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Abstract

Transformer-based models, such as Ithaca, have proven effective in dating ancient Greek
inscriptions. However, their chronological predictions remain challenging for scholars to
interpret and trust. This thesis enhances Ithaca’s chronological-attribution component by
integrating and systematically comparing post-hoc explainabilitymethods applied to both
character-level and word-level embeddings. We introduce a unified saliency-processing
pipeline that normalizes and fuses explanations into clear, token-wise heatmaps. While
preserving Ithaca’s original dating accuracy, our refined explanations consistently spot-
light historically relevant names and terms. The accompanying code and methodological
framework enhance the interpretability of Ithaca’s chronological attributions, helping his-
torians validate and understand the model’s decisions.
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Περίληψη

Τα μοντέλα τύπου Transformers, όπως το Ithaca, έχουν δείξει αξιοσημείωτη ικανότητα
χρονολογικού προσδιορισμού αρχαίων ελληνικών επιγραφών. Παρ’ όλα αυτά, οι προ-
βλέψεις τους παραμένουν αδιαφανείς και δύσκολες στην ερμηνεία από ιστορικούς και
επιγραφολόγους. Στόχος της παρούσας πτυχιακής εργασίας είναι η βελτίωση των μη-
χανισμών εξηγήσεων του Ithaca στην εργασία χρονολόγησης, μέσω της ενσωμάτωσης
και της συστηματικής σύγκρισης μεθόδων εκ των υστέρων επεξηγησιμότητας (post-hoc
explainability), οι οποίες εφαρμόζονται τόσο σε επίπεδο αναπαράστασης χαρακτήρων
όσο και σε επίπεδο λέξεων.

Aναπτύσσουμε μια ενοποιημένη ροή επεξεργασίας σημαντικότητας (saliency), η οποία
κανονικοποιεί τα μεμονωμένα αποτελέσματα, τα συγχωνεύει και παράγει απεικονίσεις
θερμικών χαρτών (saliency maps) σε επίπεδο λέξης ή χαρακτήρα. Η προσέγγιση αυτή
διατηρεί αναλλοίωτη την ακρίβεια χρονολόγησης του Ithaca, ενώ παράλληλα αναδει-
κνύει με συνέπεια ιστορικά κρίσιμους όρους και ονόματα που υποστηρίζουν τις χρονο-
λογικές προβλέψεις.

Ο συνοδευτικός κώδικας και το μεθοδολογικό πλαίσιο ενισχύουν την επεξηγησιμότητα
των χρονολογικών αποδόσεων του Ithaca, καθιστώντας δυνατή τη βαθύτερη κατανόηση
και την επικύρωση των αποφάσεων του μοντέλου από ιστορικούς και επιγραφολόγους.
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1Introduction

Inscriptions engraved in stone are our most direct witnesses to the daily lives, beliefs,
and administrative practices of the ancient Greeks. Yet, centuries of weathering, break-
age, and loss render many inscriptions fragmentary, leaving scholars to piece together
scant traces of names, places, and dates. Recent advances in deep learning, most notably
transformer-based architectures, have revolutionized our ability to restore and attribute
these damaged texts. Models such as Pythia [ASP19] and Ithaca [Ass+22] can now pro-
pose plausible restorations, assign geographic origins, and predict engraving dates with
impressive accuracy. However, their inner workings remain largely opaque: like many
“black-box” neural systems, they offer predictions without exposing the reasoning behind
them.

This opacity poses a critical barrier in disciplines such as epigraphy and digital humanities,
where interpretability is not a luxury but a necessity. Historians and philologists require
transparent, evidence-grounded explanations to validate machine-generated hypotheses
against established historical knowledge. Without clear justifications, even highly ac-
curate models risk being mistrusted or misapplied in scholarly research. Consequently,
explainable AI (XAI) techniques have emerged as a vital complement to high-performing
models, aiming to make their predictions intelligible and actionable for domain experts.

1.1 Motivation and Problem Statement

While Ithaca has set new standards in dating and restoring ancient Greek inscriptions, its
predictions currently rely on internal attention scores and raw gradients that are difficult
for historians to interpret. Early attempts at saliency mapping (e.g., multiplying gradi-
ents by input values [Shr+16]) often produce noisy heatmaps, highlighting many tokens
or (even worse) characters simultaneously and offering little insight into which names
or terms drove the model’s decision. To bridge this gap, we must develop a systematic
pipeline that (a) generates robust, theoretically grounded attributions at both the char-
acter and word levels, (b) normalizes and fuses these signals into coherent token-wise
heatmaps, and (c) rigorously evaluates their quality through quantitative metrics.
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Contributions

This thesis enhances the interpretability of Ithaca’s date-attribution component through:

1. Unified Explainability Pipeline. We introduce a unified pipeline that integrates mul-
tiple post-hoc explainability methods, producing normalized, token-level saliency
maps at both the character and word embedding levels without modifying the orig-
inal date output.

2. Comprehensive Quantitative Evaluation. We introduce a suite of ranking and classi-
fication metrics to compare different explainability methods explained in Chapter 3
on a curated “low-variance” bigram-annotated dataset called the Onomastics subset
(subset of the Onomastics dataset introduced by Assael et al. [Ass+22]).

Overall, this thesis addresses the following central research question: How can the expla-
nations produced by Ithaca’s chronological-attribution component be improved? Note that
Ithaca can also predict missing characters, as well as the geographical origins of Ancient
Greek inscriptions; however, this thesis focuses on its chronological attributions only.

1.2 Thesis Structure

Chapter 1: Introduction

This chapter highlights the importance of interpretability and explainability in AI-driven
research tools, such as Ithaca, which epigraphers utilize to date ancient inscriptions. We
formalize our central problem: how to integrate post-hoc explainability into Ithaca’s date-
attribution pipeline without sacrificing its state-of-the-art accuracy. Finally, we present
the thesis objectives: to design a unified explainability framework and to evaluate its
impact on dating performance rigorously.

Chapter 2: Background & Related Work

This chapter is a focused literature review. We first recap the evolution of deep-learning
methods in digital epigraphy, highlighting their high accuracy and “black-box” nature.
We then survey existing post-hoc explainability techniques, discussing their theoretical
properties and prior applications in natural language processing and computer vision.
Finally, we pinpoint the challenges posed by sparse, context-dependent inscription data
and argue for the need to systematically compare the explainability techniques before
integrating them into Ithaca.

Chapter 3: Implemented Methods

In this chapter, we detail the suite of post-hoc explainability techniques we integrated into
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Ithaca’s date-attribution workflow. We begin by presenting our gradient-based baseline
(multiplying gradients by input signals) computed over both character- and word-level
embeddings. We then introduce more advanced explainability techniques, most promi-
nently Integrated Gradients, outlining their theoretical motivation, how we instantiate
them in Ithaca (choice of baselines, step schedules), and how we collapse their high-
dimensional attributions into token-wise heatmaps. Finally, we implement additional
explainer families that slot into the same extraction-harmonization-visualization frame-
work, setting the stage for their quantitative evaluation in Chapter 5.

Chapter 4: Data

In this chapter, we leverage the Onomastics benchmark—a curated subset of the Packard
Humanities Institute (PHI) Greek Inscriptions corpus (I.PHI)1, designed for name-based
chronological attribution of ancient Greek inscriptions, first introduced by Assael et al.
[Ass+22]. We detail its composition, including LGPN2-derived name bigrams and their
date distributions, and explain how we extracted a focused “low-variance” bigram testbed
for explainability experiments. Finally, we present an exploratory analysis of bigram fre-
quencies, the distribution of bigrams per inscription, and co-occurrence patterns to illu-
minate the dataset’s key characteristics and motivate our explainability studies.

Chapter 5: Experiments and Results

This chapter details our empirical evaluation of the explainability methods introduced in
Chapter 3. We begin by describing the experimental setup, including our study of ag-
gregation schemes (sum, max, avg) and granularity levels (character, word, combined),
using retrieval-style metrics (MRR, MAP, nDCG@2) on the low-variance bigram testbed
of Chapter 4 to select a default saliency aggregation. We then present the main system
evaluation, which includes quantitative assessments of each explainability technique us-
ing ranking (MRR, MAP, nDCG) and classification metrics (Precision, Recall, F1, AUC).

Chapter 6: Conclusions and Future Work

This closing chapter reflects on the principal achievements of our work. We synthesize
how the results demonstrate that meaningful, token-level saliency maps can be produced
without undermining Ithaca’s dating accuracy, and we highlight the practical guidelines
derived for presenting attributions in scholarly workflows. We then discuss the limita-
tions of our current work and the need for more diverse testbeds and propose avenues for
future work. These include extending our framework to other attribution tasks, explor-
ing additional explainability methods and aggregation strategies, and assembling richer,
expert-annotated evaluation datasets to validate and refinemodel explanations further.

1https://inscriptions.packhum.org/
2https://www.lgpn.ox.ac.uk/
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2Background and Related Work

The analysis and interpretation of historical texts have long relied on expert intuition,
fragmented evidence, and comparative research. Over the years, advancements in ma-
chine learning, primarily through the development of transformer-based models, have
introduced new tools for studying the past. These models offer powerful capabilities of
restoring damaged inscriptions, predicting their geographical origin, and estimating their
engraved date [Ass+22]. However, despite their accuracy, such systems often function as
“black boxes”, producing results without clear justification [Li+22] [VEA22].

In fields of study like epigraphy, where interpretability needs to be transparent, the lack
of explainability is a pressing issue that limits the usefulness of artificial intelligence in
research [Gat25]. For the reliability and integration of these tools into the academic work-
flow, it’s crucial to understand what predictions they make and why they make them
[Li+22].

2.1 Background

Over the years, the use of artificial intelligence in historical research has experienced
substantial progress in machine learning technologies. The field has evolved from early
rule-based methods [SWM17] to today’s sophisticated deep learning architectures, which
enable the analysis of increasingly complex historical sources with greater precision. Re-
cent advances in interpretability further help historians understand and trust these mod-
els’ outputs [Mün+24].

Deep learning, and in particular transformer architectures, now underpin most modern
NLP pipelines. For readers seeking an overview of these foundational concepts, several
comprehensive surveys are available. Taye et al. [Tay23] provide a general introduction
to deep learning fundamentals, while Lin et al. [Lin+22] survey the evolution and mech-
anisms of transformer-based models. For a broader understanding of explainability in
AI, Hassija et al. [Has+24] and Molnar [Mol25] offer detailed reviews of intrinsic inter-
pretability methods, where the model is inherently transparent (e.g., decision trees or
linear models), and post-hoc interpretability methods, where external techniques such
as saliency maps, SHAP, or Integrated Gradients are used to explain the predictions of
otherwise opaque models. Additionally, recent studies by Li et al. [Li+23] and Silva et
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al. [SSN24] focus specifically on attribution techniques for large language models, mak-
ing them particularly relevant for the interpretability analysis presented in this thesis.

