to simpler subproblems,

and algorithm adaptation approaches, which directly modify existing learners to produce

multi-label outputs [ZZ14; TKV10].

Problem Transformation Methods. These approaches reformulate the MLC task into

one or more single-label problems, enabling the reuse of established algorithms:

8 Chapter 2 Background and Related Work



• Binary Relevance (BR): Trains L independent binary classifiers, one per label. BR

is simple and scalable but ignores label dependencies.

• Classifier Chains (CC) [Rea+11]: Extends BR by feeding predictions of earlier

labels as features into subsequent classifiers, thus modeling conditional dependencies.

Ensembles of CC with randomized label orders mitigate error propagation.

• Label Powerset (LP): Treats each observed label combination as a single multi-class

label, capturing dependencies exactly but suffering from sparsity and scalability

issues when L is large. Variants such as Pruned LP address this by discarding rare

combinations.

• Random k-Labelsets (RAkEL) [TV07]: Decomposes the label set into smaller

random subsets of size k and applies LP locally. By aggregating predictions across

multiple such subsets, RAkEL balances dependency modeling with tractability.

Algorithm Adaptation Methods. Instead of decomposing the task, these approaches

extend learning algorithms to handle multiple labels directly:

• ML-kNN [ZZ07]: An adaptation of k-nearest neighbors that estimates per-label

posterior probabilities from neighbor counts. Effective on small to medium datasets,

though computationally expensive at inference.

• Rank-SVM [EW01]: Formulates MLC as a ranking task by learning pairwise label

orderings, useful when ranked predictions are required but costly due to O(L2)
comparisons.

• Neural networks with sigmoid outputs: Early neural MLC models replaced the

softmax layer with L sigmoids trained via binary cross-entropy. These leverage

shared representations but do not inherently capture inter-label dependencies, often

requiring additional mechanisms (e.g., attention, graph-based models).

• Other adaptations: Historical proposals include BRkNN (a hybrid of BR and

kNN), multi-label decision trees and ensembles, and probabilistic graphical models

(Bayesian networks, Markov random fields). These explicitly model dependencies

but face scalability challenges as label spaces grow.

Overall, classical approaches laid the foundation for MLC by highlighting the trade-off

between scalability, ability to model dependencies, and robustness to imbalance. Their

limitations motivated the development of modern deep learning–based methods that

integrate representation learning with structured output modeling.
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2.1.4 Evaluation Metrics in Multi-Label Classification

Evaluating multi-label classification (MLC) systems is inherently more complex than single-

label classification, as no single metric fully captures all performance aspects. The choice

of metric depends on the application, the relative cost of errors, and whether outputs are

binary label sets, ranked lists, or calibrated probabilities [ZZ14; TKV10]. Broadly, metrics

fall into three categories: set-based, label-based, and ranking-based.

Set-based metrics. Set-based measures directly compare the predicted label set ŷ with

the ground truthy. TheHamming loss quantifies the fraction of misclassified label–instance

pairs:

HammingLoss = 1
NL

N∑
i=1

L∑
ℓ=1

I[yiℓ ̸= ŷiℓ], (2.1)

where N is the number of instances and L the number of labels. It is simple and scalable

but does not account for label dependencies. Subset accuracy (exact match ratio) metric

requires that the predicted label set matches the true label set exactly:

SubsetAccuracy = 1
N

N∑
i=1

I[yi = ŷi]. (2.2)

While intuitive, it is overly strict in high-cardinality problems, as a single error invalidates

the prediction.

Label-based metrics. Label-based metrics evaluate performance per label and then

aggregate results using macro- or micro-averaging. Precision, recall, and the F1-score are

most common:

Precision = TP
TP + FP , Recall = TP

TP + FN , (2.3)

F1 = 2 · Precision · Recall
Precision + Recall . (2.4)

Macro-averagingweighs all labels equally, highlighting performance on rare labels, whereas

micro-averaging favors frequent labels by aggregating across all decisions. The choice

reflects domain priorities: e.g., macro-F1 is crucial in medical tasks where rare conditions

are clinically important.

Ranking-based metrics. When models output scores rather than binary predictions,

ranking-based metrics provide finer evaluation [SS00; ZZ14]. Average precision (AP)

computes the area under the precision–recall curve for each label, then averages across

labels. Coverage error measures the average number of top-ranked labels required to cover
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all true labels. Other metrics include one-error, ranking loss, and nDCG, particularly

relevant when the order of labels matters.

Trade-offs and considerations. Metrics emphasize different error types: minimizing

Hamming loss may bias toward conservative predictions, while maximizing macro-F1 often

boosts recall at the expense of more false positives. In healthcare, recall for rare but critical

findings may outweigh precision, while in domains with costly verification, precision

may dominate. Thus, comprehensive evaluation typically reports multiple complementary

metrics, ensuring a balanced assessment of model behavior.

2.1.5 Modern Trends in Multi-Label Classification

Recent advances in deep learning have significantly reshaped the landscape of multi-

label classification (MLC), offering powerful solutions to long-standing challenges such

as modeling inter-label dependencies, addressing label imbalance, and learning from

high-dimensional data [ZZ14; Wan+17].

Deep learning for shared feature representation. Deep neural networks (DNNs) are

now the dominant paradigm for MLC across domains, due to their ability to learn hierar-

chical feature representations directly from raw inputs. Convolutional neural networks

(CNNs) for images, recurrent architectures for sequential data, and transformer-based

encoders for text have been successfully adapted by replacing the softmax layer with L

independent sigmoid outputs [Wan+17; Liu+17]. Shared hidden layers enable joint repre-

sentation learning, reducing reliance on handcrafted features and improving generalization,

particularly when labels are correlated.

Attention mechanisms for label dependency modeling. To explicitly model depen-

dencies between labels and input features, attention mechanisms have become increasingly

popular. Label-wise attention networks assign distinct attention weights for each label,

allowing fine-grained feature–label interactions [You+19]. More broadly, transformer

architectures leverage self-attention to capture both local and global dependencies, and in

some variants, inter-label relations as well [Vas+17; Che+19]. These mechanisms enable

models to dynamically focus on the most relevant evidence for each label.

Graph-based methods for label relationships. Many MLC tasks involve structured

label relationships that can be naturally represented as graphs. Graph neural networks

(GNNs) exploit this structure by propagating information among label nodes, allowing

correlated or hierarchical labels to inform each other [Che+19; Wu+20]. For example, in
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biomedical imaging, anatomical labels and associated pathologies can be modeled jointly,

improving recall for rare findings. Integrating GNNs with deep encoders provides a unified

way to learn both input representations and structured label interactions.

Cost-sensitive learning. Severe label imbalance remains a pervasive issue in MLC.

Cost-sensitive learning strategies address this by reweighting losses, resampling training

data, or optimizing per-label thresholds [Cha+15]. Such approaches are particularly critical

in high-stakes domains like medicine, where false negatives for rare conditions can have

disproportionately severe consequences. By prioritizing rare or clinically important labels,

cost-sensitive methods mitigate bias toward frequent labels.

Pretraining and transfer learning. Pretraining on large-scale datasets followed by task-

specific fine-tuning has become a standard practice in MLC. In vision, CNNs pretrained on

ImageNet serve as feature extractors for multi-label tagging in specialized domains [He+16],

while in NLP, pretrained transformers such as BERT and its successors are fine-tuned

for multi-label text classification [Dev+18]. Transfer learning also enables cross-domain

adaptation, where knowledge learned in general-purpose domains (e.g., natural images)

improves performance in resource-scarce applications (e.g., medical imaging).

2.1.6 Multi-Label Classification in Safety-Critical Domains

While multi-label classification (MLC) is widely applied across domains, its deployment in

safety-critical settings—such as healthcare, autonomous driving, environmental monitor-

ing, and industrial process control—introduces requirements that extend beyond predictive

accuracy. In such contexts, erroneous predictions may have severe or irreversible con-

sequences, making the quantification and communication of uncertainty as important as

predictive correctness [BBK19; Ova+19].

The role of uncertainty quantification. Uncertainty quantification enables risk-aware

decision-making by estimating the confidence associated with each prediction. In med-

ical imaging, diagnostic support systems must indicate when predictions are uncertain,

prompting closer review by clinicians [Jia+12]. In autonomous driving, perception modules

should flag low-confidence detections so that the control system can trigger conservative

fallback strategies [FRD21]. Such mechanisms are essential not only for human oversight

but also for integration into broader pipelines that are constrained by regulatory and safety

standards.
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Common pitfalls in conventional MLC models. Standard deep learning–based MLC

models are often poorly calibrated, exhibiting systematic overconfidence in their predic-

tions [Guo+17]. Miscalibration is particularly dangerous in safety-critical applications

where probability thresholds guide decisions: underestimating uncertainty for rare but

critical labels (e.g., pneumothorax in medical imaging) can lead to missed detections, while

overestimating uncertainty for common labels may trigger unnecessary interventions.

Moreover, conventional metrics such as F1-score or Hamming loss do not assess calibra-

tion quality, allowing unreliable models to appear deceptively strong under traditional

evaluations.

Motivation for ensemble and conformal prediction approaches. These limitations

motivate methods that provide not only accurate predictions but also reliable uncertainty

estimates. Ensemble methods, which aggregate outputs from multiple diverse models, are

well-established techniques for improving both accuracy and calibration in classification

tasks [LPB17]. Conformal prediction (CP) offers a complementary, model-agnostic frame-

work that produces prediction sets with formal, distribution-free coverage guarantees

[VGS05; AB21]. In safety-critical MLC applications, combining ensembling with CP holds

particular promise: ensembles reduce overconfidence and capture epistemic uncertainty,

while CP ensures rigorous coverage control. This thesis builds upon these principles, first

exploring ensemble-based CP for general MLC tasks and subsequently adapting these

techniques to biomedical concept detection in radiological imaging.

2.2 Uncertainty Quantification in MLC

Machine learning models, particularly those based on deep neural networks, have achieved

remarkable success across a wide range of tasks. However, their predictions are often

accompanied by an implicit assumption of certainty, even in cases where the model has

little evidence to support its output. In many real-world applications—especially safety-

critical domains such as healthcare, autonomous driving, or legal decision-making—this

overconfidence poses a significant risk. A model that cannot accurately indicate when it is

uncertain may produce highly confident yet incorrect predictions, potentially leading to

costly or even life-threatening consequences.

Uncertainty quantification (UQ) seeks to address this limitation by providing reliable

measures of predictive confidence. Instead of returning only point predictions or label

scores, a well-calibrated model can communicate the degree of uncertainty associated

with each prediction, enabling risk-aware decision-making. In medical image analysis,

for example, an automated concept detection system that flags uncertain predictions

can alert clinicians to review specific findings more closely, improving patient safety

and diagnostic reliability. This is particularly relevant in multi-label classification (MLC)
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settings, where multiple interdependent labels are predicted simultaneously and where

the cost of misclassification varies significantly between labels.

By equipping machine learning models with principled uncertainty estimates, we can

bridge the gap between high predictive accuracy and real-world trustworthiness. This

thesis focuses on methods that not only improve accuracy in MLC but also provide robust,

interpretable measures of uncertainty with statistical guarantees, forming a foundation

for the integration of AI systems into safety-critical workflows.

2.2.1 Types of Uncertainty

In supervised learning, uncertainty is generally categorized into two main types: aleatoric
and epistemic uncertainty [DD09]. These correspond to different sources of predictive

uncertainty and have distinct implications for model design and interpretation.

Aleatoric uncertainty. Aleatoric uncertainty arises from inherent variability in the

data generation process. This type of uncertainty is irreducible: no matter how much

data is collected, the noise present in the measurements, labeling process, or underlying

phenomena cannot be eliminated. For example, in medical imaging, aleatoric uncertainty

may stem from low image quality, motion artifacts, or ambiguous visual patterns that even

human experts find difficult to interpret. In MLC, this may manifest when certain visual

cues are shared between multiple labels, making it inherently unclear which labels apply

to a given instance.

Epistemic uncertainty. Epistemic uncertainty, also known asmodel uncertainty, reflects

a lack of knowledge about the true mapping from inputs to outputs. It is caused by limited,

sparse, or biased training data, as well as model misspecification. Epistemic uncertainty is

reducible: collecting more representative data or improving the model architecture can

reduce it. In medical imaging, epistemic uncertainty might be high for rare conditions

that appear in only a few training examples. In MLC, epistemic uncertainty is particularly

important for rare labels or unusual label combinations that the model has not encountered

frequently.

Interplay in multi-label settings. In practice, both types of uncertainty often coexist.

For example, in a radiology image containing an unusual combination of findings, aleatoric

uncertainty might arise from ambiguous image features, while epistemic uncertainty may

result from the model’s lack of prior exposure to similar cases. Disentangling these uncer-

tainties can be valuable for decision-making: high aleatoric uncertainty might indicate an
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inherently ambiguous case, whereas high epistemic uncertainty may suggest that further

data collection or model retraining could improve performance.

Understanding the nature of uncertainty in a given prediction is essential for designing ef-

fective uncertainty quantification strategies and for interpreting model outputs responsibly,

particularly in high-stakes MLC tasks.

2.2.2 Calibration and Overconfidence

While predictive accuracy is a primary performance metric in machine learning, in many

applications it is equally important that a model’s predicted probabilities accurately reflect

the true likelihood of correctness. This property is known as calibration [Guo+17]. A

perfectly calibrated classifier is one in which, for all predictions assigned a confidence score

of p, the proportion of correct predictions is also p. For example, among all predictions to

which the model assigns a confidence of 0.8, approximately 80% should be correct.

Overconfidence in modern neural networks. Empirical studies have shown that

modern deep neural networks, despite achieving high accuracy, often suffer from severe

miscalibration, typically manifesting as overconfidence [Guo+17]. This means that the

model’s predicted probabilities are systematically higher than the actual observed accuracy,

especially on out-of-distribution examples or rare classes. Overconfidence is particularly

problematic in safety-critical domains, where a high-probability incorrect prediction

may lead to decisions with severe consequences. In multi-label classification (MLC),

overconfidence can manifest for individual labels or propagate through correlated label

structures, compounding the risk of erroneous predictions.

Reliability diagrams and calibration metrics. Calibration can be evaluated visually

and quantitatively. Reliability diagrams (see Figure 2.1) plot the observed accuracy against

predicted confidence scores, allowing deviations from the diagonal (perfect calibration) to

be observed. They provide an intuitive visual assessment of how well a model’s predicted

probabilities correspond to actual correctness. In the diagram, each point corresponds

to a bin of predictions grouped by confidence, with the x-coordinate representing the

average predicted confidence and the y-coordinate representing the empirical accuracy

within that bin. Deviations below the diagonal indicate overconfidence, while deviations

above indicate underconfidence. The accompanying histogram shows the proportion of

predictions falling into each confidence bin, illustrating the distribution of the model’s

confidence scores. Quantitatively, calibration is often measured using metrics such as

the Expected Calibration Error (ECE) and the Maximum Calibration Error (MCE). ECE, for

instance, is computed by partitioning predictions into M bins based on their predicted
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probability and then calculating the weighted average of the absolute differences between

accuracy and confidence in each bin:

ECE =
M∑

m=1

|Bm|
n

|acc(Bm) − conf(Bm)| , (2.5)

where Bm is the set of samples in bin m, acc(Bm) is the empirical accuracy, conf(Bm) is
the mean predicted confidence, and n is the total number of samples.

Fig. 2.1: Reliability diagrams for twomodels. (Left) A well-calibrated model, where most points

lie close to the diagonal, indicating predicted probabilities align with actual observed

accuracies. (Right) An overconfident model, where points fall below the diagonal, showing

that predicted probabilities are systematically higher than true accuracies. The bars

indicate the proportion of predictions in each confidence bin. Reliability diagrams provide

a visual means of assessing calibration quality, with the dashed line representing perfect

calibration.

Consequences of poor calibration. In safety-critical MLC tasks, poor calibration can

result in two failure modes: (i) false assurance, where incorrect predictions are assigned
high confidence and thus go unchallenged by human reviewers, and (ii) false alarm, where

correct predictions are assigned low confidence, leading to unnecessary interventions or

reviews. Both cases degrade the overall effectiveness of a human–AI collaboration and can

erode trust in the system.

Motivation for improved uncertainty estimation. Addressing miscalibration is there-

fore essential for reliable uncertainty quantification. Techniques such as post-hoc cali-

bration (e.g., temperature scaling, isotonic regression), Bayesian modeling, and ensemble

methods have all been shown to improve calibration. In this thesis, we place particular

emphasis on ensemble methods and conformal prediction, as these approaches not only

enhance calibration but also provide formal guarantees on predictive uncertainty—an

especially valuable property in safety-critical multi-label applications.
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2.2.3 Approaches to Uncertainty Quantification

Several methodologies have been developed to quantify uncertainty in machine learning

models, ranging from fully Bayesian treatments to computationally efficient post-hoc

calibration techniques. This subsection reviews four widely used families of approaches,

with a focus on their conceptual underpinnings, practical considerations, and relevance to

multi-label classification (MLC).

Bayesian Neural Networks. Bayesian neural networks (BNNs) [Nea12] extend stan-

dard neural networks by placing probability distributions over their weights rather than

learning fixed point estimates. This allows the model to capture epistemic uncertainty

through a posterior distribution over parameters, from which predictions are obtained by

marginalizing over the weight distribution. In practice, the true posterior is intractable and

must be approximated using methods such as variational inference [graves2011practical;
blundell2015weight] or Markov chain Monte Carlo (MCMC) sampling. While BNNs

provide a theoretically principled framework for uncertainty estimation, they are com-

putationally expensive to train and scale poorly to very deep architectures, limiting their

adoption in large-scale MLC problems.

Monte Carlo Dropout. Monte Carlo (MC) Dropout [GG16] offers a computationally

inexpensive approximation to Bayesian inference. The method leverages dropout, a regu-

larization technique, at inference time: multiple stochastic forward passes are performed

with dropout activated, producing a distribution of predictions for each input. The mean

of these predictions serves as the final output, while their variance provides an estimate

of epistemic uncertainty. MC Dropout is simple to implement in existing architectures,

incurs minimal modifications to training, and has been successfully applied in a variety of

domains. However, its uncertainty estimates can be sensitive to the chosen dropout rate

and may not match the fidelity of more explicit Bayesian approaches.

Ensemble Methods. Ensemble methods combine the outputs of multiple independently

trained models to improve predictive performance and obtain uncertainty estimates from

the diversity of predictions [LPB17]. In the simplest case, bootstrap ensembles train each

model on a different resampled subset of the training data, while snapshot ensembles
[Hua+17a] capture multiple network states from a single training run using cyclical

learning rates. In MLC, ensembles can help mitigate label imbalance effects and improve

calibration by averaging over multiple diverse decision boundaries. The predictive variance

across ensemble members naturally reflects epistemic uncertainty, making this approach

highly compatible with conformal prediction frameworks discussed later in this thesis.
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Post-hoc Calibration. Post-hoc calibration methods adjust a trained model’s output

scores to improve the alignment between predicted probabilities and observed accuracies,

without altering the underlying model parameters. Popular techniques include Platt scaling
[platt1999probabilistic], which fits a logistic regression model to the outputs; temper-
ature scaling [Guo+17], which divides logits by a learned scalar temperature parameter;

and isotonic regression [zadrozny2002transforming], a non-parametric method that fits

a monotonic function mapping raw scores to calibrated probabilities. These methods are

computationally inexpensive and easy to integrate, but they only address calibration and

do not inherently improve predictive accuracy or capture epistemic uncertainty.

In summary, while Bayesian approaches offer the most principled uncertainty estimates,

their high computational cost often limits practical use. MCDropout and ensemblemethods

provide more scalable alternatives, with ensembles typically offering superior calibration

and robustness in MLC settings. Post-hoc calibration serves as a lightweight complement

to these methods, improving trustworthiness without retraining.

2.3 Conformal Prediction

Conformal Prediction (CP) is a framework for producing prediction sets that are guaranteed,

under mild assumptions, to contain the true label with a user-specified probability [VGS05].

Unlike conventional classifiers, which output a single predicted label or a probability

distribution over labels, CP returns a set of plausible labels whose size depends on the

model’s confidence in its prediction. This approach offers a rigorous, model-agnostic

method for uncertainty quantification, making it particularly attractive in high-stakes

decision-making domains such as medical diagnosis, autonomous driving, and financial

risk assessment.

The fundamental guarantee of CP is coverage validity. Formally, for a given significance

level α ∈ (0, 1), a CP predictor constructs a prediction set Γα(x) such that:

P
(
y ∈ Γα(x)

)
≥ 1 − α, (2.6)

where the probability is taken over the joint distribution of the training and test data.

This means that, on average, at least (1 − α) × 100% of the prediction sets produced will

contain the correct label. Crucially, this guarantee holds without any assumptions on the

correctness of the underlying model, provided that the data are exchangeable.

CPmethods differ in how they partition the available data formodel training and calibration.

The most common variants are:
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• Transductive CP: The original formulation, in which the model is retrained for

each test instance with and without candidate labels to compute nonconformity

scores. While offering exact validity, this approach is computationally infeasible for

modern large-scale problems.

• Inductive CP: A more practical variant that splits the data into a proper training
set for model fitting and a calibration set for computing nonconformity scores. This

reduces computation but retains validity under exchangeability.

• Split Conformal Prediction: A simplification of inductive CP where the split

between training and calibration is fixed, avoiding cross-validation or retraining,

making it well-suited for large datasets.

• Mondrian CP: A label-conditional extension that calibrates prediction sets sepa-

rately for different categories (e.g., per class or per subgroup), allowing coverage

guarantees to hold conditionally within each group. This is particularly useful in im-

balanced classification, where global calibration may hide systematic under-coverage

for rare labels.

In the context of this thesis, CP provides a principled framework for converting probabilistic

predictions into well-calibrated, set-valued outputs with formal guarantees. Its model-

agnostic nature allows it to be applied to deep neural networks, ensemble methods, and

other architectures without altering the underlying learning algorithm, making it an ideal

choice for integrating with the multi-label classification systems developed in this work.

2.3.1 Mathematical Framework of Conformal Prediction

Conformal Prediction (CP) is a distribution-free framework for uncertainty quantification

that outputs prediction sets rather than point estimates, with the guarantee that the true

label is contained in the set with user-specified probability 1 − α [VGS05; SV08; AB21].

Unlike Bayesian or parametric methods, CP requires only that data be exchangeable, making

its validity robust to model misspecification.

ProblemSetup. LetX ⊆ Rd
denote the input space andY the label space (e.g. {1, . . . , K}

in classification). Given training data

{Zi}n
i=1 = {(Xi, Yi)}n

i=1 ∼ PXY ,

and a new input Xn+1, CP constructs a prediction set Ĉα(Xn+1) ⊆ Y such that

P
(
Yn+1 ∈ Ĉα(Xn+1)

)
≥ 1 − α, (2.7)

2.3 Conformal Prediction 19



where α ∈ (0, 1) is the miscoverage rate.

Core Components.

1. Nonconformity Measure. A function A : Zm × Z → R quantifies how “atypical”

an example z = (x, y) is relative to a reference set.

• Regression: A(S, (x, y)) = |y − f̂(x)|.

• Classification: A(S, (x, y)) = 1 − p̂y(x), where p̂y(x) is the model-predicted

probability for y.

2. Data Splitting. The dataset is partitioned into Dtrain (to fit the model f ) and Dcal

(for calibration).

3. Calibration Scores. For each calibration point Zi = (Xi, Yi),

Si = A(Dtrain, Zi). (2.8)

4. Test Scores. For a new input Xn+1 and candidate label y ∈ Y ,

Sn+1(y) = A(Dtrain, (Xn+1, y)). (2.9)

5. Quantile Threshold. The (1 − α) empirical quantile of calibration scores is

Q1−α = inf
{

s : 1
ncal + 1

ncal∑
i=1

I{Si ≤ s} ≥ 1 − α

}
. (2.10)

6. Prediction Set.

Ĉα(Xn+1) = {y ∈ Y : Sn+1(y) ≤ Q1−α}. (2.11)

Validity Guarantee.

Theorem 2.3.1 (Finite-sample validity [VGS05]). If {Z1, . . . , Zn+1} are exchangeable, then
Eq. (2.7) holds for any nonconformity function A.
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Proof. Exchangeability ensures that the rank ofSn+1(Yn+1) among {S1, . . . , Sncal
, Sn+1(Yn+1)}

is uniformly distributed. The quantile Q1−α guarantees inclusion with probability at least

1 − α.

Remarks.

• CP requires only exchangeability, a weaker assumption than i.i.d. sampling.

• Prediction sets adapt to model confidence: smaller under confident predictions,

larger under uncertainty.

• In large label spaces, computing Sn+1(y) for every y can be expensive, motivating

approximations such as inductive CP and efficient nonconformity functions [VGS05;

AB21].

2.3.2 Types of Conformal Prediction for Classification

Conformal Prediction (CP) admits several variants depending on how nonconformity

scores are grouped and calibrated. In classification, the three most widely used approaches

are Standard CP, Mondrian CP, and Adaptive CP.

Standard Conformal Prediction. Standard CP treats all calibration examples as a single

pool. Nonconformity scores are computed as

Si = A(Dtrain, (xi, yi)),

and for a new input x, test scores Sn+1(y) are obtained for each y ∈ Y . The prediction set

is

Ĉα(x) = {y ∈ Y : Sn+1(y) ≤ Q1−α}, (2.12)

where Q1−α is the (1 − α) quantile of calibration scores. This method is model-agnostic

and simple but can produce overly conservative sets when class imbalance is severe, as

majority-class scores dominate the quantile.

Mondrian Conformal Prediction (Label-Conditional). Mondrian CP [VGS05] miti-

gates imbalance by conditioning calibration on the true label. For each class y, a separate

quantile Q
(y)
1−α is computed from calibration points with label y. The prediction set is

then

ĈMondrian

α (x) = {y ∈ Y : Sn+1(y) ≤ Q
(y)
1−α}. (2.13)
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This ensures marginal coverage per class, making it particularly useful in imbalanced

domains such as biomedical imaging, where rare labels must not be systematically under-

covered.

Adaptive Conformal Prediction. Adaptive CP [romano2019conformalized] pro-
duces instance-dependent sets by adjusting the effective confidence level according to

input difficulty. A function g(·) maps test scores to an adaptive miscoverage rate αeff,

yielding smaller sets for confident cases and larger ones for ambiguous inputs. While

marginal validity is preserved under mild conditions, designing g(·) requires care to avoid

label-dependent bias.

Comparison.

• Standard CP: simplest, broadly applicable, but inefficient under imbalance.

• Mondrian CP: class-conditional coverage, effective for imbalanced or safety-critical

problems.

• Adaptive CP: more informative, input-dependent sets, but adds complexity.

The choice depends on task requirements: standard CP suffices for balanced problems,

while Mondrian CP is preferable in imbalanced or critical domains, and adaptive CP is best

suited for applications demanding highly informative, variable-sized prediction sets.

2.3.3 Conformal Prediction for Multi-Label Classification

Extending Conformal Prediction (CP) to multi-label classification (MLC) introduces unique

challenges due to the structured, high-dimensional nature of the label space. Given an

instance x ∈ X with binary label vector y ∈ {0, 1}L
, the goal is to construct a prediction

set Ĉα(x) ⊆ {1, . . . , L} that contains the true label set with probability at least 1 − α:

P
(
y ⊆ Ĉα(x)

)
≥ 1 − α,

while keeping Ĉα(x) as small as possible.
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Independent Per-Label CP. A standard approach applies CP independently to each

label ℓ, analogous to the Binary Relevance (BR) strategy. For each ℓ, nonconformity scores

S(ℓ)
are calibrated, yielding thresholds Q

(ℓ)
1−α and per-label predictions:

Ĉ(ℓ)
α (x) =

{ℓ}, S
(ℓ)
n+1 ≤ Q

(ℓ)
1−α,

∅, otherwise.

The final set is the union Ĉα(x) =
⋃

ℓ Ĉ
(ℓ)
α (x). This ensures marginal validity for each label

[VGS05; Lei+18], but ignores inter-label dependencies, often leading to overly conservative

(large) prediction sets.

Accounting for Label Dependencies. Real-world MLC tasks exhibit strong correlations

(positive, negative, or conditional) between labels—for example, pneumonia co-occurring
with lung opacity. Independent CP fails to exploit these relationships, forcing coverage

guarantees that hedge against all plausible label combinations. To address this, several

extensions have been proposed:

• Tree-structured CP. Cauchois et al. [CGD21a] introduced tree-structured classi-

fiers with conformal scoring, achieving efficient confidence sets by hierarchically

partitioning the label space.

• Hierarchical CP with multiple testing. Tyagi and Guo [TG24] formulated MLC

as a multiple hypothesis testing problem, using split-conformal p-values with hier-

archical corrections (e.g., Bonferroni) to guarantee family-wise error control.

• Correlation-aware nonconformity. Katsios and Papadopoulos [KP24] proposed

Mahalanobis-distance-based nonconformity measures, capturing correlations be-

tween classifier errors across labels and yielding more efficient prediction sets.

Coverage in Multi-Label CP. While per-label CP guarantees

P(yℓ ∈ Ĉ(ℓ)
α (x)) ≥ 1 − α, ∀ℓ,

it does not ensure joint coverage of the entire label vector. Achieving vector-level coverage

requires structured CP frameworks—such as hierarchical testing [TG24] or tree-based

approaches [CGD21a]—which explicitly model dependencies and control family-wise

error.
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2.3.4 Metrics for Evaluating Conformal Predictors

The evaluation of Conformal Prediction (CP) centers on two criteria: validity and efficiency
[VGS05; AB21]. Validity ensures that prediction sets achieve the desired coverage proba-

bility (typically 1 − α), while efficiency reflects how small and informative these sets are.

Both aspects are critical: trivially valid sets may include all labels, but are uninformative;

conversely, very compact sets may sacrifice coverage.

We distinguish between single-label and multi-label classification.

Validity Metrics. Single-label classification. In the single-label setting, each input x

has a true label y ∈ Y . The CP guarantee ensures marginal coverage:

P
(
y ∈ Ĉα(x)

)
≥ 1 − α, (2.14)

under the assumption of exchangeability. Empirically, coverage is estimated as

̂Coverage = 1
n

n∑
i=1

I
{

yi ∈ Ĉα(xi)
}

. (2.15)

Multi-label classification. For MLC, each input x is associated with a binary label vector

y ∈ {0, 1}L
. Two common coverage notions are used:

• Marginal coverage (per label): The probability that each true label ℓ is included

in the prediction set:

1
L

L∑
ℓ=1

P
(
ℓ ∈ Ĉα(x)

∣∣∣ yℓ = 1
)

≥ 1 − α. (2.16)

• Empirical coverage (per instance): The proportion of true labels captured per

instance, averaged across the dataset:

̂Coverage = 1
N

N∑
i=1

|Ŷ (xi) ∩ Yi|
max(1, |Yi|)

, (2.17)

where Ŷ (xi) is the predicted set and Yi the ground-truth set.

24 Chapter 2 Background and Related Work



Efficiency Metrics. The standard efficiency measure is the average set size:

Ŝize = 1
n

n∑
i=1

|Ĉα(xi)|, (2.18)

which reflects informativeness (smaller is better). In MLC, it corresponds to the average

number of labels predicted per instance.

Composite Metrics (Single-Label). Beyond coverage and set size, additional criteria

capture residual uncertainty in single-label CP [VGS05]:

• ObservedUnconfidence (OU):The averagemaximum p-value assigned to incorrect

labels:

OU = 1
n

n∑
i=1

max
y ̸=yi

py(xi).

• Observed Fuzziness (OF): The average total p-value mass of incorrect labels:

OF = 1
n

n∑
i=1

∑
y ̸=yi

py(xi).

Lower values of OU and OF indicate sharper, less ambiguous predictions.

Trade-off Between Validity and Efficiency. Prediction sets can trivially satisfy validity

by including all labels, but such sets lack utility. Conversely, aggressively minimizing set

size can lead to undercoverage. The core challenge in CP is to balance validity (coverage

guarantees) with efficiency (compactness), a trade-off that becomes especially demanding

in high-dimensional or multi-label problems [AB21].

Fig. 2.2: Illustration of CP evaluation metrics for two predictors (A and B). Left: Empirical cov-

erage compared to the target (1 − α = 0.90). Center-left: Average set size (efficiency).

Center-right: Observed Unconfidence (OU). Right: Observed Fuzziness (OF). Model A

is conservative (larger sets, higher coverage), while Model B is sharper but less reliable.
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2.3.5 Why Combine Conformal Prediction with Ensembles

Although Conformal Prediction (CP) provides distribution-free coverage guarantees, its

efficiency depends heavily on the quality and stability of the underlying model. Ensemble

learning, which aggregates multiple predictors, naturally complements CP by improv-

ing calibration, reducing variance, and enriching dependency modeling [Die00; LPB17;

AB21].

Calibration Stability. The reliability of CP hinges on well-calibrated nonconformity

scores. Single models, particularly deep neural networks, often exhibit miscalibration and

overconfidence. Ensembles mitigate this by averaging predictions, producing smoother

probability estimates and more stable p-values, which lead to tighter prediction sets

[Guo+17; LPB17].

Variance Reduction. Prediction-set size in CP is sensitive to variance in nonconformity

scores. Ensembles reduce such variance through diversity in initialization, architectures,

or data resampling, thereby improving efficiency without compromising finite-sample

validity [Die00].

Dependency Modeling. In multi-label classification, inter-label correlations are crucial.

Heterogeneous ensembles or ensembles trained on different label subsets can capture

complementary dependency structures. When combined with CP, these ensembles yield

prediction sets that remain valid while being more informative [Rea+11; TV07].

2.4 Ensemble Learning

Ensemble learning combines multiple predictive models (base learners) to form a single

aggregated predictor. The central intuition is that while individual models may suffer

from bias, variance, or limited representational capacity, an ensemble can leverage their

complementary strengths to improve generalization—an idea closely related to the “wisdom

of the crowd” principle [Die00; Kun14].

Theoretical support comes from the bias–variance decomposition: if base learners are

diverse and their errors are not perfectly correlated, aggregation reduces variance without

substantially increasing bias. This is particularly advantageous in high-variance models

such as deep neural networks, where different random seeds or training subsets can yield

markedly different solutions.
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Beyond accuracy, ensembles often enhance calibration and uncertainty quantification.
By averaging outputs across models, ensembles tend to produce smoother probability

estimates and reduce overconfidence, leading to more reliable predictive uncertainty

[LPB17; Guo+17]. Such properties make them especially valuable in safety-critical domains

like medical imaging, where both accuracy and trustworthy uncertainty estimates are

essential.

Ensembles are widely applied, from decision-tree methods such as Random Forests to

deep ensembles in computer vision and NLP. In multi-label classification (MLC), they

mitigate class imbalance, improve predictions for rare labels, and better capture inter-label

dependencies. When combined with Conformal Prediction (CP), ensembles further stabilize

coverage, reduce overly conservative prediction sets, and incorporate model diversity into

nonconformity scoring—a central theme explored in this thesis.

2.4.1 Formal Framework and Notation

Let H denote a hypothesis space of predictive models mapping from the input space

X ⊆ Rd
to the output space Y . In classification, a model h ∈ H may output either: (i) a

predicted class label ŷ ∈ Y , or (ii) a probability vector p̂(x) ∈ [0, 1]|Y|
with

∑
y∈Y p̂y(x) =

1 (single-label case) or p̂(x) ∈ [0, 1]L in the multi-label case.

An ensemble consists of M base learners

E = {h1, h2, . . . , hM }, hm ∈ H,

trained on the same data distribution but differing in initialization, data sampling (e.g., boot-

strapping), feature subsets, architectures, or hyperparameters. The ensemble prediction

function aggregates their outputs:

F (x) = A
(
h1(x), h2(x), . . . , hM (x)

)
, (2.19)

where A is an aggregation rule such as:

• Majority voting for hard labels:

ŷens(x) = arg max
y∈Y

M∑
m=1

I{hm(x) = y}.

• Probability averaging for soft outputs:

p̂ens(x) = 1
M

M∑
m=1

p̂m(x),
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which is especially useful when coupled with probabilistic frameworks such as

Conformal Prediction, since it preserves calibration properties.