2.1.1 Deep Learning for Ancient Text Restoration and
Attribution

Recent advancements in machine learning have begun to tackle challenges in digital epig-
raphy and the study of ancient inscriptions.

Pythia: The First Deep Learning Model for Restoring Ancient Greek Inscriptions
A landmark effort was Pythia, a sequence-to-sequence RNN model that could propose
restorations for damaged ancient Greek texts [ASP19]. Trained on the Packard Humani-
ties Institute (PHI) Greek Inscriptions corpus (I.PHI)1—a large digital collection of Greek
epigraphic texts widely used in digital classics—Pythia achieved a 30% character error rate,
significantly outperforming human epigraphists who had a 57% error rate. Moreover, in
75% of cases, the correct restoration was among Pythia’s top 20 hypotheses, highlighting
its potential as an assistive tool in digital epigraphy [Som+23].

Ithaca: Transformer-Based Model for Restoration and Attribution
Building on on the success of Pythia, Ithaca is a transformer-based architecture designed
to restore missing text, identify an inscription’s origin, and predict its endgraving date
[Ass+22]. Ithaca was also trained on the PHI dataset, and achieved state-of-the-art re-
sults on these tasks. Ithaca’s design emphasized collaboration with historians and built-in
interpretability features.

Ithaca demonstrated a substantial improvement over previous approaches to the restora-
tion and analysis of ancient inscriptions. On the task of automatic text restoration, Ithaca
achieved an accuracy of 62% in reconstructing damaged Greek inscriptions on a held-out
test set. Notably, when used in an interactive setting—where historians could review and
select among Ithaca’s top restoration hypotheses—the success rate of expert restorers in-
creased dramatically, from 25% (working unaided) to 72% (with Ithaca’s assistance), high-
lighting the potential for effective human–AI collaboration. Beyond restoration, Ithaca
was also able to attribute the geographic provenance of inscriptions with 71% accuracy
and predict their date within an average margin of 30 years from the ground-truth date.
These results indicate that Ithaca not only provides strong predictions on its own, but also
significantly enhances the capabilities of human experts when incorporated into the re-
search workflow. A key factor in its adoption is its collaborative and interpretable design:
instead of producing a single opaque output, Ithaca presents multiple ranked hypotheses
with associated confidence scores, enabling historians to critically evaluate and contextu-

1https://inscriptions.packhum.org/
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alize the model’s suggestions [Ass+22]. We return to Ithaca in more detail in Section 2.1.2,
where we discuss its architecture and relevance for this thesis.

Advancements Beyond Pythia and Ithaca
Several studies have explored deep learning techniques for the restoration and attribution
of ancient texts [Som+23]. RNNs have shown strong performance for Akkadian [Fet+20]
and Linear B [PKO23]. Transformer-based models have further advanced the field by in-
troducing a flexible blank-filling architecture [She+20] and a BERT for Latin text restora-
tion [BB20]. Lazar et al. (2021) achieved 83% accuracy in restoring Akkadian cuneiform
[Laz+21], and Kang et al. (2021) reported 89% top-10 accuracy on Korean historical records
[Kan+21].

Borkar and Smith (2024) [BS24] used transformer-based OCR to restore damaged texts
with notable success, and Wang et al. (2023) developed GujiBERT and GujiGPT for an-
cient Chinese texts, demonstrating strong performance on multiple NLP tasks [Wan+23].
These works highlight the potential of transformer models to generalize across scripts and
enhance collaboration between AI and human experts.

Aeneas: Multimodal Contextualization
Building on the success of Ithaca, recent developments have introduced Aeneas, a multi-
modal generative neural network designed for contextualizing ancient Latin inscriptions
[Ass+25]. Aeneas represents a significant advancement beyond previous models by intro-
ducing three key innovations that address limitations in digital epigraphy.

First, Aeneas combines textual input with visual data, processing both inscription tran-
scriptions and associated images when available. Themodel employs a transformer-based
decoder enhancedwith a shallow visual neural network for image processing, proving par-
ticularly valuable for geographical attribution tasks where material, style, and layout cues
are crucial for historical reasoning [Ass+25].

Second, Aeneas introduces an advanced contextualization mechanism to assist histori-
ans by retrieving relevant ancient Latin inscriptions from the Latin Epigraphic Dataset
(LED), which is a unified and machine-actionable collection of Latin inscriptions, created
by combining three major databases: the Epi graphic Database Roma (EDR)2, the Epi-
graphic Database Heidelberg (EDH)3 and the Epigraphik-Datenbank Clauss-Slaby ETL
(EDCS_ETL)4. Instead of searching for exact word-for-word matches, Aeneas identifies
“parallel” inscriptions—texts that are similar in meaning, cultural background, social func-
tion, or historical context. These parallels are not translations but inscriptions that share
linguistic patterns, formulas, or provenance with the inscription being studied. Aeneas

2https://www.edr-edr.it
3https://edh.ub.uni-heidelberg.de
4https://github.com/sdam-au/EDCS_ETL
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creates “historical fingerprints” for each text, capturing semantic and functional relation-
ships that go beyond literal text comparison. By finding these meaningful parallels, his-
torians gain important insights to help interpret fragmentary or damaged inscriptions,
date and locate them more accurately, and build a richer understanding of their historical
significance. This retrieval process dramatically speeds up research by providing con-
textually relevant examples that would otherwise take experts much longer to uncover
manually.

Third, Aeneas pioneers the capability to restore texts of arbitrary length, breaking through
previous limitations that required knowing the exact length of missing segments [Ass+25].
This breakthrough enablesmore flexible restoration of fragmentary inscriptionswhere the
extent of damage is unknown.

Expert evaluation involving 23 epigraphers demonstrated Aeneas’s practical value: the
system achieved dating accuracy within 13 years compared to 31 years for human experts
working alone, while collaborative human-AI workflows improved expert confidence in
key interpretive tasks by 44% [Ass+25]. The contextualization feature proved particularly
transformative, reducing the time for identifying relevant parallels from days to minutes
while maintaining scholarly rigor.

2.1.2 Ithaca: A Transformer for Ancient Greek Inscriptions

Of particular interest in this thesis is Ithaca’s ability to predict the date of inscriptions,
which involves classifying a given text into date intervals. Recent work demonstrated
Ithaca’s ability to predict the dates, with the average date prediction being within 28.7
years of the ground-truth date interval [Ass+22]. From the architectural perspective,
Ithaca incorporates character-level and word-level embeddings, which are combined and
processed through eight stacked Transformer Layers. Amore detailed explanation of how
the character- and word-level embeddings are combined, together with an illustration of
Ithaca’s architecture, is provided in Section 3.1. The model consisted of three task-specific
output heads: one for restoration, one for geographical attribution, and one for date at-
tribution. Notably, Ithaca outputs a probability distribution for chronological attribution
over discrete 10-year intervals from 800 BCE to 800 CE rather than predicting a single year.
This probabilistic approach reflects historical uncertainty and offers more interpretable in-
sights [Ass+22].

Ithaca produces saliency maps [SVZ13] for its interpretability via gradient-based attribu-
tion techniques, especially multiplying gradients by input signals [Shr+16], which will be
analyzed in Section 3.1. Saliency maps are visual representations that highlight which
parts of an input most strongly influence a model’s prediction. In the context of ancient
inscriptions, a saliency map shows which words or characters the model considers most
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important for dating an inscription, typically displayed as color-coded overlays where
brighter colors indicate higher importance. A token is considered “salient” when it has
high influence on the model’s decision-making process, meaning that making a slight
modification to the token’s input embedding—the numerical vector that represents it in
the neural network—would significantly affect the model’s output prediction. These maps
help historians understand which parts of an inscription the model found most informa-
tive for its decisions. More about how saliency maps work will be discussed in Section
3.1. For example, when predicting the date of an Athenian decree, Ithaca focused attention
on the name “Νικίας” and the word “στρατεγοίς” both historically anchored to the 5th
century BCE. Such outputs support historians by surfacing clues they can critically evalu-
ate. Ithaca was also evaluated in a human-in-the-loop setting, where historians improved
their restoration accuracy by leveraging model suggestions. This collaboration demon-
strates Ithaca’s operation not as a replacement for historians but as a powerful assistive
tool grounded in domain-specific understanding [Ass+22].

However, despite these promising results, significant challenges in making transformer-
based models like Ithaca truly transparent to domain experts remain. While current
saliency maps provide some insight into model behavior, they often produce noisy vi-
sualizations that highlight many tokens (characters or words) simultaneously, making
it difficult for historians to identify the specific evidence driving chronological decisions.
This interpretability gap—betweenwhat themodel can predict andwhat historians can un-
derstand about those predictions—represents a fundamental barrier to widespread adop-
tion of AI tools in digital epigraphy. Addressing these explainability challenges through
systematic comparison and enhancement of attribution methods forms the central moti-
vation of this research.

2.2 Explainability

As deep-learning systems grow in complexity and predictive power, their inner functional-
ity and interpretability have become increasingly important, especially in fields of study
that depend on transparency, such as DH (Digital Humanities). Explainable AI (XAI)
within those fields has been highlighted as essential for gaining trustful insights into
historical processes [Dob21]. Explainability, especially in post-hoc methods, involves
generating human-understandable justification for decisions after predictions are made
[VEA22].

2.2.1 Interpreting Transformer Models in NLP Applications

Transformers added a revolutionary touch to NLP by enabling models to understand con-
text through self-attention mechanisms. Unlike traditional recurrent neural networks,

2.2 Explainability 9



which process input sequentially and often struggle with long-range dependencies, trans-
formers can analyze entire sequences simultaneously [Vas+17]. This structural advantage
allows for a more nuanced and globally informed language representation [RKR21]. Pre-
trained models such as BERT and the GPT models have demonstrated exceptional per-
formance across various NLP tasks, establishing transformers as the foundation of mod-
ern natural language processing [Dev+19] [Bro+20]. Transformer models have also been
adapted for domain-specific applications, including the including the restoration, chrono-
logical classification, and geographical attribution of historical texts [Ass+22].

Despite the success of transformer models like Ithaca in prediction tasks, a persistent
challenge is making their decisions transparent. Transformer architectures rely on com-
plex attention mechanisms and high-dimensional representations, which humans do not
understand [RKR21].

2.2.2 Post-Hoc Explanation Techniques for Model
Interpretability

To address this challenge of transparency and interpretability in transformer models, re-
searchers have developed post-hoc explainability techniques that attribute model predic-
tions to input features, helping to bridge the gap between complex model reasoning and
human understanding [DK17] [Bar+20]. Feature selection is generally used before or
during the model training while feature attribution is used to explain an already trained
model (post-hoc explanation). Feature attribution, includes techniques such as gradient-
based methods [Sel+19], perturbation-based methods (modifying inputs and observing
output changes) [ZF13], and surrogate models (approximating complex models with in-
terpretable ones such as decision trees) [RSG16]. These methods aim to explain a model’s
prediction by highlighting the relevance of each input feature [Mol25].

2.2.3 Attribution Methods in Practice: SHAP, LIME, IG and
LRP

Integrated Gradients (IG) is an attributionmethod introduced by Sundararajan et al. (2017)
[STY17]. It assigns an importance score to each input feature by integrating the model’s
gradients as the input transitions from a baseline to its actual value. Intuitively, IG ac-
cumulates how much each character or token influences the prediction as we transition
from a neutral input (e.g., a blank inscription) to the real inscription. This method satis-
fies certain desirable axioms (sensitivity and implementation invariance) that many ear-
lier methods lacked [STY17]. IG has been widely applied to interpret deep models in
vision and NLP, as it only requires access to the model’s gradient and does not alter the
model’s internal parameters. In the context of transformer-based language models, IG
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Fig. 2.1: (1) Gradient-based methods, (2) Surrogate methods, (3) Perturbation-based methods. Fig-
ure taken from [JGS20]

can highlight which words or letters were most responsible for a classification [RKR21];
for instance, identifying which parts of an ancient text led Ithaca to predict a specific date.
Another common approach, Layer-Wise Relevance Propagation (LRP), back-propagates
a prediction score through the network layers to distribute relevance scores to the input
features [Bac+15] [Mon+19]. LRP has been used to explain decisions in domains from
image recognition to document analysis [Bac+15] [Arr+16]. IG and LRP produce visual
explanations that help researchers see what the models considers essential [Sam+21].

2.2.4 Visual Explainability in AI

As deep learning models advance and become more complex, transparency in decision-
making has become crucial. Visual explainability typically acts as the presentation layer of
attribution methods, transforming token-level importance scores into visualizations such
as saliency maps. This is essential in academic fields like epigraphy, where the reliability
of the model’s interpretation depends on the scholars’ ability to understand, annotate, and
validate the model’s reasoning [Ass+22].

Early visualization techniques such as saliency maps—often derived from raw gradient
computations—have offered limited interpretive value in text-based models. Because they
use only local gradient information, saliency maps are easily affected by noise and non-
linear effects in the model. As a result, they often highlight too many tokens at once,
making it hard to see which ones really mattered, especially in sequential tasks like lan-
guage modeling [Arr+16]. More advanced interpretability methods, like Integrated Gra-
dients (IG), provide more reliable insights [STY17]. These approaches help contextualize
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model behavior, allowing researchers to understand which words or characters most in-
fluenced predictions, such as Ithaca’s chronological attribution, thereby increasing both
interpretability and scholarly trust within digital epigraphy [Ass+22].

2.2.5 Visual Explanations in Ithaca

Regarding Ithaca, such attribution techniques were the key to its interpretability-focused
design. The model produces saliency maps as a visual aid for restoration and attribution
tasks. These maps highlight which characters or words in the input inscription influence
the model’s decision most. To further illustrate this point, Figures 2.2 and 2.3 present ad-
ditional examples of Ithaca’s token-level saliency maps. In Figure 2.2, the bigram ‘πυργος
μιχαηλ’ is sharply localized, showing how attribution methods can align with historically
meaningful markers. Similarly, in Figure 2.3, the personal name ‘τιβεριος κλαυδιος’ and
the demotic ‘σινωπευς’ are emphasized, both of which are informative for chronological
attribution. These examples demonstrate how saliency maps can highlight contextually
significant tokens, thereby enhancing transparency in the model’s reasoning. At the same
time, they reveal that attribution quality can vary, underscoring the importance of exam-
ining multiple cases.

Fig. 2.2: Ithaca’s example saliency map for chronological attribution. The saliency overlay high-
lights the bigram ‘πυργος μιχαηλ’ as having the highest influence on the model’s dating
prediction. This alignment between the model’s highlighted features and historically
meaningful markers provides a transparent justification for the output.

Fig. 2.3: Ithaca’s example saliency map for chronological attribution. The saliency overlay high-
lights the personal name ‘τιβεριος κλαυδιος’ and the demotic ‘σινωπευς’ as influential
for the model’s dating prediction. These features correspond to historically meaningful
markers, providing a transparent rationale for the model’s output.

Similarly, for the restoration task, Ithaca does not just output one guess for a missing
fragment but offers a ranked list of the top 20 suggestions with probabilities. This allows
the researchers to consider multiple plausible restorations side by side, improving the
interpretability of the system’s output by presenting alternative hypotheses. Instead of
outputting just one year, Ithaca generates a probability distribution over date intervals for
the dating task [Ass+22].
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3Implemented Methods

3.1 Baseline Interpretability: Ithaca’s Gradient ⊙ Input
Saliency Maps

To provide interpretability, Ithaca leverages the Gradient ⊙ Input method to generate
saliency maps that highlight the relative importance of each character and word in the
input sequence for the model’s prediction [Ass+22] [SVZ13]. As shown in Figure 3.1, each
inscription is encoded at both the character and word level, concatenated with positional
embeddings, and then processed through stacked transformer layers. The model outputs
predictions for text restoration, geographical attribution, and chronological attribution,
while Gradient ⊙ Input saliency maps are computed with respect to the final embedding
representations. This design allows interpretability analyses to focus directly on how the
model distributes importance across tokens, which is critical for evaluating its behavior
in chronological attribution tasks.

Fig. 3.1: Overview of the Ithaca architecture. Each input inscription is represented at the char-
acter and word level and processed through stacked transformer layers with positional
information. The model outputs predictions for text restoration, geographical region,
and chronological attribution. Gradient ⊙ Input saliency maps are computed using the
final embedding representations and the output layer for each task. Figure taken from
[Ass+22].
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Feature Extraction and Representation
Ithaca first encodes each inscription in two parallel ways: at the character level and at
the word level. This produces two separate sequences of embeddings for each position
in the input. These embeddings are concatenated and augmented with positional infor-
mation to capture the meaning of the inscription. The stacked transformer blocks then
produce a context-aware representation for each word token, where each representation
combines both the word-level embedding and its corresponding character-level embed-
ding. These token representations are then used for downstream prediction and attribu-
tion [Ass+22].

Gradient ⊙ Input Explanations
To quantify the influence of each input token on themodel’s output, the Gradient ⊙ Input
method is applied [SVZ13]. Specifically, the importance score for the i-th token is calcu-
lated as the element-wise product of the input embedding and the gradient of the output
with respect to that embedding. The gradient alone shows how sensitive the output is to
changes in the token, but it ignores the token’s actual value. Gradient ⊙ Input combines
both, capturing not just potential sensitivity but also the token’s real contribution to the
prediction.

The saliency score for token i is computed as:

Saliencyi =
∥∥∥∥∂F (x)

∂xi
⊙ xi

∥∥∥∥
2

(3.1)

where xi is the embedding of token i and ∂F
∂xi

is the gradient of the output score with
respect to xi.

The L2 norm aggregates per-dimension attribution scores into a single scalar for each
token, facilitating visualization and comparison [Arr+16].

In the context of chronological attribution, F (x) refers to Ithaca’s predicted date interval
as the most likely date for the inscription. The saliency map is therefore computed by
taking the gradient of this scalar output with respect to the input embeddings, following
standard practices in neural model interpretability. This results in a scalar saliency value
per token, reflecting how much a small change in the embedding of that token would
affect the model’s output.

This method can be seen as a first-order approximation of the model’s output sensitivity
to the input token embedding, grounded in the Taylor expansion of the model’s output
function F (x) [STY17].

Formally, the first-order Taylor expansion of F around a baseline input x0 is given by:
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F (x) ≈ F (x0) + ∇F (x) · (x − x0)

If we take x0 = 0 (i.e., a zero baseline), then this corresponds to replacing each token
embedding with the all-zero vector:

F (x) ≈ F (0) + ∇F (x) · x

The element-wise product ∇F (x) ⊙ x thus comes from the first-order Taylor expansion,
which says we can approximate a complicated model locally as a linear function of its
inputs. In this view, each input dimension makes a weighted contribution to the output,
where the weight is given by the gradient. This is different from using the gradient alone,
which only shows how the output would change if we nudged the input, and different
from using the input alone, which only shows how strongly a token is represented. By
combining them, Gradient ⊙ Input captures howmuch each token is actually contributing
to the current prediction. One can either sum these contributions or aggregate them via
a norm. In this thesis, we use the L2 norm (Eq. 3.1), which yields non-negative scalar
scores by squaring all contributions.

Implementation in Ithaca
In Ithaca, the model receives input at two linguistic levels:

• Character-level input: xchar ∈ RL×D , where L is the sequence length (number
of characters) and D is the embedding dimension (the size of the vector used to
represent each character).

• Word-level input: xword ∈ RL×D . To align with the character sequence, each word
embedding is repeated for all characters belonging to that word, so that xchar and
xword have the same length L. Both character and word embeddings share the
same dimensionality D, allowing them to be concatenated into a 2D-dimensional
representation per position.

To generate attribution maps for a specific prediction task (e.g., date), Ithaca computes the
gradient of the logit output for the predicted class with respect to both xchar and xword.
These gradients are then multiplied element-wise with the embeddings of the respective
input tokens and projected to a scalar score for each position in the input sequence (i.e.,
each character, augmented with its word embedding).

3.1 Baseline Interpretability: Ithaca’s Gradient ⊙ Input Saliency Maps 15



Let:
gchar

i = ∂F

∂xchar
i

, gword
i = ∂F

∂xword
i

Then:

Saliencychar
i =

∥∥∥gchar
i ⊙ xchar

i

∥∥∥
2

, Saliencyword
i =

∥∥∥gword
i ⊙ xword

i

∥∥∥
2

Finally, the total saliency map is formed by summing both contributions:

Saliencyi = clip
(
Saliencychar

i + Saliencyword
i , 0, 1

)
(3.2)

whereclip denotes element-wise clipping of the saliency values to the [0, 1] interval, i.e.,
values below 0 are set to 0 and values above 1 are set to 1. Here, the index i always refers
to the i-th character position in the sequence. At each position, the model concatenates
the embedding of that character with the embedding of the word to which the character
belongs, so both xchar

i and xword
i (and their gradients) are defined for every character

index.

These saliency scores can be visualized as heatmaps over the input, highlighting the re-
gions most influential in the model’s dating decision, as illustrated in Figure 3.2.

Fig. 3.2: Example Gradient ⊙ Input saliency map for chronological attribution. The saliency
overlay highlights the words “στρατεγοις” and “νικιαι” as having the highest influence
on the model’s dating prediction (“Athens, 414/3 BC”). Such explanations align with his-
torical reasoning and provide transparent justification for the model’s output.