Bias–Variance Perspective. For a true label Y and predictor f̂(x), the expected squared
error decomposes as

E
[
(f̂(x) − Y )2

]
= (E[f̂(x)] − Y )2︸ ︷︷ ︸

Bias term

+E
[
(f̂(x) − E[f̂(x)])2

]
︸ ︷︷ ︸

Variance

+σ2.

where σ2
is irreducible noise. Ensembles reduce the variance term by averaging across

diverse learners, typically without substantially increasing bias [Die00].

Relation toUncertaintyQuantification. The distribution of ensemble outputs {p̂m(x)}M
m=1

captures epistemic uncertainty (due to model variability), while their mean reflects consen-

sus. This dual perspective makes ensembles particularly valuable when combined with

Conformal Prediction, where model diversity stabilizes nonconformity scores and yields

more efficient prediction sets.

2.4.2 Categories of Ensemble Methods

Ensemble methods differ in how they induce diversity among base learners and aggregate

predictions. Diversity is essential: if learners produce identical outputs, ensembling

provides no benefit [Die00; KW03]. The main families are summarized below.

Bagging. Bootstrap aggregating (bagging) [Bre96] trains each learner on a bootstrap

sample of the data, reducing variance by averaging predictions. It is particularly effective

for unstable learners such as decision trees; Random Forests extend this by randomizing

feature selection. Bagging is less effective for already low-variance models.

Boosting. Boosting builds learners sequentially, reweighting training examples so that

later models focus on harder cases [FS97; SS99]. Gradient boosting frameworks (e.g.,

XGBoost, LightGBM) are highly competitive on tabular data, though boosting can overfit

in noisy datasets.

Stacking. Stacked generalization [Wol92] combines diverse base learners by training a

meta-learner on their outputs, usually via out-of-fold predictions to prevent overfitting. It

flexibly leverages heterogeneous models but increases computational cost.
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Random Subspaces. The random subspace method [Ho98] trains learners on random

feature subsets, which is effective in high-dimensional domains such as text or images.

Often combined with bagging (as in Random Forests), it may degrade accuracy if key

features are excluded.

Snapshot Ensembles. Snapshot ensembles [Hua+17a] create multiple “snapshots” of a

single network by cycling the learning rate and saving models at different local minima.

They provide diverse predictors at nearly the cost of training one model, though with

lower diversity than fully independent training.

Deep Ensembles. Deep ensembles [LPB17] train multiple neural networks independently

with different seeds and data shuffles. They improve accuracy and calibration, making

them popular for uncertainty estimation, but they are computationally expensive when

M is large.

Hybrid Methods. Hybrid ensembles combine mechanisms (e.g., deep bagging, feature-

randomized boosting, stacked subspace models), often achieving further gains but at the

cost of greater complexity in design and tuning.

2.4.3 Ensemble Diversity and Its Quantification

The effectiveness of an ensemble depends critically on the diversity among its base learners:

if models make correlated errors, aggregation offers little benefit over a single predictor

[Die00; KW03]. Diversity reduces the covariance of errors across learners, thereby lowering

the variance component of ensemble error [HS90].

Sources of Diversity. Diversity can be induced through (i) data sampling (e.g., bagging),

(ii) feature sampling (random subspaces), (iii) model heterogeneity (stacking different

algorithms), (iv) randomization in training (seeds, shuffling), and (v) hyperparameter

variation. These mechanisms encourage complementary decision boundaries and reduce

correlated errors.

Quantifying Diversity. Several measures capture pairwise diversity among classifiers.

The Q-statistic [KW03] is defined as

Qij = N11N00 − N01N10
N11N00 + N01N10

,

where Nab counts instances where classifier i and j are correct (a = 1) or incorrect (a = 0).
Values near 1 indicate identical predictions (no diversity), 0 independence, and negative
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values complementary errors (high diversity). Other metrics include the disagreement
measure,

Disij = N01 + N10
N11 + N00 + N01 + N10

,

and correlation coefficients between correctness indicators. Ensemble-level diversity is

typically averaged across all pairs.

Balancing Accuracy and Diversity. High diversity alone is not sufficient: base learners

must also be accurate. Effective ensembles strike a trade-off between individual accuracy

and disagreement [KW03]. Excessive diversity obtained by weakening base learners

reduces overall performance, while low diversity yields redundancy.

2.4.4 Ensemble Aggregation Strategies in Classification

Once base learners are trained, their predictions must be combined into a single, final out-

put, and the choice of aggregation strategy can strongly influence ensemble performance,

particularly in multi-label classification (MLC) and uncertainty quantification settings

[Die00; Kun14].

Two of the most common aggregation approaches are majority voting and probability
averaging. In majority voting, each base classifier casts one vote for its predicted class,

and the class with the most votes is chosen; in MLC, this is applied per label, with each

model voting for presence or absence. Majority voting is simple, interpretable, and robust

when base learners are diverse and have comparable accuracy. Probability averaging, by

contrast, combines the probability distributions of base learners (or per-label probabilities

in MLC) and averages them; labels are then predicted positive if their mean probability

exceeds a threshold. This approach produces smoother, better-calibrated outputs, which is

particularly advantageous in settings that integrate ensembles with conformal prediction

[LPB17].

In many applications, base learners differ in predictive performance or calibration qual-

ity, motivating weighted aggregation. Weighted averaging assigns larger influence to

stronger models:

p̂(y|x) =
∑M

m=1 wm p̂m(y|x)∑M
m=1 wm

,

where wm is the weight of model m, often derived from validation metrics such as accuracy,

F1-score, or calibration error, or learned automatically via a meta-model as in stacking

[Wol92].
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In MLC, using a single threshold (e.g., τ = 0.5) for binarizing probabilities can be sub-

optimal due to class imbalance and heterogeneous calibration across labels. Per-label
threshold optimization therefore assigns distinct thresholds τℓ for each label ℓ, tuned

on a validation set to maximize metrics such as macro-F1 [TKV10]. More advanced meth-

ods, such as coordinate ascent, jointly optimize thresholds across labels to avoid locally

suboptimal solutions that arise from treating labels independently.

When ensembles are applied for uncertainty estimation, aggregation must also capture

not only the mean prediction but also the dispersion across models. Variance of predicted

probabilities can serve as a measure of epistemic uncertainty, while the entropy of the

averaged probability distribution reflects overall predictive uncertainty [LPB17]. These

signals are complementary: variance highlights disagreement among models, whereas

entropy measures uncertainty in the ensemble consensus. In conformal prediction, aggre-

gated probabilities are used to compute nonconformity scores, and variance or entropy

estimates can inform adaptive prediction set construction [AB21]. By combining both

central tendency and dispersion across base learners, ensembles provide richer and more

reliable uncertainty quantification than single classifiers.

2.5 Ensembles for Multi-Label Classification

Ensemble methods are particularly valuable in multi-label classification (MLC) because

they can simultaneously address multiple challenges inherent to the task, including class

imbalance, rare label prediction, and modeling of label dependencies.

2.5.1 Addressing Label Imbalance and Rare Labels

In MLC datasets, label frequencies often follow a long-tail distribution: a few labels occur

frequently while many are rare but potentially critical. Ensembles mitigate this by:

• Model diversity: Different base learners may capture different parts of the label

space, increasing the chance of correctly predicting rare labels.

• Resampling strategies: Combining bagging with label-aware sampling (e.g., strat-

ified sampling per label) ensures that minority labels appear more frequently in

training subsets.

• Cost-sensitive aggregation: Weights in the ensemble can be adjusted to favor

models performing better on rare labels.

2.5 Ensembles for Multi-Label Classification 31



Empirically, ensemble averaging tends to smooth over extreme probability predictions,

improving recall for rare labels while controlling false positives.

2.5.2 Leveraging Label Dependencies

Many labels in MLC are correlated — either positively (e.g., pneumonia and lung opacity)
or negatively (e.g., fracture and normal finding). Ensembles can model these dependencies

in several ways:

• Classifier Chains (CC) ensembles: Each chain models sequential label dependen-

cies; aggregating multiple random chains reduces sensitivity to label order.

• Label Powerset (LP) ensembles: Each base learnermodels joint label combinations;

aggregating over different subsets of labels reduces the combinatorial explosion.

• Graph-based ensembles: Base learners incorporate graph neural networks (GNNs)

or attention layers to propagate information between labels; ensemble diversity

arises from different graph structures or message-passing depths.

2.5.3 Examples of MLC-Specific Ensemble Architectures

Several ensemble designs are tailored for multi-label tasks:

• RAkEL (Random k-Labelsets) [TV11]: Builds multiple LP classifiers, each trained

on a random subset of k labels; predictions are aggregated per label via majority

voting.

• Ensemble Classifier Chains (ECC) [Rea+11]: Trains multiple CC models with

different random label orders, improving robustness to order sensitivity.

• Hybrid neural-symbolic ensembles: Combines deep feature extractors (e.g.,

CNNs, Transformers) with symbolic multi-label learners (e.g., ML-kNN), aggre-

gating predictions to benefit from both representation learning and explicit label

dependency modeling.

• Conformal-ensemble hybrids: Integrates conformal prediction into each base

model of an MLC ensemble, allowing aggregation not only of predictions but also of

calibrated uncertainty estimates.
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2.6 Related Work

2.6.1 Ensembling via resampling: ACP and CCP

Early work on CP ensembling aimed to recover efficiency lost by split CP while retaining

practicality. Aggregated conformal prediction (ACP) averages (or otherwise combines) per-

split conformal outputs across many resamples; cross-conformal prediction (CCP) mirrors

cross-validation and combines fold-wise CP results [CEN14; Vov15]. Empirically, both

improve informational efficiency (smaller sets) relative to a single split. However, theory

shows that naive p-value averaging can be conservative (over-coverage) unless additional

stability conditions hold for the score/model; calibration analyses and refined definitions

quantify when ACP/CCP are near-valid and when they inflate set sizes [Lin+17]. Practical

takeaways: (i) ensembling over splits reduces variance of set size; (ii) mean aggregation

may be overly conservative; (iii) median or more robust combiners can mitigate instability

[Lin+17].

2.6.2 Aggregating across models: voting, scores, and sets

Beyond resampling the same model, several works study how to aggregate predictions

from multiple, potentially heterogeneous models. Cherubin [Che19] analyzed majority

voting of conformal classifiers, deriving finite-sample guarantees for label-wise coverage

in classification and showing how independence assumptions across models shape the

bounds. Other approaches move beyond voting to score-based aggregation. Rivera et al.

[OPT25] formalize multi-score aggregation with coverage guarantees and demonstrate

improved efficiency in both classification and predict-then-optimize tasks. Luo and Zhou

[LZ25] extend this idea by learning weights over multiple nonconformity scores, with

the aim of minimizing expected set size while retaining coverage. Gasparin and Ramdas

[GR24] instead propose an online scheme where model-wise sets are combined with

time-varying weights updated according to performance, maintaining marginal coverage

over time while adapting to nonstationary settings. Finally, Yang and Kuchibhotla [YK25]

study the problem of selecting or aggregating from a family of conformal regions to yield

the smallest-width valid region, giving algorithms with either approximate coverage and

exact minimality, or finite-sample coverage with near-minimal width. Collectively, these

works move the field from bagging p-values to explicitly learning how to combine multiple

sources of conformal evidence, whether through voting, weighted score aggregation, or

adaptive region selection.
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2.6.3 Specialized ensemble CP constructions

In high dimensions, Random Projection Ensemble CP (RPECP) first ensembles random

projections and base classifiers, then conformalizes and finally uses a designed voting rule

to output both a point label and a calibrated set. The pipeline explicitly targets improved

statistical efficiency (fewer false labels in the set) while honoring coverage [Qia+24]. This is

conceptually related to random-projection ensemble classification, but adapted to produce

conformal sets rather than hard labels.

2.6.4 Multilabel and multiclass conformal prediction

For multiclass and multilabel settings, CP must control set size growth while preserving

coverage. Foundational results construct valid confidence sets and propose tree-structured

classifiers to address label interactions and avoid exponentially large sets [CGD21b]. In

multilabel specifically, Papadopoulos introduced cross-conformal multilabel predictors
that treat labelsets as structured outputs and combine foldwise CP to provide calibrated

confidence over label subsets [Pap14; Pap22]. More recently, Tyagi and Guo propose a tree-
based multilabel CP that frames labelset selection as hierarchical multiple testing on split-

conformal p-values, controlling family-wise error while yielding compact, dependency-

aware prediction sets [TG23]. These strands differ in how they encode label dependence

(label-powerset vs. hierarchical trees), how they calibrate (split vs. cross-conformal), and

whether they aggregate over models/scores or over structured label hypotheses.

2.6.5 Medical Image Classification

Medical image classification is a specialized branch of computer vision focused on diag-

nosing diseases, identifying abnormalities, and supporting clinical decision-making from

medical imaging data. Unlike generic image classification, which benefits from large-scale

benchmarks such as ImageNet [Den+09], medical applications face challenges of limited

annotated datasets, strict regulatory standards, and the demand for interpretability in

high-stakes settings [KPA20]. With the advent of deep learning, convolutional neural

networks (CNNs) have become the standard approach, replacing hand-engineered features

with end-to-end representation learning. A landmark example is CheXNet [Raj+17], a

DenseNet [Hua+17b]-based system fine-tuned for pneumonia detection in chest X-rays,

which demonstrated the effectiveness of transfer learning from natural image pretraining.

Subsequent work extended this paradigm to architectures such as ResNet [He+16], Effi-

cientNet [TL19], and Vision Transformers (ViTs) [Dos+20], often combined into ensembles

to enhance robustness and calibration. In parallel, retrieval-based approaches such as

k-NN classifiers leveraging CNN encoders also proved competitive in ImageCLEFmedical,

assigning concepts by propagating labels from visually similar training images [KPA19;
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Cha+21]. Although later surpassed by CNN–FFNN classifiers, these methods highlighted

the usefulness of instance-based reasoning in medical concept detection. In recent years,

ensemble CNN–FFNN systems have consistently secured top positions, including second

place in the 2024 ImageCLEFmedical concept detection task, confirming the competitive-

ness of approaches developed by AUEB’s NLP group [Pel+19; Pel+20; PBG+21; RBG+22;

Kal+23b]. Beyond 2D classification, three-dimensional CNNs such as V-Net [MNA16]

have been developed to process volumetric data (CT, MRI), proving particularly effective

for tumor and organ segmentation, while generative approaches like GANs [Shi+18] and

diffusion models [DN21; Kha+22] have been employed for data augmentation, addressing

the scarcity of annotated training examples. Finally, interpretability remains a central

requirement in clinical deployment, with techniques such as Grad-CAM [Sel+20] provid-

ing saliency heatmaps that highlight the regions most influential to a model’s prediction.

Overall, medical image classification has evolved into a domain where transfer learning,

architectural innovation, ensemble modeling, retrieval-based reasoning, and uncertainty-

aware interpretability intersect to meet the dual demands of predictive performance and

clinical reliability, as also reflected in prior work from AUEB’s NLP group and related

research contributions [KPA19; KPA20; Cha+21; Cha+22; Cha25].
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3Methodology

In this chapter, we present the methodological framework adopted in this thesis. The

methodology is divided into two main parts, reflecting the two distinct but complementary

contributions of this work. The first part focuses on ensemble methods for multilabel

classification with conformal prediction, where we explore different model architectures,

ensemble strategies, and uncertainty quantification mechanisms. The second part describes

the approach developed for the ImageCLEFmedical 2025 challenge, where we participated
in the Concept Detection task using convolutional neural networks, feed-forward classifiers,
and ensemble aggregation techniques. Together, these methodologies form the basis of

our experimental investigations presented in the following chapter.

3.1 Part I: Multilabel Ensemble Methods

In the first part of this Chapter, we focus on the task of multilabel classification (MLC)
with an emphasis on ensemble learning and uncertainty quantification through conformal

prediction. The objective is to design methods that can handle inputs associated with

multiple labels simultaneously, while also providing rigorous statistical guarantees on

prediction reliability. This part therefore introduces the general problem formulation,

describes the base classifiers employed, and develops ensemble conformal prediction

strategies together with their theoretical properties. Experimental evaluation of these

methods is presented later in Chapter 5.

3.1.1 Problem Formulation

We consider the task of multilabel classification (MLC), where each input x ∈ Rd
can be

associated with multiple labels drawn from a label set of size L. Formally, let X ⊆ Rd

denote the input space andY = {0, 1}L
the label space, where each y ∈ Y is a binary vector

indicating the presence or absence of each label. Given a training datasetD = {(xi, yi)}n
i=1,

the objective is to learn a function f : X → [0, 1]L that produces per-label confidence

scores. These scores can then be thresholded to yield a predicted label vector ŷ ∈ {0, 1}L

for each input x.

In addition to standard evaluation criteria for MLC, such as macro-F1 we also assess the

quality of prediction sets through metrics including empirical coverage, marginal coverage,
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and average set size. Together, these measures provide a comprehensive assessment of both

predictive performance and the reliability of uncertainty quantification. The methodology

presented in this thesis is therefore designed to balance predictive accuracy, calibration,

and interpretability in multilabel classification tasks.

3.1.2 Base Classifiers

To establish a diverse foundation for multilabel classification, we employ a range of base

learners that span linear, shallow, and deep neural architectures. These models are used

both for standalone evaluation and as components of ensemble strategies. By incorporating

architectures of varying complexity and inductive biases, we are able to assess not only their

individual performance but also the benefits of diversity when aggregated in ensembles.

The following subsections describe the models considered:

Logistic Regression (LR). A simple yet effective linear classifier, logistic regression is

trained independently for each label under the binary relevance paradigm. Each model

minimizes the logistic loss and outputs probabilities that reflect the likelihood of a label

being present. Despite its simplicity, LR provides a strong baseline and is often competitive

in multilabel tasks, particularly for labels with clear linear separability.

Stochastic Gradient Descent (SGD). We also consider linear classifiers trained with

stochastic gradient descent, which are well-suited for high-dimensional settings due to their

efficiency in online updates. To ensure reliable probability estimates, these classifiers are

calibrated using Platt scaling (via CalibratedClassifierCV), thereby producing

outputs suitable for uncertainty quantification.

Multilayer Perceptron (MLP). The MLP represents a shallow neural architecture with

a single hidden layer equipped with ReLU activations. Training is performed using binary

cross-entropy loss across labels. Although lightweight compared to more advanced deep

architectures, MLPs can capture non-linear dependencies between features and serve as

an important bridge between linear and deep models.

Recurrent Neural Network (RNN). For sequential modeling, we employ a unidirec-

tional LSTM network applied to fixed-length CLIP embeddings. The recurrent layer cap-

tures temporal or structural patterns in the embeddings, and its output is passed through a

dense layer with sigmoid activation to yield per-label probabilities. This design allows the

model to exploit contextual dependencies in the feature space beyond static feedforward

processing.
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Transformer Encoder. To capture long-range dependencies and richer contextual infor-

mation, we include a two-layer transformer encoder with multi-head self-attention. The

model processes CLIP embeddings as tokens and aggregates contextualized representations

before passing them through a shared linear classifier that outputs label-specific confidence

scores. Transformers have demonstrated strong performance in multilabel tasks due to

their ability to model complex relationships across input features.

MLP-Mixer. Finally, we consider the MLP-Mixer, a lightweight alternative to attention-

based models. This architecture applies token mixing and channel mixing operations,

combined with layer normalization, to the CLIP embeddings. The resulting representations

are fed into a sigmoid-activated output layer for multilabel probability estimation. The

MLP-Mixer balances expressiveness with computational efficiency, making it a suitable

candidate for ensemble inclusion.

All classifiers are trained independently for each label, following the binary relevance

strategy to ensure scalability across large label spaces. Each model produces calibrated

probability estimates that can be directly thresholded in standard classification settings or

transformed into nonconformity scores for conformal prediction. When used in ensem-

bles, their outputs are combined through label- and model-specific aggregation schemes,

allowing us to construct prediction sets that jointly emphasize accuracy, diversity, and

theoretical coverage guarantees.

3.1.3 Ensemble Learning

Ensemble learning constitutes a central component of our methodology, as it offers a

principled way to enhance predictive robustness and mitigate the limitations of individ-

ual models. By combining multiple classifiers, ensembles can reduce variance, improve

calibration, and provide more reliable uncertainty estimates. In this work, ensembles

are considered both as independent baselines and as integral elements of the conformal

prediction framework. We investigate three broad categories of ensembles: homogeneous,

heterogeneous, and stacked approaches.

Homogeneous Ensembles. In the homogeneous setting, we train M independent

instances of the same base classifier (e.g., logistic regression or MLP), each on bootstrap-

resampled versions of the training data. The intuition behind this approach is that re-

sampling introduces diversity in the decision boundaries of otherwise identical models,

thereby reducing the risk of overfitting to specific idiosyncrasies of the data. At inference

time, the predictions of the M models are combined using one of the following aggregation

schemes:
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• Majority Voting (MV): Binary predictions from each model are aggregated by a

simple majority rule, with the most frequently predicted label assignment chosen as

the final decision.

• ProbabilityAveraging (PA): Rather than relying on hard decisions, the probabilistic
outputs of the models are averaged across instances. The aggregated probabilities

are then thresholded (e.g., at 0.5) to form the final prediction.

This strategy is particularly effective for reducing variance and improving calibration

in settings where base models are sensitive to random initialization or stochastic data

sampling.

Heterogeneous Ensembles. We also construct ensembles composed of diverse model

architectures, combining both linear learners (LR, SGD) and non-linear deep models (MLP,

RNN, Transformer, MLP-Mixer). Each classifier is trained per label under the binary

relevance assumption, and their outputs are aggregated at inference time. We evaluate the

following schemes:

• Majority Voting (MV): Binary predictions from all models are combined via un-

weighted majority.

• Probability Averaging (PA): Probabilistic outputs from heterogeneous models are

averaged and thresholded to determine final label assignments.

• F1-WeightedVoting: To introduce label-specific adaptivity, predictions areweighted
by each model’s F1 score on a held-out validation set. This ensures that models

demonstrating stronger performance on a particular label exert greater influence on

the ensemble’s final decision.

By leveraging architectural diversity, heterogeneous ensembles aim to capture a wider

range of representational patterns, thereby improving both predictive accuracy and ro-

bustness.

Stacked Ensembles. To further enhance predictive quality, we implement a stacked

ensemble approach. In this framework, the predictions of multiple base classifiers (e.g.,

LR, SGD, MLP) on a calibration set are used as input features to train a meta-classifier.

We employ logistic regression as the meta-learner, trained separately for each label to

output calibrated probabilities. At test time, the meta-classifier aggregates the predictions

of the base models into a refined probability estimate, which is then post-processed using

conformal prediction thresholds to yield the final prediction set. Unlike majority voting or
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averaging, stacking allows the model to learn data-driven weighting schemes, effectively

discovering how to best combine the strengths of different base learners. Moreover, by

incorporating conformal calibration at the meta-level, this approach preserves formal

coverage guarantees while benefiting from the flexibility of learned aggregation.

CP Model 1

CP Model 2

CP Model M

Aggregation

(MV, PA,

F1-weighted)

Final Set Ŷ ens(x)Input x

Fig. 3.1: Conceptual diagram of Ensemble Conformal Prediction (ECP). Each input is processed by

multiple CP-calibrated base models. Their outputs are aggregated (via majority voting,

probability averaging, or weighted voting), yielding the final prediction set.

3.1.4 Conformal Prediction

An important component of this work is the integration of conformal prediction (CP)

into the multilabel classification setting. Conformal prediction provides a model-agnostic

framework for generating uncertainty-aware outputs with formal statistical guarantees.

Unlike standard classifiers that return point predictions, CP produces prediction sets that,
with high probability, contain the true labels. This makes CP particularly suitable for

applications where reliability and transparency are as critical as raw predictive accuracy.

In this thesis, we employ theMondrian conformal prediction framework, which adapts

the classical CP approach to the multilabel scenario by calibrating predictions separately

for each label. The central objective is to construct prediction sets that maximize the

inclusion of true labels while minimizing the inclusion of spurious ones, under a user-

defined miscoverage rate α (e.g., α = 0.1 corresponds to 90% target coverage).

Nonconformity Scores andCalibration For each label j, we train an independent prob-

abilistic classifier fj , such as logistic regression, MLP, or SGD. To quantify the uncertainty

of the model’s predictions, we compute nonconformity scores on a separate calibration set.

Specifically, for a calibration instance xi with y
(j)
i = 1, the nonconformity score is defined

as:

s
(j)
i = 1 − fj(xi),

where fj(xi) denotes the predicted probability of label j for input xi. The intuition is that

lower predicted probabilities for true positive labels indicate higher model uncertainty,

and hence greater nonconformity.
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From the distribution of nonconformity scores, we derive a label-specific threshold qj

using the (1 − α) quantile:

qj = Quantile1−α

(
{s

(j)
i }

i:y(j)
i =1

)
.

This calibration step ensures that, with probability at least 1 − α, the true label will be

included in the final prediction set.

Prediction Sets At inference time, given a new instance x, the prediction set Ŷ (x) is
constructed by including each label j whose nonconformity score falls below the calibrated

threshold:

Ŷ (x) = {j : 1 − fj(x) ≤ qj}.

In this way, conformal prediction transforms probabilistic outputs into uncertainty-aware

prediction sets that adapt dynamically to the model’s confidence on each label.

Evaluation Metrics The performance of conformal prediction is evaluated not only in

terms of classification accuracy but also in terms of the statistical validity and efficiency of

its prediction sets. We adopt the following metrics:

• Empirical Coverage: The proportion of true labels captured by the prediction set,

averaged across all validation instances:

Coverage = 1
N

N∑
i=1

|Ŷ (xi) ∩ Yi|
max(1, |Yi|)

.

This measures whether the prediction sets achieve the intended coverage level.

• Average Set Size: The mean number of labels predicted per instance:

Set Size = 1
N

N∑
i=1

|Ŷ (xi)|.

Smaller sets indicate more efficient and informative predictions.

• Marginal Coverage: The probability that an individual true label is included in the

prediction set, averaged across all labels:

Marginal Coverage = 1
L

L∑
j=1

P(j ∈ Ŷ (x) | j ∈ Y ).

This provides a per-label reliability measure.
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• Macro-F1 Score: The harmonic mean of precision and recall computed across all

labels, providing a standard measure of multilabel predictive accuracy.

By combining these metrics, we evaluate CP along three key dimensions: (1) predictive

accuracy, (2) statistical validity of coverage guarantees, and (3) efficiency of the resulting

prediction sets. This multi-faceted evaluation ensures that the models are not only accurate

but also trustworthy and interpretable.

3.1.5 Ensemble Conformal Prediction: Theoretical
Guarantees

A central goal of this thesis is to examine how the formal coverage guarantees of conformal

prediction extend when combined with ensemble learning. While conformal prediction

provides finite-sample marginal coverage guarantees at the level of individual models,

the situation becomes more complex once predictions are aggregated across multiple

calibrated predictors. In this section, we develop theoretical bounds for ensemble conformal

prediction (ECP) formajority voting. Our analysis builds on existing results for single-label

conformal ensembles [Che19], extending them to the multilabel setting and introducing

novel aggregation rules.

Setup and Assumptions Let D = {(xi, Yi)}n
i=1 denote a multilabel dataset with input

features xi ∈ Rd
and output label sets Yi ⊆ L = {1, . . . , L}. Data points are assumed

i.i.d. according to an unknown distribution P . For each label ℓ, we train M independent

base conformal models (e.g., via bootstrap resampling or random initialization). Model

m ∈ {1, . . . , M} produces a prediction set Ŷ (m)(x), calibrated so that marginal coverage

holds:

P(x,Y )∼P
(
ℓ ∈ Ŷ (m)(x)

∣∣∣ ℓ ∈ Y
)

≥ 1 − α.

The ensemble prediction set Ŷ ens(x) is then formed by aggregating Ŷ (1)(x), . . . , Ŷ (M)(x)
via a chosen rule (e.g., majority vote). We seek to understand how the marginal coverage

guarantees at the base level translate into guarantees for the ensemble.

Majority Voting We first consider the case where base conformal predictors vote on

the inclusion of each label. Let X
(ℓ)
m ∈ {0, 1} indicate whether label ℓ is included in the

prediction set of model m. The ensemble includes label ℓ if at least k models agree, for

some threshold k ≤ M . The following lemma adapts the analysis of Cherubin [Che19] to

the multilabel case.
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Lemma 3.1.1 (Majority-vote lower bounds, cf. [Che19]). Assume independence across
models and let each model satisfy P(X(ℓ)

m = 1) ≥ 1 − α. Then, for any threshold k ∈
{1, . . . , M},

P
(

M∑
m=1

X(ℓ)
m ≥ k

)
≥

M∑
r=k

(
M

r

)
(1 − α)rαM−r.

In particular, unanimity voting (k = M ) yields

P
(

M∑
m=1

X(ℓ)
m ≥ M

)
≥ (1 − α)M .

Interpretation. The right-hand side corresponds to the tail probability of a Binomial(M, 1−
α) distribution, providing a valid lower bound on ensemble coverage. Intuitively, if each

base model covers a true label with probability at least 1 − α, then requiring a majority of

models to agree leads to a probability of coverage that is at least the binomial tail. - For

unanimity (k = M ), coverage is at least (1 − α)M
. - For simple majority (k = ⌈M/2⌉), the

binomial bound is looser but coverage is usually higher in practice because base models

often perform better than the nominal level (pm > 1 − α).

This demonstrates that majority-vote ensembles cannot systematically under-cover relative

to the baseline guarantees, and often improve coverage through aggregation.

Theorem 3.1.2 (Unanimity ensemble coverage). Under the assumptions of Lemma 3.1.1, a
unanimity-voting ensemble satisfies

(1 − α)M ≤ P
(
ℓ ∈ Ŷ ens(x)

∣∣∣ ℓ ∈ Y
)

≤ 1.

Discussion. These results describe idealized extremes. The conservative lower bound

arises from assuming complete independence across models, while the upper bound reflects

the trivial case where every base predictor always includes the label. In practice, base

learners trained on overlapping data or with similar architectures exhibit correlated errors.

This reduces diversity, pushing empirical coverage values between the theoretical bounds.

Consequently, the bounds should be interpreted as providing intuition for best- and worst-

case behaviour, rather than exact predictions of performance.

Theoretical Summary and Implications The analysis above yields the following

theorem.
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Theorem 3.1.3 (Ensemble coverage bounds under independence). Assume independence
across models. For unanimity voting (k = M ),

(1 − α)M ≤ P
(
ℓ ∈ Ŷ ens(x)

∣∣∣ ℓ ∈ Y
)

≤ 1.

For intermediate thresholds k < M , coverage is lower-bounded by the corresponding binomial
tail (Lemma 3.1.1).

Proof Sketch. The lower bound follows by applying the binomial tail probability to the

event that at least k of the M independent models include the true label. The upper bound

is trivial, since the inclusion probability is bounded above by one.

Practical Implications. These theoretical results establish that ensemble conformal

predictors inherit and often strengthen the coverage guarantees of their base components.

However, the extent of improvement depends critically on the degree of independence

among models. High diversity (e.g., via heterogeneous architectures or resampling) pushes

performance closer to the upper end of the bounds, while correlated ensembles behavemore

conservatively. Thus, the theory provides guiding principles for the design of ensemble

conformal systems, but empirical evaluation remains essential.

Empirical Validation In Chapter 5, we validate these observations on multilabel bench-

marks. Taken together, the theory and experiments demonstrate that ensemble conformal

prediction offers a principled pathway to combine the robustness of ensembles with the

statistical guarantees of conformal prediction.

3.2 Baselines and Proposed Methods

In order to systematically evaluate the effectiveness of ensemble conformal prediction

(ECP), we compare our proposed approaches against a diverse set of baseline methods. The

baselines serve two purposes: (i) to establish the performance of conventional multilabel

classifiers with and without conformal calibration, and (ii) to isolate the effect of applying

conformal prediction either before or after ensembling. We then introduce our proposed

methods, which fully integrate conformal calibration into the ensemble learning process.

This organization allows us to assess the incremental benefits of ECP relative to existing

strategies.
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3.2.1 Baseline Methods

We consider three categories of baselines, each representing a progressively stronger

integration of conformal prediction into the multilabel classification pipeline:

(a) Standard Classification. The simplest baseline corresponds to conventional multil-

abel classification without conformal calibration. Each base model is trained independently

per label under the binary relevance framework, and predictions are obtained by threshold-

ing label probabilities at a fixed cutoff (typically 0.5). While this approach provides a useful

performance reference, it lacks any mechanism for quantifying predictive uncertainty or

guaranteeing statistical coverage.

(b) Single-Model Conformal Prediction. In this setting, conformal prediction is ap-

plied to an individual classifier. Each model produces calibrated thresholds on a held-out

calibration set, yielding label-wise prediction sets that satisfy marginal coverage guaran-

tees. This baseline establishes the benefits of CP when applied to a single model, but does

not exploit the robustness advantages of ensembling.

(c) Post-Hoc Conformal Ensembles. Here, ensembles of classifiers are first constructed

using either homogeneous or heterogeneous base learners. Conformal calibration is then

applied after aggregation, for example by calibrating averaged probabilities or majority-

vote outputs. This setting isolates the role of CP as a post-processing step, without directly

integrating it into the training of ensemble members. While effective, this strategy risks

diluting model diversity, as calibration is performed on already aggregated outputs.

3.2.2 Proposed Methods: Ensemble Conformal Prediction

Our proposed methods differ fundamentally from the above in that conformal prediction

is integrated directly into the ensemble framework. Each base model is independently

calibrated, ensuring that label-wise coverage guarantees are preserved at the individual

model level. Aggregation is then applied to the already calibrated outputs, leveraging

both model diversity and the statistical validity of CP. This design allows us to retain

the benefits of ensembling— variance reduction, robustness, and adaptivity—while also

providing formal coverage guarantees.

(a) Conformal Ensembles. We evaluate both homogeneous and heterogeneous en-

sembles of CP models. Each ensemble aggregates predictions through majority voting,
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probability averaging, or F1-weighted voting, where weights are determined by per-label

validation performance. This approach combines the predictive strengths of diverse base

models with conformal calibration, producing prediction sets that are both uncertainty-

aware and robust to model variability.

(b) Conformal Stacking (StackECP). To further exploit model complementarity, we

propose a stacked ensemble in which the outputs of multiple base CP models are used as

input features for a logistic regression meta-classifier. The meta-classifier is trained on a

calibration set and itself undergoes conformal calibration. At inference time, StackECP

generates calibrated prediction sets by combining information from all base learners in a

data-driven manner. Unlike simple voting or averaging, stacking allows the ensemble to

learn optimal aggregation strategies, while conformal calibration ensures that statistical

validity is preserved.

Tab. 3.1: Comparison of baseline and proposed methods.

Method Category Description Role of Conformal Prediction
(CP)

Baselines

Standard Classifica-

tion

Independent multilabel models

with fixed probability threshold-

ing (e.g., 0.5).

No CP; only point predictions

without coverage guarantees.

Single-Model CP Individual classifier calibrated us-

ing CP on a held-out calibration

set.

CP applied at the single-model

level; provides label-wise cover-

age guarantees but no ensemble

robustness.

Post-Hoc Conformal

Ensembles

Ensemble (homogeneous or het-

erogeneous) built first, then cali-

brated after aggregation.

CP applied after ensembling; cov-

erage guarantees may be diluted

due to calibration on aggregated

outputs.

Proposed Methods

Conformal Ensem-

bles

Each base model independently

calibrated with CP; predictions

combined via voting, averaging,

or F1-weighted rules.

CP integrated before ensembling;

preserves individual guarantees

and leverages diversity in aggre-

gation.

Stacked Conformal

Ensembles (Stack-

ECP)

Meta-classifier trained on outputs

of multiple CP-calibrated models,

then calibrated itself.

CP applied at both base and

meta levels; ensures coverage

while learning optimal aggrega-

tion strategies.
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Algorithm 1: Ensemble Conformal Prediction (ECP)

Input: Training set Dtrain, calibration set Dcal, base learners {f (m)}M
m=1, target

miscoverage rate α, aggregation rule A (e.g., majority vote, probability

averaging, F1-weighted).

Output: Prediction set Ŷ ens(x) for a new input x.