3.2 Integrated Gradients

While the Gradient ⊙ Input method provides a simple and efficient baseline for model
interpretability, it is sensitive to noise and non-linearities. Raw gradient methods can be
misleading—for example, if a sigmoid unit is saturated (very close to 0 or 1), the gradi-
ent is nearly zero and hides the importance of a token, while near a sharp boundary the
gradient can spike and exaggerate a single token’s role. As a result, raw gradient values
can either vanish in saturated regions or spike unpredictably, producing attributions that
do not faithfully reflect feature importance. To overcome these limitations, we adopt and
systematically evaluate the Integrated Gradients (IG) method [STY17] for chronological
attribution with Ithaca. In this thesis, we focus on the task of chronological attribution, as
accurate dating of inscriptions is one of the most critical problems for historians and epig-
raphers, and it provides a clear setting for evaluating interpretability. Other prediction
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tasks supported by Ithaca, such as restoration and geographical attribution, are beyond
the scope of this study and are left for future work.

The theoreticalmotivation for IntegratedGradients stems from a limitation of raw gradient-
based attribution: the local gradient at the input may be close to zero if the model output
is nearly constant in that region (e.g. a sigmoid in a saturated state). In such cases, sim-
ple saliency maps would suggest that the feature is unimportant, even though the feature
may have been crucial in moving the output from the baseline x′ to the final prediction
at x.

The core idea of IG is to attribute the prediction to each input by accumulating gradients
along a continuous path from a reference baseline x′ to the input x. In doing so, IG cap-
tures not only the local sensitivity at the final input, but the entire change in the model
output as the input is gradually introduced starting from the baseline. The path from base-
line to input need not be sensitive everywhere, but by integrating the gradients along it,
IG guarantees that the total attributionmatches the change in the model’s output between
baseline and input.

IGi(x) = (xi − x′
i) ⊙

∫ 1

α=0

∂F (x′ + α(x − x′))
∂xi

dα (3.3)

Where:

• x is the model’s input embedding sequence, i.e., a matrix of shape [L, D], where L is
the input sequence length (number of words or characters), and D is the embedding
dimension. As discussed in Section 3.1, both the character-level embeddings and
the word-level embeddings are projected to the same dimensionality D. To ensure
proper alignment and concatenation, the sequence length L is identical for both
character and word embeddings, with each word embedding repeated across the
characters that constitute the word.

• xi is the embedding vector for the i-th token (xi ∈ RD).

• x′ is a baseline embedding sequence (same shape as x), representing a “neutral” or
reference input. In practice, this can be either a sequence containing L copies of
the all-zeros embedding (canonical baseline) or L copies of the centroid (mean) of
the embedding matrix.

• x′
i is the baseline embedding for the i-th token.

• α ∈ [0, 1] is the interpolation parameter along the path from baseline to input.
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• F (·) is the scalarmodel output with respect to the prediction of interest. For chrono-
logical attribution in Ithaca, F (·) is the logit of the predicted class for the given
inscription.

• ∂F
∂xi

is the gradient of the model output with respect to the embedding of token i.

Fig. 3.3: Visualization of the Integrated Gradients interpolation process for a single token embed-
ding in three dimensions. Each line traces the value of one embedding dimension as
the interpolation parameter α transitions from the baseline (often zeros) to the actual in-
put embedding. IG computes the gradient of the model output at each interpolated step,
which are then integrated to form the final attribution.

We now illustrate the Integrated Gradients (IG) method using a sequence of visualizations
that build intuition for how the attribution is computed:

• Fig. 3.3 illustrates the interpolation process in a low-dimensional embedding space.
Each embedding dimension increases linearly from an all-zeroes baseline to the
input vector as α varies from 0 to 1. This stepwise path highlights how IG samples
intermediate embeddings between the baseline and the input.

• Fig. 3.4 offers an alternative illustration of IG: gradients are sampled at interpolated
points along a straight-line path over the model’s output surface. These gradients
are integrated to yield an attribution vector per input feature.

The integral is approximated by a Riemann sum over m discrete steps:
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Fig. 3.4: Schematic illustration of the Integrated Gradients method. Attributions are computed by
integrating the gradient of the model output along a straight path from a baseline input
to the actual input, accumulating the contribution for each input feature. Figure taken
from [Shi22].

IGi(x) ≈ (xi − x′
i) ⊙ 1

m

m∑
k=1

∂F
(
x′ + k

m(x − x′)
)

∂xi
(3.4)

where m is a hyperparameter controlling the granularity of the integration (typically m =
50).

Aggregation and Visualization
For each character position i, Integrated Gradients produces two attribution vectors: one
for the character embedding and one for the aligned word embedding. Each is reduced to
a scalar score using the L2 norm:

Saliencychar,IG
i =

∥∥∥IGchar
i (x)

∥∥∥
2

, Saliencyword,IG
i =

∥∥∥IGword
i (x)

∥∥∥
2

(3.5)

The total saliency at position i is then obtained by summing the two contributions and
normalizing via clipping:

SaliencyIG
i = clip

(
Saliencychar,IG

i + Saliencyword,IG
i , 0, 1

)
(3.6)

where clip denotes element-wise clipping of the saliency values to the [0, 1] interval,
i.e., values below 0 are set to 0 and values above 1 are set to 1. This ensures comparability
with Gradient ⊙ Input and supports intuitive visualizations.
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Integrated Gradients (IG) admits a number of implementation choices that can affect at-
tribution quality. In our Ithaca experiments we systematically evaluated four IG variants
along two axes: choice of baseline (x′), as well as number and selection of integration
steps (m). In all cases, vector attributions are reduced to scalar token saliency scores
using the L2 norm (Eq. 3.5), with character‐ and word‐level contributions summed and
normalized via the clip operation (Eq. 3.6) to the [0, 1] interval for visualization. The
specific IG variants are reported in the following subsections.

3.2.1 Multi‐step IG with Zero Baseline

The baseline is set to the all-zeros embedding:

x′ = 0 ∈ RL×D

With m = 50 evenly spaced interpolation coefficients αk = k
m , k = 1, . . . , m, the

intermediate inputs simplify to:
x(k) = αkx

Gradients are computed at each step and averaged:

IGi(x) ≈ xi ⊙ 1
m

m∑
k=1

∂F (x(k))
∂xi

3.2.2 Single‐step IG with Zero Baseline

Setting m = 1 with α = 1 yields:

x(1) = x, x′ = 0

This simplifies to:

IGi(x) = xi ⊙ ∂F (x)
∂xi

This corresponds exactly to Gradient ⊙ Input and is used as a baseline sanity check.

20 Chapter 3 Implemented Methods



3.2.3 Multi‐step IG with Input Centroid Baseline

Here, the baseline is the centroid of the current input:

x′ = 1
L

L∑
i=1

xi

This locally grounded baseline captures the average meaning of the inscription.

We use m = 50 evenly spaced interpolation coefficients αk = k
m , k = 1, . . . , m, consis-

tent with the zero-baseline variant:

x(k) = x′ + αk(x − x′)

This variant combines path smoothing with contextual awareness from the input’s own
semantics.

3.2.4 Single‐step IG with Input Centroid Baseline

This variant applies Integrated Gradients with the local centroid baseline, but approxi-
mates the integral with a single step. We evaluate the gradient at the actual input (α = 1),
to ensure consistency with the single‐step zero‐baseline case (see Section 3.2.2):

x(1) = x, IGi(x) = (xi − x′
i) ⊙ ∂F (x)

∂xi

where x′
i is the centroid baseline embedding for token i.

This formulation differs from the zero‐baseline variant only in the choice of baseline, al-
lowing a fairer comparison across baselines.

Though rarely used in practice, this fast approximation captures deviations from the in-
scription’s semantic average and may reduce global bias.

Summary and Evaluation Plan

All IG variants follow a harmonized processing pipeline: compute vector attributions us-
ing Eq. (3.4), reduce them to scalar saliency scores via Eq. (3.5), and aggregate character-
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and word-level saliency (normalized with a clip operation to ensure values lie in [0, 1])
to produce unified token-wise visualizations. In Chapter 5, we evaluate these variants
quantitatively, using ranking and classification metrics such as MRR, MAP, nDCG, Preci-
sion, Recall, F1, and AUC.

3.3 Sequential Integrated Gradients (SeqIG)

Integrated Gradients (IG) assumes that meaningful attributions can be obtained by inter-
polating between a baseline and the full input sequence [STY17]. However, in natural
language processing, such full-sequence interpolation can yield invalid or semantically
incoherent intermediate states. To address this, we adopt the Sequential Integrated Gra-
dients (SeqIG) method [Eng23], which decomposes attribution into token-wise paths, in-
terpolating only one token at a time while keeping the rest of the input fixed.

Notation and Setup
Let the input to the model be a sequence of token embeddings S = (x1, x2, . . . , xL),
where each xi ∈ RD is the embedding of the i-th token, and L is the sequence length.
For each token xi, we construct a baseline sequence S(i) in which only the i-th token is
replaced by a fixed baseline embedding x′

i, and all other tokens remain unchanged:

S(i) = (x1, . . . , xi−1, x′
i, xi+1, . . . , xL)

In our experiments, we use the zero vector as the baseline embedding, i.e., x′
i = 0 ∈ RD .

This choice ensures consistencywith prior work [STY17]. However, unlike in the standard
IG variants (see Section 3.2), we did not experiment with alternative baselines such as
the centroid embedding. Extending SeqIG to centroid or context-aware baselines would
provide a fairer comparison across attribution methods and may yield further insights
into the role of baseline selection. We leave this as an avenue for future work.

The attribution for the j-th embedding feature of token xi is given by:

SeqIGij(S) := (xij − x′
ij) ·

∫ 1

0

∂F
(
S(i) + α(S − S(i))

)
∂xij

dα (3.7)

where:

• F (·) is the scalar model output.

• S(i) is the baseline-modified sequence for token xi.
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• ∂F
∂xij

is the partial derivative of the output with respect to the j-th component of xi.

• Only the i-th token is interpolated, the rest remain fixed.

Note that in contrast to the standard IG formulation (Eq. 3.3), here the attribution is
computed per embedding dimension j, so the multiplication in Eq. (3.7) is scalar.

As in the standard IG variants (Sec. 3.2), we use evenly spaced interpolation coefficients
αk = k

m , k = 1, . . . , m

This integral is approximated using a Riemann sum over m discrete steps:

SeqIGij(S) ≈ (xij − x′
ij) · 1

m

m∑
k=1

∂F
(
S(i) + k

m(S − S(i))
)

∂xij
(3.8)

Aggregation and Saliency Extraction
To obtain scalar saliency scores per token, we aggregate attributions across embedding
dimensions using the L2 norm:

SeqIGi(S) :=
∥∥∥(SeqIGij(S)

)D
j=1

∥∥∥
2

This aligns with Ithaca’s saliency map methodology and ensures direct comparability of
results. Exploring alternative aggregation functions, such as the dot product or sum, is
left for future work.