Step 1: Train Base Models.
for m = 1 to M do

Train base learner f (m)
on Dtrain. ;

Step 2: Calibrate Each Model with CP.
for each label ℓ ∈ {1, . . . , L} and model m do

Compute nonconformity scores s
(m)
ℓ (xi) = 1 − f

(m)
ℓ (xi) for (xi, yi) ∈ Dcal with

y
(ℓ)
i = 1. ;

Set threshold τ
(m)
ℓ = Quantile1−α({s

(m)
ℓ (xi)}). ;

Step 3: Predict with Calibrated Models.
For a new input x, each base model m outputs a label-wise conformal set:

Ŷ (m)(x) = {ℓ : 1 − f
(m)
ℓ (x) ≤ τ

(m)
ℓ }.

Step 4: Aggregate Predictions.
Combine {Ŷ (m)(x)}M

m=1 using aggregation rule A:

Ŷ ens(x) = A
(
Ŷ (1)(x), . . . , Ŷ (M)(x)

)
.

return Ŷ ens(x)

3.3 Part II: ImageCLEF Concept Detection

The second part of this Chapter is dedicated to the ImageCLEF concept detection task,
where the goal is to identify and localize semantic concepts within medical images. Unlike

Part I, which addressed the more general problem of multilabel ensemble classification, this

part focuses on a concrete applied benchmark. The task requires designing models capable

of detecting clinically relevant concepts with high accuracy, while addressing challenges

such as class imbalance, and the need for robust evaluation protocols. In this part, we

outline the specific methodology adopted for ImageCLEF, followed by experimental results

and analysis in the context of the competition framework.
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3.3.1 CNN-FFNN

The first system we developed is based on aCNN encoder coupled with a Feed-Forward
Neural Network (FFNN) classifier as illustrated in Figure 3.2. This architecture follows

prior work by the AUEB NLP Group [KPA20; Cha+21; Cha+22; Kal+23a; Sam+24; Cha25;

Cha+25], while extending it with stronger backbones and systematic ensembling strate-

gies.

Feature Extraction with CNN Backbones. The backbone CNN is responsible for trans-

forming raw input images into a rich, high-dimensional representation. We employ three

ImageNet-pretrained architectures of varying complexity: EfficientNetB0, DenseNet121, and
ConvNeXt-Tiny. Each input image is resized to 224 × 224 × 3 and normalized according

to the preprocessing scheme of the selected backbone. Feature maps are extracted from

the final convolutional block of the network and aggregated into a fixed-size embedding

via Generalized Mean (GeM) pooling [RTC19].

GeM Pooling. GeM pooling is a parametric and differentiable pooling operation that

generalizes traditional max and average pooling. Given a spatial activation map Xk

corresponding to the k-th feature channel, GeM computes:

f
(g)
k =

 1
|Xk|

∑
x∈Xk

xpk

1/pk

,

where |Xk| is the number of spatial elements and pk is a learnable pooling parameter. -

When pk = 1, GeM reduces to average pooling. - As pk → ∞, GeM approximates max

pooling.

Since pk is optimized via backpropagation, the model can adaptively interpolate between

these pooling behaviors, effectively learning how much to emphasize high activations

versus distributed evidence across the feature map. This flexibility makes GeM particularly

suitable for tasks like medical concept detection, where both localized strong signals and

diffuse contextual evidence can be informative. Empirically, GeM pooling has been shown

to yield more discriminative embeddings than non-trainable pooling operations.

Classification via FFNN. The pooled embedding is fed into a lightweight FFNN, which

in our final implementation consists of only an output layer with |C| neurons, where C
is the set of medical concepts. Each neuron employs a sigmoid activation, producing an

independent probability estimate for each concept. A global threshold τ is applied across

all concepts, with the value selected via grid search on the validation set to maximize the
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F1-score, the primary competition metric. This formulation treats concept detection as

a multi-label classification task where concepts are modeled independently but trained

jointly.

Training Objective and Optimization. The model is trained using the binary cross-
entropy (BCE) loss, computed independently per concept and summed across all labels:

L =
∑
c∈C

[
− yc log(ŷc) − (1 − yc) log(1 − ŷc)

]
,

where yc ∈ {0, 1} denotes ground truth for concept c, and ŷc ∈ (0, 1) is the predicted
probability. Optimization is performed with the Adam optimizer [KB17], using a learning

rate of 10−3
. A learning rate scheduler reduces the learning rate upon stagnation of

validation loss (patience: 1 epoch). Early stopping (patience: 3 epochs) is used to prevent

overfitting. Each model is trained for up to 20 epochs with a batch size of 16.

Regularization and Practical Design Choices. Dropout and stochastic weight averag-

ing were considered but ultimately disabled, as preliminary experiments did not indicate

consistent improvements. In the final setup, both embedding-level dropout and FFNN

hidden layers were removed.

Ensembling Variants. To reduce variance and increase robustness, we trained mul-

tiple instances of this CNN-FFNN model using different backbones and random seeds.

Predictions were combined using two strategies:

• Union: A concept is predicted if at least one model assigns it above-threshold

probability (favoring recall).

• Intersection: A concept is predicted only if all models agree (favoring precision).

These ensembling strategies offer complementary behaviors, providing useful baselines

for the more sophisticated aggregation methods presented later in Subsection 3.3.2.

3.3.2 Ensemble Strategies

To enhance robustness and predictive reliability in multilabel concept recognition, we

designed a set of ensemble strategies that integrate predictions from models trained with

diverse CNN backbones and data splits. These ensembles operate at two complementary

levels: (i) the model level, by introducing architectural diversity across base learners, and
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Fig. 3.2: The system uses a CNN for feature extraction and an FFNN for classification, with

GeM pooling to generate image embeddings. Concepts are predicted using sigmoid

probabilities, with a threshold t applied uniformly. This figure is reproduced from our

previous work [Cha25].

(ii) the prediction level, by aggregating outputs through alternative consensus mechanisms.

This two-level design allows the system to capitalize on complementary strengths of

individual models, while mitigating their weaknesses through aggregation.

Our experimental ensembles comprised models trained with three distinct encoders:

EfficientNet-B0 [TL19], DenseNet-121 [Hua+17b], and ConvNeXt-Tiny [Liu+22]. To

further increase diversity within the EfficientNet-B0 family, we employed a Monte-Carlo

cross-validation strategy. Specifically, fivemodels were trained on different train–validation

splits of the dataset, with a consistent development set across all splits. During inference,

their outputs were aggregated using the intersection rule, such that only concepts predicted

by all five models were retained. This conservative aggregation ensured high-confidence

predictions, albeit at the cost of reduced recall. The resulting intersection set was subse-

quently merged (via union) with predictions from an additional EfficientNet-B0 trained

on the entire training+validation set, as well as with outputs from DenseNet-121 and

ConvNeXt-Tiny. This hybrid scheme combined the high precision of the intersection en-

semble with the broader coverage of union-based integration, aiming to achieve a balanced

trade-off between recall and precision.

Beyond these baseline operations, we designed two more refined aggregation strategies to

provide adaptive concept inclusion:

Dual Threshold Aggregation. The goal of this strategy is to explicitly balance precision

and recall by differentiating between highly confident predictions and those supported by

partial consensus. Let Vi,j denote the number of models that assign concept j to image i,

and let M denote the total number of models in the ensemble. We first identify a core set
of concepts that achieve full consensus:
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corei,j =

1, if Vi,j = M

0, otherwise

(3.1)

While the core set guarantees maximal reliability, restricting predictions exclusively to

this set often yields overly conservative outputs. To address this, we introduce a border set,
which includes concepts predicted by at least L models, where L < M :

borderi,j =

1, if L ≤ Vi,j < M

0, otherwise

(3.2)

The final prediction is obtained as the union of the two sets:

P̂i,j = corei,j ∪ borderi,j (3.3)

This dual-threshold formulation guarantees that concepts with unanimous agreement are

always preserved, while allowing additional concepts to be included when supported by

a sufficiently strong majority. The parameter L serves as a tunable consensus threshold,

controlling the trade-off between precision and recall.

Partial Intersection Aggregation. The second strategy extends the intersection rule

with a fallback mechanism, designed to prevent empty prediction sets in cases of model

disagreement. Formally, the core set is again defined as:

corei,j =

1, if Vi,j = M

0, otherwise

(3.4)

If the core set is non-empty (i.e.,

∑
j corei,j > 0), predictions are restricted exclusively to

this set:

P̂i,j = corei,j (3.5)
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However, if the intersection is empty (

∑
j corei,j = 0), the strategy reverts to a relaxed

majority rule, including all concepts predicted by at least L models (L ∈ {2, 3} in prac-

tice):

P̂i,j =

1, if Vi,j ≥ L

0, otherwise

for

∑
j

corei,j = 0 (3.6)

This hierarchical design ensures that predictions default to themost conservative (precision-

oriented) aggregation when possible, while maintaining recall through fallback inclusion

when full consensus is absent.

Overall, these ensemble strategies reflect different points along the precision–recall spec-

trum: union favors coverage, intersection enforces strict agreement, while dual threshold
and partial intersection introduce tunable or hierarchical consensus rules. By combining

these methods, we sought to systematically explore how structural diversity (across back-

bones and splits) and aggregation diversity (across consensus rules) interact to influence

multilabel prediction performance.

EfficientNet-B0

DenseNet-121

ConvNeXt-Tiny

Union

Intersection

Consensus (L / fallback)

Final Prediction Set

Fig. 3.3: Ensemble aggregation overview. Predictions from the three CNN backbones are combined

by Union, Intersection, or a Consensus rule (covers dual-threshold and partial-intersection

variants) to form the final concept set.

3.3.3 Ultrasonography Specific Experiments

Beyond the models officially submitted to the Concept Detection task, we performed a

set of additional experiments aimed at improving classification performance on ultra-
sonography images. Preliminary error analysis revealed that our models systematically

underperformed on this modality compared to others such as X-ray and MRI. To mitigate

this gap, we explored targeted fine-tuning strategies designed to incorporate modality-

specific information while preserving generalization across the full label space.

Two-Phase Fine-Tuning. Our first approach employed a sequential fine-tuning proce-

dure. In the initial phase, the model was trained on a subset of the training data excluding
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all ultrasonography images (Dataset 1A). This allowed the model to learn concept repre-

sentations from modalities with higher predictive stability. Once trained, we preserved

both the learned weights and the mapping between output neurons and their associated

concept labels.

In the second phase, we expanded the model’s output layer to cover the full set of 2,479

concepts, since Dataset 1B (containing only ultrasonography images) introduced addi-

tional labels not present in Dataset 1A. For overlapping labels, weights learned during the

first phase were retained, ensuring continuity of knowledge. Fine-tuning on Dataset 1B

thus enabled the model to specialize on ultrasonography while maintaining alignment

with the broader label space.

Modality-Specific Masking. Building on the two-phase procedure, we designed a

more refined training scheme that explicitly accounts for modality-label associations. The

training split was again partitioned into two subsets: one excluding ultrasonography

images (Dataset 2A) and one containing only ultrasonography images (Dataset 2B). A
unified label vocabulary was defined as the union of concepts across both subsets, and the

model’s output layer was structured accordingly.

During training, irrelevant labels were dynamically masked depending on the active

dataset. For instance, when training on Dataset 2A, labels exclusive to ultrasonography

were masked, and vice versa when training on Dataset 2B. This masking ensured that the

model focused only on labels meaningful for the modality under consideration, thereby

facilitating knowledge transfer across modalities while preserving specialization where

needed.

Results. Although both strategies improved interpretability and appeared promising for

enhancing modality-specific adaptation, neither approach surpassed the overall perfor-

mance of our primary models (see Tables 5.6 and 3.2). Consequently, these models were

not included in the final submission.

Overall, these supplementary experiments demonstrate the potential and limitations of

modality-aware fine-tuning in large-scale multilabel concept detection. While targeted

strategies can reduce domain-specific error, they also highlight the trade-off between

specialization and generalization in heterogeneous medical imaging tasks.
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Tab. 3.2: Performance of exploratory models evaluated on our held-out development (private test)

set. These models were not submitted to the official test set.

Model F1 (dev) F1 (val)
CNN + FFN (baseline) 0.5872 0.5891
Fine-Tuned → Ultrasonography 0.5891 0.5774

Masking (1) 0.5868 0.5773

Masking (2) 0.5806 —

(A) Two-Phase Fine-Tuning

Dataset 1A

(no ultrasonography)

Model (Phase 1)

output layer: labels in 1A

Save weights &

label mapping

Expand output layer

to 2,479 labels

Dataset 1B

(ultrasonography only)

Model (Phase 2)

fine-tune on 1B

Predictions (full label set)

(B) Modality-Specific Masking

Unified label space = union of labels in 2A and 2B

Dataset 2A

(no ultrasonography)

Dataset 2B

(ultrasonography only)

Mask labels irrelevant to 2A (e.g., US-only) Mask labels irrelevant to 2B (e.g., non-US)

Model (shared backbone + full output layer)

Predictions (full label set, modality-aware)

Training alternates between 2A and 2B with modality-specific masking

Fig. 3.4: Schematic of additional concept-detection experiments. (A) Two-Phase Fine-Tuning: train
without ultrasonography (Dataset 1A), save weights and label mapping, expand the out-

put layer to the full label set, then fine-tune on ultrasonography-only data (Dataset 1B).

(B) Modality-Specific Masking: define a unified label space; when training on non-

ultrasonography data (2A), mask ultrasonography-only labels; when training on ultra-

sonography data (2B), mask non-ultrasonography labels.
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4Data

A central component of this thesis is the empirical evaluation of methods for multi-label

classification and medical concept detection. The choice of datasets is therefore critical:

they must reflect both the methodological challenges of multi-label learning in general

and the domain-specific requirements of medical imaging. This chapter introduces the

datasets used in the two main parts of the thesis, highlighting their scale, complexity, and

relevance to the research questions addressed.

For the conformal prediction experiments, we make use of several established multi-label

benchmarks from diverse domains, including computer vision, biology, and audio analysis.

These datasets are widely adopted in the literature because they exhibit challenging

characteristics such as label imbalance, high cardinality, long-tail distributions, and complex

inter-label dependencies. Evaluating models across such heterogeneous sources ensures

that the findings are not tied to a single application area but instead generalize across

different forms of structured multi-label data. In particular, these datasets provide a

rigorous testbed for assessing both predictive performance and the validity and efficiency

of uncertainty quantification methods such as conformal prediction.

For the medical concept detection experiments, we employ the ImageCLEFmedical
2025 dataset, which constitutes the official benchmark for the annual Concept Detection

task. This dataset consists of a large-scale collection of radiological images annotated

with UMLS concepts, spanning imaging modalities, anatomical regions, and pathological

findings. The dataset is notable for its scale, label diversity, and clinical relevance, as well

as for the substantial class imbalance that mirrors real-world medical data. Its use within

the ImageCLEF competition further ensures comparability with state-of-the-art systems

developed by other research groups worldwide. Within this thesis, the dataset serves as the

foundation for evaluating CNN–FFNN architectures, ensemble strategies, and threshold

optimization methods in a realistic, safety-critical domain.

Taken together, the datasets used in this work provide a comprehensive empirical basis

for analysis. The general-purpose multi-label benchmarks enable the study of conformal

predictors and ensemble methods under controlled and diverse conditions, while the

ImageCLEFmedical corpus grounds the research in a clinically meaningful application.

This combination allows us to investigate both methodological contributions and their

practical implications in medical imaging.
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4.1 Datasets for Conformal Prediction

To evaluate the effectiveness and generality of the proposed ensemble conformal prediction

(ECP) framework, three established multilabel classification benchmarks from distinct

domains are employed: computer vision, bioinformatics, and music information retrieval.

The selection of these datasets is motivated by their complementary characteristics in

terms of sample size, label space cardinality, label density (i.e., the average number of

positive labels per instance), and degree of label co-occurrence. Together, they provide

a heterogeneous and challenging testbed for assessing predictive accuracy, calibration

quality, and robustness of uncertainty quantification.

MS-COCO (Vision). TheMicrosoft CommonObjects in Context (MS-COCO) dataset [Lin+14]

is a large-scale benchmark widely used in computer vision. In its multilabel formulation,

each image may contain multiple object categories (e.g., person, car, dog), yielding a

label space of 80 classes. The dataset exhibits both high label cardinality and substantial

class imbalance: frequent categories such as person dominate, while many categories

are relatively rare. Moreover, strong co-occurrence patterns (e.g., person + bicycle)
add further complexity. To reduce computational overhead and ensure comparability, all

experiments are conducted on pre-extracted CLIP ViT-B/32 embeddings [Rad+21] rather

than raw pixels. This choice emphasizes label prediction and conformal calibration rather

than representation learning, while providing efficiency and reproducibility.

Yeast (Biology). The Yeast dataset [EW01] is a canonical benchmark in multilabel

bioinformatics, originally proposed for predicting protein functional classes. It contains

2,417 instances, each described by a set of expression-based and sequence-derived features,

annotated with 14 functional labels. Label density is moderate, with most genes associated

with a small subset of functions. Unlike COCO, the Yeast dataset operates on structured

biological features rather than raw images, introducing different inductive biases and noise

sources. It is therefore valuable for testing the robustness of ECP across feature types and

domains.

Emotions (Audio/Music). The Emotions dataset [Tro+08] is a music tagging corpus

where short audio tracks are annotated with multiple emotion-related labels such as

happy, sad, or relaxing. It contains 593 instances and 6 labels, making it small in

both sample size and label space. The dataset is relatively balanced, unlike COCO or Yeast,

and primarily challenges models in low-data regimes. From an uncertainty quantification

perspective, Emotions is useful to evaluate whether conformal predictors remain reliable

under small-sample conditions and perceptual label associations.
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Comparative Overview. Table 4.1 summarizes key statistics of the three datasets. COCO

represents a large-scale, high-cardinality, imbalanced vision benchmark; Yeast provides a

medium-scale, structured biological dataset with moderate density; and Emotions serves

as a small-scale, perceptual dataset with balanced labels. This diversity allows a systematic

evaluation of the proposedmethods across settings that vary in scale, domain, and statistical

properties.

Tab. 4.1: Summary of multilabel datasets used for conformal prediction experiments. Density

denotes the average number of positive labels per instance.

Dataset Domain Samples Labels Avg. Density

MS-COCO Vision (Images) 123,287 80 2.90

Yeast Biology (Genes) 2,417 14 4.24

Emotions Music (Audio) 593 6 1.87

In summary, the three benchmarks complement one another: COCO stresses scalability

and handling of long-tailed distributions; Yeast probes nonlinear feature–label mappings

in biological domains; and Emotions evaluates robustness in small-sample, perceptual

tasks. Their combined use enables a comprehensive evaluation of ensemble conformal

prediction methods across heterogeneous application areas.