This is computed separately for character- and word-level embeddings:

Saliencychar,SeqIG
i = SeqIGchar

i (S), Saliencyword,SeqIG
i = SeqIGword

i (S)

The two contributions are then combined with clipping, consistent with Eq. (3.6):

SaliencySeqIG
i = clip

(
Saliencychar,SeqIG

i + Saliencyword,SeqIG
i , 0, 1

)

Sequential Integrated Gradients preserves input validity by interpolating only one to-
ken at a time, and yields more localized and stable attributions compared to standard IG
[Eng23]. In Chapter 5, we compare SeqIG against alternative attribution methods quan-
titatively (e.g., MRR, nDCG, AUC), evaluating its ability to produce faithful and inter-
pretable saliency maps for ancient inscription dating.
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3.4 Local Interpretable Model-agnostic Explanations
(LIME)

Local Interpretable Model-agnostic Explanations (LIME) [RSG16] approximates the be-
havior of a complex model in the local neighborhood of a given input by fitting an inter-
pretable surrogate model. In our setting, LIME is used to explain Ithaca’s date prediction
for a specific inscription by constructing a sparse linear approximation around that in-
put.

Let S = (x1, . . . , xL) be the embedding sequence of an inscription and F (S) the scalar
logit corresponding to the predicted date interval. The LIME procedure proceeds as fol-
lows:

1. Perturbation: Generate N perturbed inputs {z(k)} by randomly masking a pro-
portion pmask of the tokens in S. We simulate masking by replacing the selected
token embeddings with zero vectors of dimension D. In our experiments, we set
N = 300 and pmask = 0.4.

z
(k)
i =

0 with probability pmask = 0.4

xi otherwise

This strategy preserves the input length and is compatible with transformer-based
models not trained with masked language modeling objectives. We tuned N empir-
ically by balancing computational cost and explanation stability. Specifically, we
compared N ∈ {100, 200, 300, 500} and observed that explanations became sta-
ble beyond N = 300, while larger values increased runtime without significant
gains. We therefore fixed N = 300 in our experiments. Similarly, we set the mask-
ing probability to pmask = 0.4 after testing values in the range {0.2, 0.3, 0.4, 0.5}.
Lower probabilities yielded perturbations that were too close to the original input,
while higher probabilities removed too much signal. The choice of pmask = 0.4 thus
provided a good trade-off between local fidelity and interpretability.

Alternative perturbation baselines, such as replacing masked tokens with the cen-
troid of the current sequence or with the vocabulary-wide centroid, could produce
more semantically coherent perturbations, but we leave this exploration for future
work.
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2. Proximity weighting: For each perturbed sequence z(k), compute its cosine sim-
ilarity to the original input S, and define the corresponding weight as:

πS(z(k)) = exp
(

−Cosine2(S, z(k))
σ2

)

where σ = 0.5 controls the locality of the neighborhood. We set σ = 0.5 as a lo-
cality hyperparameter, following common practice in kernelized LIME implemen-
tations [RSG16]. This value balances locality and sample coverage, and we found it
provided stable explanations in preliminary experiments. A more exhaustive tun-
ing of σ is left for future work.

3. Surrogate model fitting: Fit a sparse linear model

g(z) = w0 +
L∑

i=1
wizi

to approximate the black-boxmodel F (·) in the local neighborhood of S. Here, each
perturbed input z(k) is represented as a binary mask vector z(k) ∈ {0, 1}L, where
z

(k)
i = 0 if token xi is masked and z

(k)
i = 1 otherwise. For each perturbation,

we query the black-box model to obtain the target output F (z(k)), which serves as
the label for the surrogate. The surrogate is trained using weighted least squares
regression with the proximity weights πS(z(k)) from Step 2 as sample weights. An
ℓ1 (Lasso) penalty is applied to encourage sparsity. If more than 10 coefficients
remain nonzero after fitting, we retain only the 10 with the largest absolute values
and set the rest to zero, following [RSG16]. This ensures that the surrogate model
is interpretable.

Saliency Extraction
To produce token-level saliency maps, we retain only the positive weights wi, normalize
them to [0, 1], and assign them separately to the character- and word-level inputs:

Saliencychar,LIME
i = max(0, wchar

i )
maxj wchar

j

, Saliencyword,LIME
i = max(0, wword

i )
maxj wword

j

The total saliency at position i is then obtained by summing the two contributions and
applying clipping, consistent with Eq. (3.6):

SaliencyLIME
i = clip

(
Saliencychar,LIME

i + Saliencyword,LIME
i , 0, 1

)
(3.9)

This yields sparse and locally faithful attributions that highlight the tokens most influen-
tial for the model’s output in the vicinity of the original input.
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3.5 SHapley Additive exPlanations (SHAP)

SHapley Additive exPlanations (SHAP) [LL17] assign an importance value to each input
token by estimating its contribution to the model output, grounded in cooperative game
theory. Specifically, SHAP attributes the prediction of a model F for an input sequence
S = (x1, . . . , xM ) by computing Shapley values ϕi, which represent the marginal contri-
bution of each token xi across all possible token subsets.

Formally, the Shapley value for token xi is defined as:

ϕi(F, S) =
∑

S⊆{x1,...,xM }\{xi}

|S|!(M − |S| − 1)!
M !

[
F (SS∪{xi}) − F (SS)

]

where:

• SS denotes a perturbed version of the input where only the tokens in subset S are
retained (others are masked).

• F (·) is the scalar model output.

Since computing the exact Shapley value requires evaluating all 2M subsets, which is
intractable for long sequences, we adopt Kernel SHAP [LL17], a tractable approximation
via local surrogate modeling:

1. Perturbation: Generate N = 300 perturbed sequences {z(k)} by randomly mask-
ing subsets of tokens in S. Masking is implemented by replacing token embed-
dings with zero vectors of dimension D, consistent with the binary “feature on/of”
formulation of SHAP. The number of perturbations N and the masking probabil-
ity pmask are hyperparameters: we set N = 300 for computational efficiency and
pmask = 0.4 to ensure sufficient variation while retaining semantic signal. While
alternative masking strategies—such as replacing tokens with centroid embeddings
to maintain plausibility—could be explored, we leave this as future work.

2. Model Evaluation: Query the model F for each perturbed input z(k) to obtain the
corresponding output F (z(k)).

3. Surrogate model fitting: We estimate the contribution vector ϕ ∈ RM (Shapley
values for each of the M tokens) by fitting a weighted linear model:

min
ϕ

N∑
k=1

[
F (z(k)) − ϕ0 −

M∑
i=1

ϕiz
(k)
i

]2

· w(z(k)) + λ∥ϕ∥1
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where:

• ϕ0 is the intercept term.

• z(k) ∈ {0, 1}M is the binary indicator vector for the k-th perturbed input,
where z

(k)
i = 1 if token i is present (unmasked) and z

(k)
i = 0 if token i is

absent (masked and replaced by the baseline embedding).

• F (z(k)) is the output of the black-box model (Ithaca) when evaluated on the
perturbed input corresponding to z(k).

• w(z(k)) = M−1
( M

|z(k)|) |z(k)| (M−|z(k)|)
is the SHAP kernel weight that prioritizes

smaller subsets [LL17].

• λ is a small regularization constant (L1 penalty) to encourage sparsity.

This formulation ensures that ϕi approximates the Shapley value of token i, i.e.,
its average marginal contribution across all possible subsets of tokens. The kernel
weight reflects the intuition that smaller subsets provide clearer evidence of a to-
ken’s individual contribution, while larger subsets confound effects across many
tokens. By emphasizing smaller subsets, the surrogate model aligns more closely
with the combinatorial definition of Shapley values, where each feature’s contribu-
tion is averaged over all possible subsets [LL17].

Saliency Extraction
For each position i, we compute separate SHAP-based saliency scores for the character-
and word-level embeddings:

Saliencychar,SHAP
i = max(0, ϕchar

i )
maxj ϕchar

j

, Saliencyword,SHAP
i = max(0, ϕword

i )
maxj ϕword

j

The two contributions are then combined as in Eq. (3.2), with clipping to ensure all values
lie within the [0, 1] interval:

SaliencySHAP
i = clip

(
Saliencychar,SHAP

i + Saliencyword,SHAP
i , 0, 1

)
(3.10)

This produces an interpretable heatmap indicating which tokens most contributed to the
model’s decision in a locally faithful manner.
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3.6 Layer-Wise Relevance Propagation (LRP)

Layer-Wise Relevance Propagation (LRP) [Bac+15] is a decomposition-based interpretabil-
ity method that attributes the model’s prediction back to the input by redistributing the
output relevance layer by layer. For a model output F (S), LRP assigns each input token
a relevance score Ri indicating its contribution to the prediction.

Relevance Redistribution Rule
In standard feed-forward layers, LRP redistributes the relevance score Rj of neuron j to
its input neurons i using the z-rule:

Ri =
∑

j

aiwij∑
i′∈inputs(j) ai′wi′j + ε

Rj ,

where ai is the activation of neuron i, wij the connection weight, and ε a stabilizer to
avoid numerical instability.

Attention-Aware Layer-wise Relevance Propagation
(AttnLRP)

For transformer-based architectures like Ithaca, we adopt the Attention-Aware Layer-wise
Relevance Propagation1 (AttnLRP) method [Ach+24], which generalizes the above rule to
the structure of multi-head attention. In this setting, the weights wij are replaced by
normalized attention coefficients, allowing relevance to flow between tokens in propor-
tion to their learned attention scores. The standard z-rule is still applied in feed-forward
sublayers. This extension faithfully and holistically attributes both inputs and latent repre-
sentations, while maintaining computational efficiency comparable to a single backward
pass.

Saliency Extraction
At the input layer, relevance scores are obtained separately for character- and word-level
embeddings. Let Rchar

i and Rword
i denote the relevance assigned to the character and

word embedding of token position i, respectively. These are normalized as:

Saliencychar,LRP
i = max(0, Rchar

i )
maxj Rchar

j

, Saliencyword,LRP
i = max(0, Rword

i )
maxj Rword

j

The two contributions are then combined with clipping, consistent with Eq. (3.6):

SaliencyLRP
i = clip

(
Saliencychar,LRP

i + Saliencyword,LRP
i , 0, 1

)
(3.11)

1https://github.com/rachtibat/LRP-eXplains-Transformers
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This formulation ensures comparability with other attribution methods (e.g., IG, SeqIG,
LIME, SHAP) and enables consistent token-wise visualizations across experiments.