4.2 Datasets for ImageCLEFmed Concept
Detection

The second part of the experimental study is conducted on the dataset provided for

the ImageCLEFmedical 2025 Caption Task, which is an extended version of the ROCOv2

corpus [Rüc+24]. This dataset is built from radiology figures extracted from biomedical

publications in the PubMed Central Open Access (PMCOA) repository,
1
and constitutes the

foundation for all three subtasks of the challenge: Concept Detection, Caption Prediction,

and Explainability. The present work focuses exclusively on the Concept Detection task.

Each image in the dataset is paired with a diagnostic caption and annotated with a set of

medical concepts, expressed as UMLS Concept Unique Identifiers (CUIs). In total, the full

collection comprises 97,368 annotated images, divided by the organizers into 80,091 training

samples and 17,277 validation samples. The associated concept vocabulary is extensive,

consisting of 2,479 distinct CUIs covering anatomical structures, imaging modalities,

diagnostic findings, and pathological conditions. The task is inherently challenging because

of (i) the large and heterogeneous label space, (ii) the highly multi-label nature of the

problem, and (iii) strong class imbalance, with a long-tailed frequency distribution ranging

1

PMC Open Access: https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/, last ac-
cessed: 2025-05-20
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from highly prevalentmodalities such asX-ray Computed Tomography to singleton concepts
occurring only once in the corpus.

For model development and hyperparameter tuning, the official training and validation sets

were merged and then repartitioned using stratified sampling into three disjoint subsets:

training (75%), validation (10%), and development (15%). Stratification was carried out with

respect to both concept frequency distributions and caption lengths in order to preserve the

statistical properties of the dataset across splits. This resulted in 73,027 images for training,

9,736 for validation, and 14,605 for development. All internal experiments reported in this

thesis are based on these splits, while final results were computed on the hidden official

test set.

The official test set for ImageCLEFmed 2025 consists of 19,267 previously unseen radiology

images, derived from ROCOv2 [Rüc+24]. As the gold-standard annotations for this split

are withheld, final evaluation is conducted by the challenge organizers. This guarantees a

fair comparison across all participating systems and ensures that reported scores reflect

true generalization performance.

Tab. 4.2: Summary of datasets used in this chapter. Counts refer to the portions used in the

experiments (see text). Avg. labels denotes the average number of positive labels per

instance.

Dataset Domain Samples Labels Avg. labels Features / Notes

MS-COCO (2014) Vision ≈123k (train+val) 80 ≈2.9 CLIP ViT-B/32 embeddings (512-

d); multi-object co-occurrence;

severe class imbalance

Yeast Biology 2,417 14 ≈4.2 Tabular features; z-score nor-

malization; canonical bench-

mark for protein function pre-

diction

Emotions Audio/Music 593 6 ≈1.8 Tabular features; z-score

normalization; percep-

tual/emotional tagging

ImageCLEFmed 2025 Medical Imaging 97,368 (train+val) 2,479 3.20 Radiology images with UMLS

CUIs; long-tail distribution;

CNN inputs resized to 224×224
with ImageNet-style preprocess-

ing

4.3 Concept Detection

The Concept Detection task is formally defined as a large-scale multilabel classification

problem in which each radiology image must be annotated with a subset of clinically rele-

vant biomedical concepts. The label space consists of 2,479 distinct concepts, each uniquely

identified by a Concept Unique Identifier (CUI) in the Unified Medical Language System

(UMLS) ontology [Bod04]. These concepts span a wide semantic spectrum, encompass-
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ing imaging modalities (e.g., X-ray Computed Tomography, Magnetic Resonance Imaging,
Ultrasonography, PET/CT ), anatomical entities (e.g., chest, pelvis), imaging protocols (e.g.,

angiogram, CT follow-up), and fine-grained diagnostic findings. By grounding each label in

UMLS, the task ensures consistency with established biomedical ontologies and facilitates

interoperability with external knowledge bases.

From a machine learning perspective, this setting presents multiple sources of complexity.

First, the size of the label space is substantially larger than in most general-purpose

multilabel benchmarks (e.g., COCO with 80 labels), which makes the prediction problem

high-dimensional and exacerbates the risk of label sparsity. Second, the label distribution

follows a pronounced long-tail pattern, with a small number of concepts such as X-
ray Computed Tomography and chest appearing in tens of thousands of images, while

the majority of concepts occur only a handful of times, and many are singletons. This

imbalance creates strong asymmetries in the availability of training data across labels,

challenging models to learn both frequent and rare concepts simultaneously. Third, the

task exhibits high label density and co-occurrence: on average, each image is annotated

with more than three concepts, often spanning multiple semantic categories (e.g., modality

+ anatomy + clinical finding). Consequently, the task requires capturing not only marginal

label probabilities but also complex dependencies between labels.

The clinical relevance of the task further amplifies its importance. Accurately detecting

concepts such as imaging modality or anatomical structure provides the foundation for

downstream tasks, including automatic caption generation, clinical decision support,

and content-based retrieval in large medical archives. Errors in concept detection are

not uniformly problematic: failing to recognize frequent modality concepts may degrade

generalizability, while misclassifying rare diagnostic findings risks overlooking information

of potentially high clinical value. Hence, reliable uncertainty quantification and balanced

predictive performance are both critical for the deployment of such systems in practice.

Figure 4.1 illustrates a concrete example from the ImageCLEFmedical 2025 dataset. The

radiology image, depicting an ultrasonography examination, is annotated with three

concepts: Ultrasonography, Left ventricular structure, and Structure of papillary muscle.
The table shows their corresponding CUIs and UMLS terms, emphasizing the structured,

ontology-linked nature of the labels. Such annotations exemplify the multi-faceted charac-

ter of the task: each image often involves the interaction of modality, anatomy, and clinical

focus, making the prediction problem substantially richer than standard object recognition

benchmarks.

Distributional Characteristics A closer inspection of the concept frequency distribu-

tion reveals one of the central challenges of the Concept Detection task: its pronounced

long-tail structure. As shown in Figure 4.2b, a small number of very frequent concepts
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CUI UMLS Term
C0041618 Ultrasonography

C0225897 Left ventricular structure

C0030352 Structure of papillary muscle

ID: ImageCLEFmedical_Caption_2025_train_41494

CC BY [Magdás et al. (2021)]

Fig. 4.1: This figure, under CC BY from Magdás et al. (2021), presents an example from the Im-

ageCLEFmedical 2025 dataset [Rüc+24], illustrating the corresponding Concept Unique

Identifiers (CUIs) and Unified Medical Language System (UMLS) terms.

dominate the dataset, whereas the majority of concepts occur only rarely. For example, the

most common concept, X-ray Computed Tomography, is present in more than 34,000 images,

while hundreds of concepts appear fewer than ten times across the entire collection, and

a substantial number are observed only once (singletons). This heavy-tailed distribution

implies that any predictive system must operate effectively across drastically different data

regimes: learning reliable classifiers for high-frequency concepts, while also generalizing

from extremely limited evidence for rare ones.

Table 4.3 lists the ten most frequent concepts, which are primarily broad imaging modalities

or anatomical descriptors such as X-ray, MRI, and chest. These high-frequency categories

provide coarse-grained information about the imaging study and are well-represented in

training data, making them relatively easier for models to learn. However, a system that

performs well only on such frequent categories risks overfitting to generic information

while neglecting the fine-grained and clinically specific labels that are often crucial for

diagnostic utility.

At the opposite extreme, Table 4.4 shows examples of singleton concepts, each observed in

only a single image. These include highly specialized imaging protocols (DiffusionWeighted
Imaging, MRI Venography), rare anatomical structures (Structure of adductor canal), and
narrow diagnostic procedures (Root canal post). Such categories highlight the inherent data
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Tab. 4.3: The ten most frequent concepts (CUIs) in the ImageCLEFmedical 2025 dataset [Rüc+24],

along with their UMLS terms and frequency counts.

Most Common Concepts
Rank CUI UMLS Term Images
1 C0040405 X-Ray Computed Tomography 34,055

2 C1306645 Plain x-ray 26,531

3 C0024485 Magnetic Resonance Imaging 15,475

4 C0041618 Ultrasonography 14,237

5 C0817096 Chest 12,559

6 C0002978 Angiogram 5,387

7 C0000726 Abdomen 5,300

8 C0037303 Bone structure of cranium 4,715

9 C0030797 Pelvis 4,449

10 C0023216 Lower Extremity 3,911

sparsity faced in this benchmark: for many concepts, there is effectively no opportunity to

learn robust visual representations from the available training data. In practice, this means

that models must either rely on transfer learning from related concepts or risk ignoring

these rare but clinically significant categories.

Tab. 4.4: Twelve example singleton concepts (CUIs) from the ImageCLEFmedical 2025

dataset [Rüc+24], each appearing in only one image.

CUI UMLS Term
C0598801 Diffusion weighted imaging

C0202657 CT follow-up

C1956110 Cone-Beam Computed Tomography

C0011906 Differential Diagnosis

C0040395 Tomography

C1690005 MRI venography

C0243032 Magnetic Resonance Angiography

C0183062 Root canal post

C0203668 Radioisotope scan of bone

C0412650 Computed tomography of cervical spine

C1962945 Radiographic imaging procedure

C0225273 Structure of adductor canal

This skewed distributional profile creates a dual evaluation challenge: models must be

judged not only on their ability to achieve high overall F1 scores, which are naturally

dominated by frequent labels, but also on their robustness in recognizing rare concepts.

From an application standpoint, the difficulty of rare concepts is particularly consequen-

tial, since these often correspond to subtle diagnostic findings or less common imaging

procedures that may hold disproportionately high clinical value. As a result, the long-tail

distribution in ImageCLEFmed 2025 represents not just a technical obstacle but also a

proxy for the real-world heterogeneity of medical imaging data.

4.3 Concept Detection 63



Label Density and Co-occurrence Beyond the imbalance in individual concept fre-

quencies, the dataset also exhibits substantial variation in label density, that is, the number

of concepts assigned to each image. As shown in Figure 4.2a, the majority of radiology

figures are annotated with two to four concepts, but the range extends from single-label

cases (10,018 images) up to highly complex cases with 28 distinct concepts. On average,

images are annotated with approximately 3.20 concepts each, indicating that the dataset

systematically captures the multi-faceted nature of clinical imaging: modality, anatomy,

and findings frequently co-occur and must all be correctly identified for complete semantic

coverage.

This variability has direct implications for model design. From a learning perspective,

low-density cases resemble traditional single- or few-label classification problems, where

standard discriminative models can often perform well. In contrast, high-density cases

require models to capture more intricate interdependencies among labels, since many

concepts co-occur in structured patterns. For example, modality–anatomy pairs such

as chest + plain X-ray or abdomen + CT are frequent and provide relatively strong cues.

However, there also exist rare and clinically specific co-occurrence patterns (e.g., angiogram
+ pelvis + vascular graft), which are sparsely represented and therefore more difficult for

purely data-driven systems to learn reliably.

The importance of label co-occurrence is amplified in multilabel conformal or ensemble

frameworks, where predictive sets must balance individual label accuracy with calibration

across combinations of labels. Poorly modeling dependencies can lead to inflated predic-

tion sets or missed concepts, undermining the clinical interpretability of outputs. This

challenge mirrors real-world diagnostic practice: a radiology image rarely conveys isolated

information, but rather a constellation of complementary cues that must be integrated to

produce a meaningful interpretation.

Taken together, these observations highlight that the Concept Detection task is not only

defined by its large and heterogeneous label space, but also by the complex structural

patterns in which labels appear. Models are therefore evaluated not just on their ability to

recognize frequent and visually distinctive concepts, but also on their capacity to handle

variable label density and to generalize across diverse co-occurrence structures. This

combination of long-tail imbalance and structured dependencies makes ImageCLEFmedical

2025 a particularly challenging benchmark for multilabel learning and uncertainty-aware

prediction.
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Fig. 4.2: Distributional statistics of the ImageCLEFmedical 2025 concept detection dataset [Rüc+24].

(a) Histogram of the number of concepts per image, illustrating variation in label density.

(b) Long-tail distribution of concept frequencies, with a small number of very frequent

labels and many rare ones.
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5Experimental Analysis

This Chapter presents the experimental evaluation of the methods proposed in Chapter

3. Our goal is twofold: first, to assess the effectiveness of ensemble conformal prediction

(ECP) in the context of multilabel classification, focusing on predictive accuracy, uncer-

tainty quantification, and statistical coverage guarantees; and second, to evaluate the

performance of convolutional neural network (CNN) based systems on the ImageCLEFmed
Concept Detection task. The experiments are organized as follows. We begin by describing

the datasets used in both settings, highlighting their characteristics and the preprocessing

steps applied. We then provide a detailed account of the evaluation protocols, including

the metrics employed to measure both predictive performance and uncertainty calibra-

tion. Finally, we present and analyze the results of our experiments, comparing baseline

approaches with the proposed methods, and discussing both strengths and limitations.

5.1 Training Setup for Conformal Prediction

All experiments are conducted under the binary relevance (BR) framework, in which each

label is modeled as an independent binary classification problem. This formulation is widely

adopted in multilabel learning due to its scalability and modularity: it allows heterogeneous

classifiers to be trained per label and permits straightforward integration with conformal

calibration procedures. Although BR ignores label dependencies by construction, this

limitation can be partially mitigated through ensemble aggregation strategies, as explored

in Section 3.1.3. To ensure that results are robust rather than artifacts of specific random

initializations, each experiment is repeated under multiple random seeds, and results are

averaged across runs.

Data Preparation. For the COCO dataset, image-level features are extracted using the

CLIP ViT-B/32model [Rad+21], which is pretrained on image–text pairs from a large

corpus. Using CLIP embeddings instead of raw pixels serves two purposes: (i) it reduces

computational overhead, enabling efficient experimentation across multiple models and

ensembles, and (ii) it provides a semantically rich representation that captures both visual

and textual context, improving generalization in downstream multilabel classification. All

images are processed using CLIP’s standard pipeline (resize, center crop, normalization),

resulting in 512-dimensional feature vectors. In contrast, the Yeast and Emotions datasets
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are already available in tabular form with numerical features, which are standardized

using z-score normalization to improve convergence during training. No additional feature

engineering or dimensionality reduction is performed, in order to maintain comparability

with prior work.

Dataset Splits. To obtain unbiased evaluation while enabling calibration, each dataset is

divided into three disjoint subsets: training, calibration, and validation. This is achieved

using a two-stage stratified sampling strategy that preserves the empirical distribution

of labels. Specifically, 60% of the data are allocated to training, while the remaining 40%

are evenly split into calibration and validation subsets (20% each). The calibration set is

used exclusively to compute label-wise nonconformity thresholds, while the validation set

is reserved for model selection and hyperparameter tuning. For ensemble experiments,

bootstrap resampling of the training set is applied to promote diversity among base learners,

following standard bagging principles.

Model Architectures. A broad spectrum of classifiers is evaluated, spanning linear,

shallow, and deep architectures. Linear models include logistic regression (LR) with L2

regularization and stochastic gradient descent (SGD) trained with logistic loss. The latter is

calibrated using Platt scaling via CalibratedClassifierCV, ensuring probabilistic
outputs that are compatible with conformal prediction. Neural models are implemented in

PyTorch and include:

• MLP: one hidden layer with 256 ReLU units, followed by a sigmoid output layer for

multilabel prediction.

• RNN: a unidirectional LSTM with hidden size 256, applied to CLIP embeddings

(reshaped into sequences of length 1), followed by a dense sigmoid classifier.

• Transformer encoder: two stacked layers, each with 4 self-attention heads, pro-

jecting into contextualized representations that feed into a shared linear classifier.

• MLP-Mixer: alternating token-mixing and channel-mixing feedforward layers

with GELU activations and layer normalization, reflecting recent advances in vision

architectures that eschew explicit attention mechanisms.

Training Protocol. All neural models are trained using the Adam optimizer [KB17]

with a fixed learning rate of 10−3
and binary cross-entropy loss. Training is conducted

for 10 epochs with batch size 64 on COCO and 128 for the smaller Yeast and Emotions

datasets. Mini-batches are shuffled at each epoch to improve generalization. To ensure
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reproducibility, random seeds are fixed across Python, NumPy, and PyTorch (including

CUDA backends). Training is executed on a single NVIDIA RTX 2080 Ti GPU.

Conformal Prediction Setup. For each label j, nonconformity scores are computed

on the calibration set, and thresholds qj are determined at the (1 − α) quantile. Unless
stated otherwise, we set α = 0.1, corresponding to a 90% target coverage rate. This choice

reflects a common trade-off between reliability (coverage) and informational efficiency

(set size). In ablation studies (Section 5.2.2), the effect of varying α is investigated.

Ensembles. Both homogeneous and heterogeneous ensembles are explored, with ensem-

ble sizes M = 3 or M = 5. Homogeneous ensembles use bootstrap-resampled training

subsets, while heterogeneous ensembles combine base learners of different architectures.

Aggregation strategies include majority voting, probability averaging, and F1-weighted

voting, the latter assigning label-specific weights proportional to validation performance.

Stacked ensembles are also implemented, where predictions from base models on the

calibration set are used as features to train a logistic regression meta-classifier, which is

subsequently calibrated via CP.

Evaluation Protocol. Performance is reported using multiple complementary metrics:

macro-F1 (to capture balanced predictive performance across labels), exact match accuracy

(a stringent criterion requiring all labels to be correct), empirical coverage, marginal

coverage, and average prediction set size. Statistical significance is assessed using paired

Wilcoxon signed-rank tests applied to results from five independent random seeds (42,

100, 2021, 7, 999). All results are reported as mean ± standard deviation across seeds. This

evaluation framework ensures both robustness and statistical reliability of the observed

differences. To demonstrate this, Tables 5.3 and 5.2 report mean and standard deviation

values across multiple runs for representative methods on all three datasets.