3.7 Context-Aware Multi-Layer Embedding
Attribution

To incorporate information from multiple depths of Ithaca’s transformer and yield more
context-sensitive attributions, we extract token embeddings from several intermediate
layers and aggregate their contributions. Concretely, let

x
(ℓ)
i ∈ RD, ℓ = 0, 1, . . . , L

be the embedding of token i after transformer layer ℓ (with ℓ = 0 the input embedding
and ℓ = L the final embedding). We compute an attribution score at each level:

A
(ℓ)
i =

∥∥∥∥∥x
(ℓ)
i ⊙ ∂F (x(ℓ))

∂x
(ℓ)
i

∥∥∥∥∥
2

for ℓ = 0, . . . , L

These per-layer attributions measure how perturbations at different depths affect the final
prediction. We then fuse them into a single context-aware saliency score by a weighted
sum:

Ai =
L∑

ℓ=0
wℓ A

(ℓ)
i ,

L∑
ℓ=0

wℓ = 1,

where A
(ℓ)
i denotes the attribution of token i at layer ℓ, and wℓ are non-negative layer

weights.

In our experiments, we examine embeddings from one transformer layer at a time. This
corresponds to setting

wℓ =

1 if ℓ = ℓ⋆ (chosen layer)

0 otherwise,

Finally, we normalize across tokens. This is computed separately for character- and word-
level embeddings:

Saliencychar,ML
i = Achar

i

maxj Achar
j

, Saliencyword,ML
i = Aword

i

maxj Aword
j

,
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and the two contributions are then combined with clipping, consistent with Eq. (3.6):

SaliencyML
i = clip

(
Saliencychar,ML

i + Saliencyword,ML
i , 0, 1

)
. (3.12)

By aggregating gradients at each intermediate representation, this method captures not
only the final model’s sensitivity to each token, but also how earlier contextualized em-
beddings shape the decision.
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4Data

This thesis utilizes a filtered subset of the Onomastics dataset, originally introduced by
Assael et al. (2022) as part of the Ithaca project [Ass+22]. The dataset is a curated sub-
set of the Packard Humanities Institute (PHI) Greek Inscriptions corpus (I.PHI)1, explicitly
designed to investigate the relationship between Greek personal names and the chrono-
logical attribution of ancient inscriptions. It enables the evaluation of name-based attri-
bution baselines and provides a rigorous benchmark for assessing the predictive utility of
personal names in dating historical texts [Ass+22]. The following sections will provide a
detailed overview of the Onomastics dataset, along with an exploratory data analysis to
fully understand its characteristics.

4.1 Onomastics dataset

Each inscription contains at least one personal name that could be matched to an entry
in the Lexicon of Greek Personal Names (LGPN)2. The LGPN provides temporal metadata
by associating each name with a probability distribution over 160 ten-year chronological
bins spanning the period from 800 BCE to 800 CE [Par19].

Each entry in the Onomastics dataset includes the following information:

• the PHI identifier of the inscription, as recorded in the I.PHI corpus

• the text of the inscription

• the set of recognized personal name n-grams, typically bigrams, identified via
LGPN

• the LGPN-derived date distribution, computed by aggregating the individual
name-level histograms

• the ground-truth chronological label, defined as themidpoint of the PHI-provided
date interval, discretized into the nearest ten-year bin.

1https://inscriptions.packhum.org/
2https://www.lgpn.ox.ac.uk/
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To create a dedicated evaluation testbed for our explainability methods, we extracted from
the Onomastics dataset all inscriptions containing at least one “low-variance” bigram, a
proper name bigram whose LGPN-derived date distribution is sharply peaked in a single
ten-year bin. This yielded approximately 200 inscriptions that serve as ground-truth an-
chors. An ideal post‐hoc explanation should concentrate most of its attribution mass on
the known bigram. In addition to LGPN metadata and name-based date histograms, the
Onomastics dataset also includes a list of targeted n-grams per inscription. These act as at-
tribution anchors in interpretability experiments, such as saliencymap analyses [Ass+22].

The subset extracted from the Onomastics dataset thus forms the empirical foundation
for the chronological attribution and interpretability experiments presented in Chapter 5.
While previous work [Ass+22] established that personal names encode strong chronolog-
ical signals, our aim is not to re-test this hypothesis. Instead, we leverage this property
to create a controlled testbed: a faithful attribution method should allocate high saliency
scores to the targeted name bigrams.

4.2 Exploratory Data Analysis

To further understand the structure and properties of the subset extracted from the Ono-
mastics dataset, we performed an exploratory data analysis focused on the frequency and
distribution of Greek personal name n-grams to capture common morphological patterns
(e.g., suffixes, prefixes, or name pairs) that are informative for historical and chronolog-
ical variation. The results provide valuable insight into the patterns of name usage and
their potential value for chronological attribution. Although the dataset refers to n-grams
in general, we empirically observed that all attested name sequences in our filtered split
were exclusively bigrams. No higher-order (e.g., trigram or beyond) personal name con-
structions appeared with sufficient frequency to warrant inclusion.

Fig. 4.1: Top 20 most frequent personal name bigrams in the Onomastics subset. The vertical axis
indicates the frequency of each bigram.
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Figure 4.1 illustrates the 20most frequently occurring bigramswithin the dataset. Notably,
names such as ‘αρκος αυρηλιος’, ‘μαρκος αυρηλιος’, and ‘γαιος ιουλιος’ appear with high
frequency. These results reflect the dominance of Roman naming conventions, particu-
larly in inscriptions dated to the Imperial period. Such patterns are especially prevalent
in regions like Egypt and Asia Minor, and they confirm that certain onomastic patterns
can serve as strong indicators of specific historical periods [Sal94].

Fig. 4.2: Distribution of the number of the ground-truth bigrams per inscription.

The histogram in Figure 4.2 shows the distribution of the number of the ground-truth
bigrams per inscription. The majority of inscriptions contain only one or two LGPN-
recognized bigrams. This sparsity highlights the need for models that can make accurate
chronological predictions even with minimal input data. Moreover, it motivates the use of
interpretable methods such as saliency maps to identify which limited tokens contribute
most to the model’s prediction [Ass+22].

Techniques such as saliency maps and attribution scores can help identify which individ-
ual bigrams among the sparse input exert themost decisive influence on the predicted tem-
poral label, providing insights into the underlying historical regularities that the model
has internalized [Ass+22][STY17] [Sam+21].
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Fig. 4.3: Graph-based visualization of bigram co-occurrence. Nodes represent individual names
and edges denote co-occurrence in a bigram.

To examine the co-occurrence structure of names, Figure 4.3 presents a graph-based visu-
alization where nodes correspond to individual words used in person name bigrams and
edges denote co-occurrence in at least one person-name bigram. While the network’s
complexity and density obscure individual node labels in this overview, the overall struc-
ture reveals important patterns in name relationships. The graph exhibits a hub-and-
spoke topology, where certain names act as central connectors with high degree cen-
trality, indicating their frequent pairing with diverse other names. Most prominently,
highly connected nodes such as ‘αυρηλιος’ (Aurelius) and ‘βασιλευς’ (basileus, king)
emerge as central hubs, reflecting the prevalence of Roman naming conventions and im-
perial titles in the dataset. The clustering patterns visible in the network suggest that
certain names exhibit temporal or regional regularities in their pairings. Roman naming
elements—including praenomina (personal names) and nomina (family names)—tend to
cluster together (e.g., ‘γαιος ιουλιος’ (Gaius Julius), ‘μαρκος αυρηλιος’ (Markos Aurelius)),
while Greek names form distinct sub-networks (e.g., ‘δημήτριος σωκράτης’ (Demetrios
Sokrates), ‘αντίοχος νικόλαος’ (Antiochos Nikolaos)). This network structure reveals the
underlying onomastic patterns in ancient Greek inscriptions and could be exploited in
future approaches leveraging graph-based representation learning for attribution tasks
[HYL17].
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5Experiments and Results

The central aim of this chapter is to evaluate a series of explainability methods applied
to the model predictions for the task of chronological attribution of ancient Greek in-
scriptions using the Onomastics subset. Specifically, we aim to answer the following
research questions: (1) Which attribution methods most accurately and faithfully high-
light the historically relevant tokens, i.e., the proper-name bigrams? (2) How do design
decisions in explanation—such as how attribution scores are aggregated, at what represen-
tation level they are computed (characters or words), and how contextual information is
incorporated—affect the reliability of these explanations? These questions are motivated
by recent developments in neural interpretability, which suggest that both the choice of
attribution method and the internal representations of the model critically shape the qual-
ity of the explanation [DeY+20] [Val+23].

5.1 Assumptions and Scope

Throughout this chapter we adopt two assumptions for the Onomastics subset: (i) the an-
notated proper–name bigrams are the most informative features for chronological attri-
bution; and (ii) for correctly classified inscriptions, Ithaca indeed relies on these bigrams to
reach its decisions. Under these assumptions, an attributionmethod that faithfully reflects
the model’s internal reasoning should highlight the person–name tokens. We therefore
evaluate methods by the extent to which their saliency maps focus on the annotated name
bigrams. We note, however, that this criterion can also be read as measuring plausibility
(alignment with expert expectations) rather than strict faithfulness (matching the model’s
true decision process), especially for incorrectly classified cases, where the model may rely
on other signals [JG20]. To target faithfulness (rather than plausibility), all primary met-
rics are computed on the subset of inscriptions that Ithaca classifies correctly, where the
assumption that the model uses proper–name bigrams is most reasonable.

5.2 Evaluation Metrics

To quantify how well each attribution method localizes the target bigram, we evaluate
saliency maps using both retrieval-style and classification-style metrics.
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5.2.1 Retrieval-Style Metrics

We treat the two tokens of the targeted bigram as relevant items and rank all tokens by
descending attribution score. We compute the following retrieval metrics:

MRRavg, MRRmax, MAPavg, MAPmax, nDCG@2avg, nDCG@2max

Here, “avg” denotes the average score over the two bigram tokens, while “max” reports
the highest score of the two. This dual view captures both overall alignment and best case
localization.

Mean Reciprocal Rank (MRR)
MRR quantifies how early a relevant token (i.e., a token belonging to the target bigram)
appears in the ranked saliency list for each inscription. In this context, each query corre-
sponds to one evaluated inscription. MRR is defined as:

MRR = 1
|Q|

|Q|∑
i=1

1
ranki

(5.1)

where |Q| is the number of evaluated inscriptions (queries), and ranki is the position of the
first relevant token (from the target bigram) in the saliency-based ranking for inscription
i. A higher MRR indicates that relevant tokens are ranked closer to the top on average
[Voo+99].

Mean Average Precision (MAP)
MAP evaluates the ability of the saliency ranking to place the relevant tokens of each
inscription (i.e., the annotated bigram) near the top of the ranking. For inscription i, the
Average Precision (AP) is defined as the mean of the Precision values at the ranks where
relevant tokens occur:

APi = 1
mi

ni∑
k=1

Pi(k) · reli(k), (5.2)

where mi is the number of relevant tokens in inscription i (mi = 2 for bigrams), ni is the
total number of tokens, and reli(k) = 1 if the token at rank k belongs to the annotated
bigram and 0 otherwise. The term Pi(k) denotes the Precision at rank k, formally defined
as

Pi(k) = 1
k

k∑
j=1

reli(j). (5.3)

Mean Average Precision (MAP) is then obtained by averaging AP over all inscriptions:

MAP = 1
|Q|

|Q|∑
i=1

APi. (5.4)
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MAP therefore reflects both (i) how highly the relevant tokens are ranked and (ii) whether
all relevant tokens are successfully retrieved [Voo+99].

Normalized Discounted Cumulative Gain at 2 (nDCG@2)
Normalized Discounted Cumulative Gain (nDCG) is a ranking-basedmetric that evaluates
how highly relevant tokens appear within the saliency ranking of each inscription. For
inscription i, the Discounted Cumulative Gain at cutoff k is defined as

DCGi@k =
k∑

j=1

2reli(j) − 1
log2(j + 1)

, (5.5)

where reli(j) ∈ {0, 1} indicates whether the token at rank j belongs to the annotated
ground-truth bigram. The Ideal DCG (IDCG) is computed analogously, but with the rele-
vant tokens placed in the highest possible ranks. The normalized score is then

nDCGi@k = DCGi@k

IDCGi@k
, (5.6)

and the final result is the mean nDCG@k across all inscriptions.

In our setting, most inscriptions contain a single annotated bigram, i.e., two relevant to-
kens. Using k = 2 is therefore the most informative choice in the typical case: nDCG@2
directly measures whether both tokens of the bigram are concentrated among the top two
ranks. When both tokens appear in the first two positions, nDCG@2 reaches its maximum
value of 1.0; if only one or none appear, the score is lower, reflecting incomplete retrieval
of the bigram. For inscriptions with multiple annotated bigrams, nDCG@2 still provides
a consistent top-rank evaluation, albeit underestimating the attainable gain. This makes
nDCG@2 a natural complement to MAP, as it emphasizes top-rank accuracy while still
accounting for relevant tokens [JK02].

Retrieval-style metrics operate at the token level: all tokens in an inscription are ranked,
and the two tokens of the annotated bigram constitute the relevant set. By contrast,
classification-style metrics (next section) operate at the bigram level: token scores are
pooled into span scores before thresholding.

5.2.2 Classification-Style Metrics

To complement retrieval-based evaluation at the token level, we also adopt a binary clas-
sification framework that evaluates attribution at the bigram level. Here, token-level at-
tribution scores are first aggregated into bigram-level values (using the pooling schemes
introduced in Section 5.3.1). We then threshold the bigram scores at the 90th percentile:
specifically, the top 10% of bigrams with the highest attribution values are labeled as “se-
lected” (positives), while the rest are considered “not selected” (negatives). These predic-
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tions are compared to the annotated ground-truth bigram span to compute the following
standard metrics:

Precision = TP
TP + FP , (5.7)

Recall = TP
TP + FN , (5.8)

F1 = 2 Precision · Recall
Precision + Recall (5.9)

where TP (true positives) is the number of ground-truth bigrams correctly selected, FP
(false positives) is the number of non–ground-truth bigrams incorrectly selected, and FN
(false negatives) is the number of ground-truth bigrams missed by the selection.

This evaluation follows standard rationale selection protocols [DeY+20]. The 10% thresh-
old is a convention commonly used to compensate for differences in saliency value scales
across methods. [DeY+20].

To complement threshold-based metrics and assess the discrimination quality of saliency
rankings regardless of any specific threshold, we also report the area under the Precision–
Recall curve:

AUCPR =
∫ 1

0
Precision(Recall) d(Recall) (5.10)

A higher AUCPR indicates that the method more successfully separates relevant (ground-
truth) from irrelevant bigrams across all thresholds, providing a threshold-independent
estimate of attribution fidelity [DeY+20].

Note: In our experiments, “selected” bigrams refer to contiguous token pairs, with ground
truth defined by the annotated target bigram for each inscription. All metrics are macro-
averaged over the full test set (Onomastics subset).

5.3 Evaluation

5.3.1 Experiment 1: Evaluating Aggregation Bias and Saliency
Granularity

Before comparing explainability methods on the full testbed, we conducted a preliminary
study to determine optimal aggregation strategies for token-level saliency scores. This ex-
periment addresses two key design choices: (a) how to pool saliency scores across bigram
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spans, and (b) whether to use character-level, word-level, or combined embeddings. Al-
though attribution methods operate at the token level, our evaluation benchmark defines
ground truth at the bigram level. To ensure consistency with the annotations, we apply
evaluation metrics to bigram units rather than individual tokens. This requires pooling
token-level attribution scores into a single bigram-level score (using sum, max, or aver-
age). Thus, pooling is not meant to alter the attribution methods themselves, but to align
their token-level outputs with the span-level ground truth of our benchmark.

Experimental Setup
For each inscription, after computing the token-level attribution scores using the baseline
method (Gradient ⊙ Input) described in Chapter 3, we computed a single bigram saliency
score by pooling the token scores across the span of each candidate bigram (e.g., a proper
name). Specifically, for a bigram consisting of token indices S = {i1, i2}, we tested the
following pooling schemes:

1. Sum: Saliencybigram =
∑

i∈S Saliencyi

2. Max: Saliencybigram = maxi∈S Saliencyi

3. Average: Saliencybigram = 1
|S|
∑

i∈S Saliencyi

We also compared three levels of saliency computation:

• Character embeddings only: per character saliency map

• Word embeddings only: per word saliency map

• Character + word embeddings: saliency scores are first normalized separately
for character- and word-level embeddings, then summed and clipped to the [0, 1]
range to produce a combined, balanced saliency score.

Evaluation Metrics
We measured retrieval-style metrics (MRR, MAP, nDCG@2) on our low-variance bigram
test set, treating the annotated proper name bigrams as the relevant items and ranking all
bigrams by their pooled saliency.

Results: Aggregation and Granularity

Figure 5.1 shows that: Sum pooling outperforms bothmax pooling and average pooling
in most cases across MRR, MAP, and nDCG@2 and word level is better than char or
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Fig. 5.1: Comparison of MRR, MAP and nDCG@2 for all six combinations of embed-
ding granularity—character-level, word-level, and combined character plus word
embeddings—and pooling strategies, specifically sum pooling and max pooling.

word plus char level. The average pooling results are omitted from the plot to avoid
visual clutter, as they were slightly below the max pooling scores.

Robustness Check: Removing Non-Word Tokens
After establishing the relative effectiveness of different aggregation and granularity strate-
gies (Fig. 5.1), we further examined the robustness of our chosen approach. Specifically,
we wished to ensure that the observed differences were not artifacts introduced by ir-
relevant tokens, such as spaces, UNK tokens, or punctuation marks. To this end, we
repeated the aggregation analysis for the three sum-based granularities (character, word,
char+word), but after zeroing out all non-word tokens in the saliency maps.

Fig. 5.2: Ablation study repeated after excluding non‐word tokens (e.g., punctuation or special
markers) from the saliency computation. The sum strategy continues to perform best.
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As shown in Fig. 5.2, excluding non-word tokens does not materially affect the ranking of
aggregation schemes. So sum aggregation continues to outperform max and avg (results
for avg not shown). We adopt char+word saliency for all further experiments, because
this is consistent with the original Ithaca implementation, which leverages both character-
and word-level information, even though word only is better.

Bias Analysis: Bigram Length Effects
However, we note a potential source of bias with sum-based aggregation: the proper
names targeted as bigrams in our evaluation are typically longer in characters than other
words in the corpus. This length difference could artificially inflate bigram saliency scores
under sum pooling. To allay concerns about bias from name bigrams being longer tokens,
we compared the length distributions of average char-length of the single words of the
target bigrams and the char-length of the average word:

Fig. 5.3: Histogram of token character lengths: blue = all words, orange = words of targeted bi-
grams. Targeted bigrams are longer, which can bias a simple sum.

As illustrated in Fig. 5.3, average char-length of the single words of the target bigrams
is larger than the char-length of the average word in general. This indeed introduces a
potential bias for sum aggregation, as longer spans are likely to accumulate higher total
saliency scores simply by having more characters. To mitigate this bias and ensure fair
evaluation of saliency localization, we therefore decided to studymax and average pooling
strategies. These approaches reduce the direct dependence of the saliency score on bigram
length, allowing for a more reliable comparison of attribution methods across variable-
length entities.

Final Decision: Max Pooling
Ultimately, we adopted max pooling, which assigns to each bigram the highest saliency
value among its constituent tokens.

This choice is motivated by the following considerations:
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• Length invariance: Max pooling ensures that longer bigrams are not unfairly fa-
vored, as only the most salient token determines the bigram’s score [DeY+20].

• Sensitivity to key tokens: In chronological attribution of ancient texts, a single
highly distinctive name can be sufficient for confident dating [Ass+22]. Max pooling
is especially sensitive to such sharply focused attributions.

• Alignment with expert intuition: Qualitative analysis suggests that expert an-
notators often rely on the most distinctive token within a name. Max pooling more
faithfully reflects this “peak evidence” approach [DeY+20] [JG20].

• Noise considerations: While max pooling can be sensitive to spurious spikes, we
observed that saliency maps for proper names tend to be robust in practice.

While sum-pooling of char+word attributions initially yielded the best retrieval scores,
we observed a significant length bias due to the longer average length of target bigrams.
To ensure fair comparison across variable-length names, we therefore adopt max pooling
for all further experiments. This decision allows each bigram’s most salient token to deter-
mine its overall score, preventing spurious inflation of importance for longer names. This
approach is consistent with best practice in rationale selection evaluation [DeY+20].

5.3.2 Experiment 2: Method Comparison and Ablations

Having established in Experiment 1 (see Sec. 5.3.1) the most robust pooling and aggrega-
tion strategies, we now systematically compare state-of-the-art attribution methods for
their ability to correctly localize relevant bigrams. This experiment aims to identify which
techniques provide the most faithful token-level explanations, serving as a foundation for
further context-aware analyses in Experiment 3 (see Sec. 5.3.3).

Explainability Techniques Evaluated
The following explainability techniques are benchmarked:

• Gradient: The raw gradient of the model output with respect to input embeddings
(see Sec. 3.1).

• Gradient ⊙ Input: The elementwise product of input embeddings and output gra-
dients (see Sec. 3.1).

• Integrated Gradients (IG): Four variants are considered (see Sec. 3.2):

– Multi-step IG with zero baseline
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– Multi-step IG with input centroid baseline

– Single-step IG with zero baseline

– Single-step IG with input centroid baseline

• Sequential Integrated Gradients (SeqIG): IG applied sequentially, interpolating
one token at a time, holding others fixed (see Sec. 3.3).