5.2 Results

Roadmap. This section presents the empirical evaluation of the proposed Ensemble
Conformal Prediction (ECP) framework. The analysis is structured around three main

components. First, a direct comparison is made between single-model CP, post-hoc con-

formal ensembles, and ECP across three benchmark datasets (Emotions, Yeast, COCO),
highlighting their trade-offs in terms of empirical coverage, marginal coverage, average

prediction set size, and macro-F1 performance. Second, the runtime overhead and sta-

tistical robustness of ECP relative to baselines are examined. Finally, targeted ablation

studies are presented to isolate the contributions of key design factors, including ensemble
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size, aggregation strategy, model diversity, and the specified miscoverage rate α. Together,

these analyses provide a comprehensive view of how ECP balances the competing goals of

predictive accuracy, compactness, and statistical validity in multilabel classification.

Table 5.1 summarizes the comparative performance of all evaluated methods. The table is

organized into four blocks: (i) non-conformal baselines (standard binary relevance and

simple ensembles), (ii) single-model conformal predictors, (iii) post-hoc conformal ensem-

bles, and (iv) our proposed ECP variants. Performance is reported on the three datasets

spanning different domains and degrees of complexity, thereby providing a heterogeneous

testbed for evaluation. Complementing the numerical results, Figure 5.1 plots the trade-off

between average set size and predictive performance. Taken together, the table and figure

provide both quantitative and visual evidence of the advantages of ECP.

Interpretation of Figure 5.1. The scatter plots illustrate the Pareto frontier between com-

pactness and predictive strength. Single-model CP methods (triangles) typically guarantee

coverage but at the expense of larger prediction sets, while post-hoc ensembles (squares)

improve efficiency only marginally. In contrast, ECP methods (circles) shift the frontier

upward and leftward, simultaneously reducing set size and improving macro-F1. This

effect is most visible on the COCO dataset, where the label space is large and highly

imbalanced, but the same qualitative pattern is observed across all three benchmarks.

Overall Performance. Across datasets, Ensemble Conformal Prediction (ECP) consis-

tently improves upon both single-model conformal predictors and post-hoc conformal

ensembles. The key strength of ECP is that it preserves valid coverage guarantees while
producing more compact and informative prediction sets, thereby avoiding the over-

conservativeness that often plagues single-model CP. In particular, whereas individual

conformal models (e.g., SGD on Emotions, or MLP on COCO) frequently generate very

large prediction sets with limited discriminative power, ECP leverages aggregation to

balance coverage with predictive sharpness. The result is systematically higher macro-F1

without sacrificing calibration. Importantly, these improvements are consistent across all

three benchmarks despite their differences in scale, domain, and label distribution.

Emotions. The Emotions dataset is the smallest of the three (six labels, few hundred

samples), which makes it a challenging low-data regime. Nevertheless, the results show

that aggregation can still extract meaningful signal:

• Best performance: the Stacked Heterogeneous ECP achieves the top macro-F1 of

0.6596, improving over logistic regression with CP (0.6467). The improvement may

seem small in absolute terms, but in this low-data setting even marginal gains
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are significant, showing that stacking can exploit complementary patterns among

diverse base models.

• Compact sets: homogeneous MLP ensembles with weighted averaging also per-

form strongly (F1 = 0.6467) while producing the most compact sets (3.17 labels per

instance). This highlights the efficiency of probabilistic aggregation relative to naïve

voting.

• Over-conservativeness: CP with SGD attains perfect coverage (EC = 1.0, MC =

1.0), but does so by predicting all possible labels (average set size = 6.00), which

yields the lowest F1 (0.4692). This illustrates a central limitation of single-model CP:

coverage is maintained, but usefulness is lost.

Takeaway for Emotions: even in small datasets where base models are individually weak,

ECP prevents trivial over-coverage and achieves a better balance between reliability and

informativeness.

Yeast. The Yeast dataset (14 labels, moderate size) reveals clearer contrasts between

aggregation strategies:

• Top accuracy: both the homogeneous MLP-WA and the heterogeneous MV ensem-

bles reach the best macro-F1 of 0.4710. The heterogeneous version does so with

slightly more compact sets (10.10 vs. 10.38), whereas the homogeneous ensemble

achieves the highest coverage (EC = 0.9130, MC = 0.8932).

• Single-model CP: performance ranges between 0.4531–0.4682 F1, producing con-

sistently large sets (10.5–10.6) with only modest accuracy, showing again that en-

sembling is essential for efficiency.

• Post-hoc CP ensembles: provide some improvement over single CP (e.g., Het.

Ensemble–CP (1) reaches 0.4625 F1), but fall short of ECP, confirming that confor-

malizing before aggregation is more effective than conformalizing after.

Takeaway for Yeast: with its noisy biological features and moderate label size, ECP demon-

strates robustness—not only maintaining coverage near the 90% target but also squeezing

out extra predictive power compared to both single-model and post-hoc baselines.

COCO. The COCO dataset, with 80 labels and extreme imbalance, is the most demanding

benchmark. Here the advantages of ECP are particularly evident:
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• Highest F1: the Heterogeneous ECP with Weighted Voting attains the top macro-

F1 of 0.5745 with a compact set size of 7.22. This shows that weighting models

by label-specific validation F1 yields superior error correction in high-cardinality

problems.

• Smallest sets: the Homogeneous LR–MV ensemble achieves the smallest prediction

sets (7.16) while maintaining competitive F1 = 0.5674. This demonstrates that even

simple majority voting can effectively counteract the conservativeness of single CP

in large label spaces.

• Single-model CP: produces sets of size 8–9 with F1 around 0.51–0.54, confirming

that individual predictors struggle with COCO’s imbalance.

• Post-hoc CP ensembles: improve modestly (F1 = 0.5482, set size 7.83), but again

fall behind ECP, emphasizing the benefit of calibrating models individually before

aggregation.

Takeaway for COCO: ensemble diversity and weighted aggregation are crucial in large-

scale, imbalanced MLC. They deliver both stronger accuracy and tighter sets than any

single model can achieve, while still respecting coverage guarantees.

Key Takeaways. The combined evidence across all datasets leads to three overarching

conclusions:

1. ECP improves both calibration and predictive accuracy, overcoming the trade-

off that limits single-model CP. Coverage is preserved, but set size and informative-

ness are substantially improved.

2. Model diversity pays off. Heterogeneous ensembles generally outperform homo-

geneous ones, especially on COCO, because they exploit complementary strengths

and reduce correlated errors.

3. Aggregation strategy matters. Weighted averaging and stacked ensembles consis-

tently deliver the best trade-offs, while simple majority voting remains surprisingly

competitive in less complex domains.

Overall, these findings establish ECP as a principled and effective framework for uncertainty-

aware multi-label classification. It extends the theoretical guarantees of conformal predic-

tion into practice, showing that when combined with ensemble learning, coverage need

not come at the cost of accuracy or usability.
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Tab. 5.1: Performance comparison across Emotions, Yeast, and COCO datasets. EC = Empirical

Coverage, MC = Marginal Coverage, Set Size = average predicted labels per instance, F1

= Macro-F1. Best CP-based results per dataset are bold.

Dataset Method EC MC Set Size ↓ F1 ↑

Emotions

Non-Conformal Baselines BR (LR) – – – 0.6146

Ensemble (LR) – – – 0.3491

Single-Model CP CP (LR) 0.8908 0.8765 3.45 0.6467

CP (MLP) 0.9034 0.8930 4.42 0.5429

CP (SGD) 1.0000 1.0000 6.00 0.4692

Post-hoc CP Ensembles Het. Ensemble–CP 0.9663 0.8944 3.49 0.6288

Multi-MLP–CP 0.8904 0.8776 4.49 0.5148

Stacked Het.–CP 0.8867 0.8776 3.26 0.6447

ECP (ours) Hom. CP (MLP–WA) 0.8717 0.8629 3.17 0.6467

Stacked Het. CP 0.8992 0.8833 3.40 0.6596

Yeast

Non-Conformal Baselines BR (LR) – – – 0.3497

Ensemble (LR) – – – 0.3491

Single-Model CP CP (LR) 0.8916 0.8826 10.61 0.4531

CP (MLP) 0.9029 0.8929 10.54 0.4682

CP (SGD) 0.8976 0.8708 10.62 0.4557

Post-hoc CP Ensembles Het. Ensemble–CP (1) 0.9037 0.8929 10.71 0.4625

Het. Ensemble–CP (2) 0.8742 0.8703 10.17 0.4662

ECP (ours) Hom. CP (MLP–WA) 0.9130 0.8932 10.38 0.4710
Hom. CP (LR–MV) 0.9089 0.8729 10.35 0.4635

Het. CP (MV) 0.9100 0.8703 10.10 0.4710

COCO

Non-Conformal Baselines BR (LR) – – – 0.6981

CLIP-RNN – – – 0.7002

Ensemble (LR) – – – 0.6964

Label Bagging (10) – – – 0.4828

Label Bagging (40) – – – 0.6940

Single-Model CP CP (LR) 0.9103 0.8998 8.56 0.5249

CP (MLP) 0.9092 0.8992 9.34 0.5100

CP (SGD) 0.9111 0.9009 8.67 0.5276

CP (RNN) 0.9115 0.9006 8.08 0.5417

Post-hoc CP Ensembles Het. Ensemble–CP 0.9045 0.8917 7.83 0.5482

ECP (ours) Hom. CP (LR–MV) 0.8962 0.8965 7.16 0.5674

Hom. CP (LR–WA) 0.9042 0.8887 7.96 0.5429

Het. CP (MV) 0.9064 0.8870 7.68 0.5554

Het. CP (WV) 0.8871 0.8577 7.22 0.5745
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Fig. 5.1: Trade-off between prediction set size and Macro-F1 for conformal methods across datasets.

Single-model CP (triangles), post-hoc CP ensembles (squares), and our ECP methods

(circles).
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Reliability Across Runs. Tables 5.3 and 5.2 provide a complementary view of per-

formance stability across random seeds. The extended metrics table (Table 5.3) shows

that ECP consistently delivers more compact prediction sets with higher macro-F1 than

single-model CP, while maintaining comparable or improved coverage. For instance, on

Emotions, the stacked ensemble raises macro-F1 from 0.554 to 0.647 while reducing the

average set size (3.24 vs. 3.97). Similarly, on Yeast, the heterogeneous ensemble maintains

stable coverage while producing slightly smaller sets and marginally higher macro-F1.

The aggregate macro-F1 results in Table 5.2 confirm that these gains are statistically reliable

across all three benchmarks. On COCO, the most challenging dataset, ECP improves from

0.542 to 0.558 macro-F1 with very low variance, showing that the improvements are

systematic rather than random fluctuations. On Emotions, the benefit is even larger

(+0.093 macro-F1), while Yeast demonstrates smaller but consistent gains.

Taken together, these results strengthen the conclusion that ensemble conformal predic-

tion not only improves accuracy and efficiency, but also yields stable and reproducible

performance across runs, enhancing the reliability of uncertainty-aware multilabel classifi-

cation.

Tab. 5.2: Macro-F1 (mean ± std) across five runs.

Dataset Method Macro-F1

COCO Single CP (MLP) 0.542 ± 0.001

ECP (ours) 0.558 ± 0.003

Emotions Single CP (MLP) 0.554 ± 0.015

ECP (Stacked Ensemble) 0.647 ± 0.024

Yeast Single CP (MLP) 0.466 ± 0.007

ECP (Het. Ensemble) 0.467 ± 0.004

Tab. 5.3: Extended reliability metrics (mean ± std) across five runs for Emotions and Yeast.

Dataset Method Coverage MC Set Size F1

Emotions Single CP (MLP) 0.8641 ± 0.0255 0.8617 ± 0.0231 3.97 ± 0.23 0.5542 ± 0.0151

ECP (Stacked) 0.8641 ± 0.0419 0.8678 ± 0.0345 3.24 ± 0.30 0.6467 ± 0.0238

Yeast Single CP (MLP) 0.9055 ± 0.0063 0.9025 ± 0.0093 10.55 ± 0.14 0.4661 ± 0.0071

ECP (Het.) 0.9103 ± 0.0082 0.8851 ± 0.0183 10.36 ± 0.25 0.4667 ± 0.0035

5.2.1 Runtime and Computational Analysis

Overview. All experiments were conducted on a workstation with an NVIDIA GeForce

RTX 2080 Ti GPU (11GB VRAM), 64GB RAM, and Ubuntu 20.04. Runtime was measured

for the calibration and inference phases on the COCO dataset, which serves as the most

computationally demanding benchmark among those considered in this thesis. A single
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conformal predictor required on average ∼16 minutes to complete calibration and infer-

ence, while an ensemble of five models required ∼22 minutes. This corresponds to an

overhead of approximately 38%. The increase in runtime scales nearly linearly with the

ensemble size, reflecting the fact that each model must be calibrated independently. Impor-

tantly, this additional cost remains practical for configurations of three to five models—the

range most frequently considered in our evaluation. Furthermore, the independence

of ensemble members means that wall-clock time can be reduced considerably through

parallelization.

Runtime Scaling. To illustrate the relationship between ensemble size and runtime,

Figure 5.2 presents the measured values for M ∈ {1, 5} and interpolated estimates for

intermediate ensemble sizes. The plot confirms that runtime grows linearly with the

number of ensemble members. Notably, moving from one to five models increases runtime

by only six minutes on average, while providing measurable improvements in coverage and

predictive robustness (see Section 5.2). This trade-off underscores the practical feasibility of

adopting ECP in real-world applications where both efficiency and uncertainty calibration

are important.
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Fig. 5.2: Runtime scaling of conformal predictors on COCO as a function of ensemble size (M ).

Measured values at M = 1 and M = 5; intermediate values interpolated linearly.

5.2.2 Ablation Studies

To disentangle the contributions of different design choices within the proposed Ensemble

Conformal Prediction (ECP) framework, a series of ablation studies were performed using

the COCO dataset as the primary benchmark. The objective of these experiments is not only

to validate the effectiveness of the final ECP design, but also to better understand the relative

importance of its components. Four factors were systematically varied: (i) the ensemble

size M , (ii) the aggregation strategy (majority voting versus probability averaging), (iii)

the degree of model diversity (homogeneous versus heterogeneous ensembles), and (iv)
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the target miscoverage rate α, which controls the level of coverage guarantees. Each of

these ablations provides complementary insights into the mechanisms through which ECP

achieves its improvements in predictive accuracy, calibration reliability, and efficiency of

prediction sets.

Impact of Ensemble Size The first ablation investigates the role of ensemble size. En-

semble methods are well known to reduce variance and improve robustness, but increasing

the number of base learners inevitably incurs computational cost. To explore this trade-off,

homogeneous ensembles of logistic regression classifiers were constructed with ensemble

sizes ranging from M = 1 (single-model CP baseline) up to M = 10.

Figure 5.3 provides a visual overview, while Table 5.4 reports detailed numerical results.

The observed trends reveal three key findings. First, increasing the ensemble size from

one to three members yields a marked boost in macro-F1 (0.5458 → 0.5630) while keeping

prediction sets compact (7.25 labels on average). Second, the largest performance gain

occurs between M = 1 and M = 5, where macro-F1 improves by approximately 2.2

points, accompanied by slightly more compact sets (7.39 → 7.23). Third, beyond M = 5,
additional models contribute only marginal improvements, with performance essentially

saturating around M = 7–10. Empirical coverage remains consistently within the range

0.89–0.91, indicating that calibration is stable even as ensemble size varies.

These findings suggest that ensembles of moderate size (M ∈ [3, 5]) represent the most

efficient design point, striking a balance between predictive gains and computational

overhead. Larger ensembles do not substantially improve accuracy, but linearly increase

runtime (see Section 5.2.1), making them less attractive in practice.

Fig. 5.3: Effect of ensemble size on prediction performance (COCO dataset). Left: empirical and

marginal coverage as a function of M . Right: macro-F1 and average prediction set size.

Gains saturate beyond M = 5, suggesting that ensembles of moderate size are sufficient.
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Tab. 5.4: Performance across different ensemble sizes (M ) on the COCO dataset.

M EC Avg. Size Macro-F1 MC

1 0.8909 7.39 0.5458 0.8645

2 0.9168 8.96 0.5145 0.9013

3 0.8957 7.25 0.5630 0.8733

4 0.9085 8.02 0.5428 0.8915

5 0.8961 7.23 0.5677 0.8725

6 0.9039 7.66 0.5556 0.8832

7 0.8962 7.15 0.5697 0.8736

8 0.9029 7.51 0.5593 0.8835

9 0.8973 7.18 0.5701 0.8753

10 0.9011 7.39 0.5643 0.8812

Sensitivity to Miscoverage Rate The second ablation focuses on the effect of the

miscoverage rate α, which directly specifies the desired reliability of conformal prediction.

Lower values of α enforce stricter coverage guarantees, while higher values relax coverage

to allow sharper and more selective predictions.

Table 5.5 demonstrates the trade-off clearly. At the strictest setting (α = 0.01, 99% target

coverage), empirical coverage is indeed nearly perfect (0.9877), but macro-F1 collapses to

0.2825 because the prediction sets become excessively large and conservative. In contrast,

relaxing to α = 0.20 (80% target coverage) yields compact sets and the highest macro-F1

(0.6700), but with lower reliability. Intermediate settings such as α = 0.10 achieve a

reasonable balance, with empirical coverage (0.8878) closely matching the nominal level

and macro-F1 of 0.5875.

This analysis highlights α as a critical hyperparameter, governing the accuracy–coverage

trade-off. Its selection should therefore be application-specific: safety-critical tasks (e.g.,

medical imaging) may require low α, while exploratory tasks (e.g., tagging large-scale

multimedia data) may tolerate higher miscoverage in exchange for sharper predictions.

Tab. 5.5: Effect of target miscoverage rate (α) on empirical coverage and macro-F1 (COCO dataset).

α Target Coverage Empirical Coverage Macro-F1

0.01 0.99 0.9877 0.2825

0.05 0.95 0.9399 0.4874

0.10 0.90 0.8878 0.5875

0.20 0.80 0.7887 0.6700

Homogeneous vs. Heterogeneous Ensembles The third ablation examines the effect

of model diversity. Homogeneous ensembles are constructed from repeated instances of

the same architecture (e.g., multiple MLPs), whereas heterogeneous ensembles combine

distinct learners (LR, SGD, MLP).
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Results across datasets (see Table 5.1) indicate that heterogeneous ensembles consistently

deliver superior macro-F1 scores while maintaining comparable coverage. For example, on

COCO, the heterogeneous weighted-voting ensemble achieves the best overall performance

(F1 = 0.5745) with a compact prediction set size (7.22). Similarly, on Emotions, the Stacked
Heterogeneous Ensemble achieves the highest F1 (0.6596), demonstrating that diversity

across model families mitigates correlated errors and improves overall generalization.

Homogeneous ensembles nonetheless remain competitive baselines, particularly when

paired with probabilistic aggregation methods (e.g., MLP–WA). However, they tend to

produce slightly larger prediction sets (e.g., size = 3.17 on Emotions) and exhibit less

robustness across datasets. These findings reinforce the value of incorporating diversity

into ensemble design, especially in uncertainty-aware applications.

Summary. The ablation studies collectively highlight three principles for effective ECP:

(i) ensembles of moderate size (M = 3–5) strike the best balance between predictive

accuracy, coverage, and runtime; (ii) careful tuning of α is crucial, as it directly governs the

accuracy–coverage trade-off; and (iii) heterogeneous ensembles consistently outperform

homogeneous ones, underscoring the importance of model diversity in robust conformal

prediction. Together, these results provide a systematic understanding of how ECP’s

components interact to yield strong overall performance.

5.3 Concept Detection: Experiments and Results

Roadmap. This section presents the experimental study of the ImageCLEFmedical
2025 Concept Detection task. The objective is to automatically identify relevant biomed-

ical concepts (CUIs) from radiology images, a problem that is both high-dimensional and

characterized by severe class imbalance. The section is organized as follows. First, the

system architectures evaluated in this work are introduced, ranging from single CNN–

FFNN pipelines with different convolutional backbones to ensemble configurations and

threshold-tuning variants. Second, the evaluation methodology is described, including

both the official F1 score (averaged across all concepts per image) and the secondary F1

score restricted to manually curated concept categories such as anatomy, topography,

and imaging modality. Finally, experimental results are reported for both the internal

development split and the official hidden test set, allowing direct comparison with com-

peting systems in the challenge. The analysis emphasizes three axes of variation: (i) the

influence of CNN backbone choice, (ii) the effect of ensemble aggregation strategies, and

(iii) the role of per-label threshold optimization. Together, these experiments provide

a comprehensive assessment of how architectural and methodological choices impact

performance on large-scale medical concept detection.
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5.3.1 Experimental Setup

For the Concept Detection task of ImageCLEFmedical 2025, a family of systems was

designed around the CNN–FFNN pipeline introduced in Section 3.3.1. The overall

strategy was to leverage strong convolutional feature extractors, followed by a lightweight

feed-forward network responsible for multilabel classification over the 2,479 biomedical

concepts. To examine the role of backbone architecture, three state-of-the-art CNN models

were selected as encoders: EfficientNet-B0 [TL19], known for its parameter efficiency and

depth–width scaling; DenseNet-121 [Hua+17b], which exploits dense skip connections to

encourage feature reuse; and ConvNeXt-Tiny [Liu+22], a recent design inspired by vision

transformers that modernizes convolutional networks with improved training stability and

accuracy. Each backbone was initialized with ImageNet pre-trained weights and fine-tuned

on the ImageCLEFmed dataset, ensuring a fair comparison across architectures.

To improve robustness against the severe label imbalance and long-tail distribution in-

herent to the dataset, several ensemble strategies were implemented (Section 3.3.2).

These included: (i) Union-based ensembling, which maximizes recall by merging predicted

labels across models; (ii) Intersection-based ensembling, which enforces high precision

by restricting predictions to labels agreed upon by multiple models; (iii) Dual-threshold
ensembling, a hybrid approach that applies a more conservative threshold to frequent

concepts and a lower threshold to rare ones, thus balancing recall and precision; and

(iv) Partial-intersection, which allows flexible consensus rules among ensembled models.

These ensemble designs were motivated by the need to explore different points along the

precision–recall trade-off, particularly in the presence of rare medical concepts.

Beyond ensembling, a per-label threshold optimization approach was also evaluated,

inspired by the AUEB system in previous ImageCLEF editions [Cha+25]. In this method, the

decision threshold for each concept was not fixed globally but instead tuned individually

using a coordinate-ascent procedure on the development set. This adaptation is crucial in

multi-label biomedical settings, where certain classes (e.g., X-ray, MRI ) may benefit from

conservative thresholds due to their frequency, while rare classes (e.g., MRI venography)
require more permissive thresholds to avoid under-prediction.

In total, sixteen systems were shortlisted for submission, selected on the basis of devel-

opment set performance (Section 4). These systems cover a representative spectrum of

CNN backbones, ensemble aggregation strategies, and thresholding approaches, enabling

a systematic comparison of architectural and methodological choices under the official

evaluation metrics of the challenge.
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5.3.2 Evaluation Metrics

The evaluation of systems in the Concept Detection task followed the official protocol of the

ImageCLEFmedical 2025 campaign, which adopts the F1 score as the primary performance

metric. The F1 score is particularly well-suited to multi-label biomedical tasks because it

balances precision and recall, thereby penalizing both false positives (over-prediction of

irrelevant concepts) and false negatives (failure to detect relevant ones). This trade-off is

essential in clinical contexts: excessive false positives may clutter automated reports with

irrelevant information, while false negatives risk omitting critical findings.

Formally, system outputs are represented as binary multi-hot vectors ypred ∈ {0, 1}L
,

where L denotes the label vocabulary size, and compared against gold-standard vectors

ytrue. For each image t ∈ T (where T is the test set), an individual F1 score f̂1(ypred, ytrue)
is computed by comparing the predicted and ground-truth concept sets. The overall metric

is then obtained by averaging across all test samples:

F1 = 1
|T |

∑
t∈T

f̂1(ypred, ytrue), (5.1)

where implementation followed the standard scikit-learn procedure.
1

In addition to the primary score, the organizers also introduced a secondary F1 metric,
restricted to a subset of manually selected concept categories, including imaging modalities

(angiogram, X-ray computed tomography, magnetic resonance imaging, positron-emission
tomography, ultrasonography, plain X-ray, optical coherence tomography), and anatomical

structures (upper extremity, lower extremity, vertebral column, pelvis, bone structure of
cranium, chest, abdomen, breast).

The rationale for this secondary evaluation is that not all UMLS concepts carry the same

clinical importance: correctly identifying whether an image corresponds to an MRI of the
chest is often more clinically useful than recognizing a highly specific but rare procedural

label. To compute this secondary metric, both predictions and references are filtered to

retain only concepts belonging to the selected categories, and images with no remaining

ground-truth concepts are excluded. This yields a complementary perspective: while

the primary F1 score measures global tagging accuracy across the full label space, the

secondary score emphasizes clinically actionable information.

1https://scikit-learn.org/stable/modules/generated/sklearn.metrics.
f1_score.html
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Taken together, the use of these two F1 measures ensures a balanced assessment: systems

are rewarded for broad concept coverage while also being evaluated on their ability to

capture the categories that are most relevant in clinical and diagnostic contexts.

5.3.3 Results and Submissions

Table 5.6 summarizes the results of all submitted systems to the ImageCLEFmedical 2025

Concept Detection task, reporting performance on both our internal development split and

the official test set, together with competition rankings. The submissions span individual

CNN–FFNN models, per-label thresholding, and a variety of ensemble configurations,

including union, intersection, dual-threshold, and partial-intersection strategies.

Reading Table 5.6. A clear pattern emerges across submissions: ensembles (Runs

1980–1986) dominate the leaderboard, with Run 1980 achieving the highest overall per-

formance (F1 = 0.5887 on the official test set) and ranking first place among the nine

participating teams. Secondary F1 scores are particularly strong, often exceeding 0.95

and peaking at 0.9589 (Run 1986), which highlights the effectiveness of our methods on

semantically critical categories such as imaging modality and anatomy. These consistently

high secondary scores suggest that, in addition to achieving strong global tagging accuracy,

our systems capture clinically meaningful concepts with notable reliability.

Comparison of Ensembles vs. Individual Models. Individual CNN–FFNN variants

(e.g., Run 1971 with EfficientNet-B0, F1 = 0.5840) were competitive but consistently

outperformed by ensembles. The best-performing ensemble (Run 1980) combined Monte-

Carlo EfficientNet-B0, DenseNet-121, ConvNeXt-Tiny, and an additional EfficientNet-B0

under a dual-threshold scheme, demonstrating the importance of architectural diversity as

well as aggregation. Even smaller ensembles (e.g., Run 1979, Dual-2 with EfficientNet-B0

and DenseNet-121) achieved top-three rankings, showing that gains from ensembling are

not limited to large model combinations but arise even with two or three complementary

backbones.

Effect of Threshold Optimization. Threshold-per-label optimization (Run 1985, F1 =
0.5773) provided modest improvements compared to naive global thresholds, but it re-

mained below the performance of ensembles. This indicates that while fine-grained

threshold tuning can sharpen decision boundaries, model diversity and aggregation exert

a stronger influence on predictive performance.
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Discussion. Taken together, these findings demonstrate three important conclusions.

First, ensemble methods provide consistent and often substantial gains over individual

CNN–FFNN models, confirming the benefit of combining multiple architectures and

decision rules. Second, the secondary F1 results indicate that improvements are not merely

driven by frequent labels, but extend to clinically salient categories that are central to

biomedical image retrieval and decision support. Finally, while threshold optimization

offers incremental gains, it is markedly less impactful than ensemble diversity, suggesting

that the most effective path toward robust performance lies in leveraging complementary

architectural strengths. Overall, our submissions were highly competitive, with the top

system ranking first overall in the 2025 competition and demonstrating state-of-the-art

performance in both general and clinically focused metrics.

Tab. 5.6: Summary of submissions to the ImageCLEFmedical 2025 Concept Detection
task. Results are reported on the internal development split and the official test set.

Secondary F1 scores correspond to manually selected clinical categories. Abbreviations:

MC: Monte-Carlo, EB0: EfficientNet-B0, D121: DenseNet-121, CN: ConvNeXt-Tiny,
Dual-L: dual-threshold with L base models.

Run ID Method F1 Secondary F1 Rank

Dev Test

1980 Dual-3 (MC(EB0), D121, CN, EB0) 0.5973 0.5887 0.9484 1

1981 Dual-3 (MC(EB0), D121, EB0) – 0.5880 0.9506 2

1979 Dual-2 (EB0, D121) – 0.5873 0.9522 3

1977 Dual-2 (MC(EB0), EB0) – 0.5867 0.9449 4

1982 Dual-3 (MC(EB0), EB0) – 0.5866 0.9507 5

1978 Dual-2 (MC(EB0)) 0.5945 0.5866 0.9465 6

1976 Dual-2 (MC(EB0), D121, EB0) – 0.5864 0.9435 7

1975 Dual-2 (MC(EB0), D121, CN, B0) 0.5947 0.5858 0.9388 8

1983 Dual-3 (MC(B0)) 0.5942 0.5855 0.9515 9

1986 Partial-Inter (MC(EB0), CN, D121) 0.5931 0.5853 0.9589 10

1971 CNN-FFNN (EB0) 0.5915 0.5840 0.9488 11

1970 Union(Inter(MC(EB0)), Inter(EB0, D121, CN)) 0.5923 0.5819 0.9520 12

1973 CNN-FFNN (D121) 0.5909 0.5817 0.9462 13

1974 CNN-FFNN (CN) 0.5925 0.5808 0.9334 14

1985 Threshold-per-Label 0.5875 0.5773 0.9456 16

1984 Dual-3 (MC(EB0), D121) 0.5954 0.5755 0.9446 20

5.4 Discussion

The experiments conducted in this chapter provide a comprehensive evaluation of ensemble-

based approaches across two distinct yet complementary domains—conformal prediction

for multilabel classification and biomedical concept detection—and several unifying con-

clusions emerge. In the conformal prediction setting, ensemble conformal predictors

(ECP) consistently improved upon single-model baselines by generating sharper and more

compact prediction sets while preserving valid coverage guarantees, thereby addressing

the dual challenge of predictive accuracy and principled uncertainty quantification. In

contrast, the ImageCLEFmedical concept detection task highlighted the unique difficulties

of extremely large, imbalanced label spaces, where ensembles of CNN–FFNN architectures

proved most effective, delivering competitive F1 scores and securing leading positions in
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the 2025 evaluation campaign. Despite these differences in focus—uncertainty calibration

versus large-scale biomedical tagging—both strands of experimentation converge on the

central role of ensembling as a mechanism for enhancing robustness, with aggregation

strategies such as weighted voting, dual-thresholding, and stacking emerging as decisive

in balancing recall, precision, and overall system reliability. At a broader level, these

findings reinforce the principle that model diversity is a powerful and general strategy

for tackling the inherent complexity of multilabel problems across domains. At the same

time, several limitations must be acknowledged: computational constraints limited the

extent of hyperparameter exploration and restricted the ensemble sizes tested; reliance on

pre-extracted CLIP embeddings in the conformal prediction experiments, while efficient,

curtailed the investigation of end-to-end representation learning; and dataset-specific

biases—such as strong co-occurrence patterns in COCO or publication-driven imbalances

in ImageCLEFmedical—may affect the generalizability of results. Moreover, evaluation

protocols in both contexts emphasized F1 scores and coverage-based metrics, which, while

informative, do not capture other important dimensions such as interpretability, cost

sensitivity, or clinical usability. Nonetheless, the collective evidence demonstrates that

ensemble methods, whether through conformal predictors in general-purpose classification

or CNN-based systems in medical imaging, not only yield measurable improvements in

predictive performance but also strengthen the reliability and trustworthiness of multilabel

classification systems, underscoring their value as a broadly applicable methodological

paradigm.
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6Conclusions and Future Work

This thesis investigated ensemble-based methods for multilabel classification across two

complementary settings: conformal prediction for uncertainty-aware classification
and concept detection in biomedical imaging. Despite their differences in domain and

evaluation protocols, both case studies converge on a central insight: model diversity and
principled aggregation are key drivers of improved predictive performance and reliability in
multilabel learning.

In the conformal prediction part, a novel Ensemble Conformal Prediction (ECP)
framework was introduced and evaluated on three benchmark datasets spanning vision

(MS-COCO [Lin+14]), biology (Yeast [EW01]), and music information retrieval (Emo-

tions [Tro+08]). The empirical results demonstrate that ECP consistently outperforms

single-model conformal predictors and post-hoc conformalized ensembles. By integrat-

ing ensembling directly into the calibration pipeline, ECP achieves a more favorable

trade-off between empirical coverage, compact prediction sets, and predictive accuracy.

Detailed ablation studies further revealed that ensembles of moderate size (M = 3–5)
provide the strongest balance between computational cost and predictive robustness, that

heterogeneous ensembles outperform homogeneous counterparts due to their greater

diversity, and that careful tuning of the miscoverage rate α enables practitioners to flexibly

navigate the trade-off between reliability and informativeness. Together, these findings

establish ECP as an effective and generalizable approach to multilabel classification under

uncertainty [VGS05; AB21].

In the biomedical domain, the thesis addressed the ImageCLEFmedical 2025 Con-
cept Detection task, which involves predicting large sets of medical concepts (UMLS

CUIs [Bod04]) from radiology images. The experiments highlight the extreme challenges

posed by this setting: a vocabulary of 2,479 labels, severe long-tail distributions, and

high label co-occurrence. Systems based on CNN–FFNN architectures were developed

with multiple convolutional backbones (EfficientNet [TL19], DenseNet [Hua+17b], Con-

vNeXt [Liu+22]), and their outputs were combined using ensemble strategies such as

dual-thresholding, union, and partial-intersection aggregation. The results demonstrate

that ensembles consistently outperformed individual models, both in terms of the primary

F1 score and a secondary F1 score focused on clinically critical concepts (e.g., anatomy

and modality). Importantly, the best ensemble system ranked first overall in the 2025

competition [OverviewImageCLEF2025], underlining the practical competitiveness of

the proposed methodology. These findings underscore that ensembling not only improves
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accuracy but also enhances robustness in the face of extreme class imbalance and complex

label dependencies.

Although the two domains differ substantially—ECP focusing on principled uncertainty

quantification and ImageCLEFmed concept detection addressing large-scale biomedical

tagging—the experimental results lead to a unifying conclusion: ensembling is a versatile
and powerful paradigm for multilabel classification. In both cases, diversity among

base learners and carefully designed aggregation rules proved decisive, yielding more

reliable, accurate, and trustworthy models. At the same time, limitations must be acknowl-

edged: experiments were constrained by computational resources, restricting large-scale

hyperparameter optimization and the exploration of deeper or larger ensembles; the re-

liance on pre-extracted embeddings in the conformal prediction setting (CLIP [Rad+21])

limited the potential of end-to-end feature learning; and dataset-specific biases, such as

co-occurrence in COCO or publication-driven imbalances in ImageCLEFmedical, may have

influenced results.

Future Work

Several promising directions arise from this work. For conformal prediction, extending

ECP to end-to-end deep learning architectures (e.g., vision transformers [Dos+20] or mul-

timodal encoders [AD+22]) would allow tighter integration of representation learning and

calibration. Investigating adaptive or dynamic ensemble sizes—where the number of mod-

els varies with input difficulty—may further optimize the trade-off between computational

cost and predictive performance. Moreover, exploring richer nonconformity measures,

particularly those informed by uncertainty estimates from Bayesian deep learning [GG16]

or ensemble-based uncertainty [LPB17], could strengthen the theoretical and practical

guarantees of ECP.

For biomedical concept detection, future research should focus on more principled strate-

gies to handle the extreme long-tail distribution of labels, such as incorporating label

embeddings [RK18], graph-based regularization [KW17], or self-supervised pretraining

on biomedical image–text pairs [Zha+20]. Another avenue lies in combining conformal

prediction with concept detection, producing uncertainty-aware biomedical tagging systems
that not only predict relevant concepts but also provide calibrated confidence sets to

support clinical decision-making. Finally, broader evaluation metrics beyond F1—such as

interpretability, clinical utility, and cost-sensitive accuracy—would allow a more holistic

assessment of system performance in real-world healthcare settings.

In conclusion, this thesis demonstrates that ensemble learning, when carefully integrated

with conformal prediction or CNN architectures, provides a principled and effective strategy
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for tackling the dual challenges of predictive accuracy and uncertainty quantification in

multilabel classification. The findings not only advance the methodological understanding

of ensemble-based approaches but also provide practical contributions to domains as

diverse as computer vision, bioinformatics, and medical imaging, where reliable and

trustworthy predictions are of paramount importance.
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