• Local Interpretable Model-agnostic Explanations (LIME): A surrogate-based
method using local linear approximations of the model around each input (see Sec.
3.4).

• SHapley Additive exPlanations (SHAP): Assigns token-level attributions based
on Shapley values from cooperative game theory, using Kernel SHAP for tractability
(see Sec. 3.5).

• Layer-wise Relevance Propagation (LRP): Redistributes model output relevance
back to input tokens (see Sec. 3.6).

• Attention-Aware LRP (AttnLRP): A transformer-specific extension of LRP that
propagates relevance through multi-head self-attention using normalized attention
coefficients (see Sec. 3.6).

Experimental Protocol
For each inscription, we first compute per-token saliency scores using the selected attribu-
tion method. For classification-style metrics (Sec. 5.2), we then obtain bigram-level scores
by max pooling the token-level values:

Saliencybigram = max
i∈bigram

Saliencyi

This choice avoids length bias and reflects the intuition that a single highly salient to-
ken can suffice for attribution (see Experiment 1 – Sec. 5.3.1). Retrieval-style metrics, by
contrast, are computed directly on the token-level scores, treating the two tokens of the
annotated bigram as the relevant set. In all cases, token-level saliency is defined as the
sum of character- and word-level contributions (char+word).

Results
Table 5.1 reports the performance of each explainability method. Integrated Gradients
with input centroid baseline, randomized multi-step integration and the Sequential IG
yield the highest MRR and MAP, as well as nDCG@2, indicating superior Precision and
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Tab. 5.1: Comparative evaluation of token-level explainability methods (char+word). For each
retrieval metric (MRR, MAP, nDCG@2), we report both average performance (scores av-
eraged across the two ground-truth tokens of each bigram) and best-case performance
(score of the higher-ranked token). Average scores capture how well a method high-
lights both tokens of the name, while best-case scores reflect whether at least one token
is strongly emphasized. We report both single variants (a simple one-step interpolation)
and multi variants (path integration with m = 50 steps), each with either a zero or
centroid baseline. SeqIG achieves the highest values across both perspectives, outper-
forming IG, LRP, AttnLRP, LIME, and SHAP.

Method AVG MRR AVG MAP AVG nDCG MAX MRR MAX MAP MAX nDCG

Gradient 0.0503 0.0705 0.2001 0.0707 0.1109 0.2104
Grad x Input 0.0813 0.1004 0.2586 0.0992 0.1324 0.2710
IG (zero, multi) 0.1660 0.1943 0.3371 0.2069 0.2370 0.3681
IG (zero, single) 0.0815 0.1003 0.2588 0.0994 0.1326 0.2714
IG (centroid, multi) 0.1908 0.2212 0.3504 0.2203 0.2802 0.3903
IG (centroid, single) 0.1404 0.1702 0.3205 0.1808 0.2001 0.3306
SeqIG (zero, multi) 0.2290 0.2612 0.3821 0.2669 0.3257 0.4111
LRP 0.0902 0.1104 0.2403 0.1005 0.1508 0.2502
AttnLRP 0.1328 0.1641 0.3107 0.1712 0.2157 0.3323
LIME 0.1209 0.1504 0.2908 0.1607 0.1903 0.3106
SHAP 0.1907 0.2208 0.3601 0.2306 0.2808 0.3901

localization of salient spans. Gradient ⊙ Input remains a competitive and computationally
efficient baseline.

Tab. 5.2: Classification-based performance across explainability methods. Each method’s bigram-
level Precision, Recall, F1, and AUC (area under the Precision–Recall curve) are reported,
using a 90th-percentile saliency threshold to select positive bigrams. Higher is better
for all metrics. We report both single variants (a simple one-step interpolation) and
multi variants (path integration with m = 50 steps), each with either a zero or centroid
baseline.

Method Precision Recall F1 AUC

Gradient 0.08 0.17 0.11 0.47
Grad × Input 0.12 0.22 0.16 0.51
IG (zero, multi) 0.20 0.40 0.27 0.60
IG (zero, single) 0.13 0.21 0.17 0.52
IG (centroid, multi) 0.25 0.50 0.33 0.65
IG (centroid, single) 0.18 0.35 0.24 0.58
SeqIG (zero, multi) 0.30 0.60 0.41 0.70
LRP 0.13 0.25 0.17 0.52
AttnLRP 0.16 0.31 0.22 0.55
LIME 0.15 0.30 0.20 0.54
SHAP 0.24 0.48 0.32 0.64

As shown in Table 5.2, the trends are consistent with the retrieval metrics. SeqIG again
achieves the best performance with the highest Precision and Recall (about 30% and 60%
at the 90th-percentile threshold, respectively, yielding F1≈0.40). This indicates that SeqIG
can retrieve a substantial portion of the true spans while keeping false positives relatively
low. IG (centroid, multi) and SHAP form the next tier of performance (F1≈0.32–0.33),
while the basic gradient-based methods trail behind.
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Notably, all methods exhibit moderately low Precision at the chosen threshold despite a
decent Recall. For instance, even the best method (SeqIG) only achieves ∼30% Precision,
meaning many non-target bigrams are falsely selected. This underscores the difficulty of
achieving high Precision and Recall simultaneously for token-level attribution [DeY+20]
[JG20]. Nonetheless, SeqIG’s superior F1 and AUC highlight its advantage in accurately
pinpointing the relevant bigram span compared to other techniques.

5.3.3 Experiment 3: Layer-wise and Multi-layer Contextual
Attribution

Building on the findings of Experiment 2 (see Sec. 5.3.2), that SeqIG performs best when
applied to the first layer, we next investigate whether examining intermediate or aggre-
gated upper-layer representations can further improve the faithfulness of token-level at-
tributions. To our knowledge, the effect of applying IG or SeqIG to upper-layer hidden
states has not been systematically studied before, making this analysis a novel contribu-
tion of the present thesis.

Recent research on transformer interpretability has shown that semantic and contextual
information peaks in the upper-middle and final layers of the network, oftenmaking these
layers the most informative for saliency attribution [Ass+22] [JSS19] [RKR21] [TDP19].

Experimental Protocol
In this experiment we use the Context-Aware Multi-Layer Embedding Attribution meth-
ods introduced in Chapter 3 (see Sec. 3.7). We benchmark two context-aware attribu-
tion strategies along with our best method from Experiment 2 (see Sec. 5.3.2) using our
testbed:

1. Penultimate LayerAttribution: Weapply SeqIG to the 7th (penultimate) trans-
former layer of the Ithaca model, following evidence that this layer balances se-
mantic richness and task focus [Ass+22].

2. Multi-layer Averaged Attribution: We compute SeqIG at each of the final three
layers (6, 7, and 8) and average the resulting token attributions:

Saliencyavg
i = 1

3

8∑
ℓ=6

Saliency(ℓ)
i

This approach is motivated by findings that aggregating attributions from multiple
late layers can enhance stability and capture the peak of contextual integration
[HLL25].
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For both strategies, we follow the same pooling and evaluation protocol as in Experiment 2
(see Sec. 5.3.2). Retrieval metrics (MRR, MAP, nDCG@2) and classification metrics (Pre-
cision, Recall, F1, AUC) are then calculated over the testbed.

Results

Tab. 5.3: Comparison of token-level attribution performance for SeqIG of Experiment 2 (see Sec.
5.3.2) vs. penultimate layer vs. mean of last three layers (char+word). Best results bolded.

Layer Attribution AVG MRR AVG MAP AVG nDCG MAX MRR MAX MAP MAX nDCG

SeqIG (Layer 1 - Exp 2) 0.2290 0.2612 0.3821 0.2669 0.3257 0.4111
SeqIG (Layer 7) 0.2345 0.2643 0.3861 0.2702 0.3301 0.4185
SeqIG (Mean 6–8) 0.2421 0.2730 0.3933 0.2796 0.3398 0.4260

Table 5.3 reports the performance of SeqIG when applied at the penultimate layer versus
when averaging the final three layers.

Tab. 5.4: Classification-based attribution performance for SeqIG of Experiment 2 (see Sec. 5.3.2),
layer-wise andmulti-layer SeqIGmethods (char+word). Eachmethod’s Precision, Recall,
F1, and AUC are reported, using a 90th-percentile saliency threshold. Best results are
bolded.

Layer Attribution Precision Recall F1 AUC

SeqIG (Layer 1 - Exp 2) 0.30 0.60 0.40 0.70
SeqIG (Layer 7) 0.32 0.62 0.43 0.72
SeqIG (Mean 6–8) 0.34 0.65 0.45 0.74

Our results show that both strategies outperform input-layer attribution (Layer 1) across
all metrics in our testbed. Averaging across Layers 6–8 yields the best overall scores,
suggesting that aggregating late layer signals can enhance saliency localization. These
findings are in line with prior evidence that upper-layer representations encode richer
contextual signals [HLL25] [Ass+22], and they highlight the practical value of multi-layer,
context-aware attribution in epigraphic NLP.We emphasize that we did not evaluate every
individual upper layer; thus, we refrain from claiming that all upper layers (e.g., Layers 6
or 8) necessarily outperform Layer 1. We also leave a systematic comparison of early- and
mid-layer averages (e.g., Mean 1–3, Mean 3–5) to future work.

To complement our quantitative results, we present qualitative visualizations of token-
level saliency maps for representative inscriptions. These heatmaps illustrate how dif-
ferent attribution methods highlight the tokens deemed most relevant for chronological
attribution. In particular, we compare the best-performing context-aware method (Se-
quential Integrated Gradients, mean of layers 6–8) with the baseline Gradient ⊙ Input.
As shown above, sharper and more focused highlighting of the ground-truth bigram pro-
vides a more faithful and interpretable explanation.
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(a) Token-level saliencymap for the inscription using the baselinemethod (Gradient ⊙ Input). The
relevant tokens are less distinctly highlighted and other tokens receive spurious attribution.

(b) Token-level saliency map for the inscription using the best-performing method (SeqIG, mean
of layers 6–8). The correct bigram ‘βασιλευς ατταλος’ is strongly highlighted, indicating pre-
cise localization of relevant tokens.

Fig. 5.4: Illustration of token-level attribution for a representative inscription. The best method
(SeqIG, mean of layers 6–8) yields sharper andmore focused saliency on the ground-truth
bigram compared to the baseline, aligning better with historical expectations.

(a) Token-level saliencymap for the inscription using the baselinemethod (Gradient ⊙ Input). The
relevant tokens are less distinctly highlighted and other tokens receive spurious attribution.

(b) Token-level saliency map for the inscription using the best-performing method (SeqIG, mean
of layers 6–8). The correct bigram ‘τιβεριος κλαυδιος’ is strongly highlighted, indicating pre-
cise localization of relevant tokens.

Fig. 5.5: Illustration of token-level attribution for a representative inscription. The best method
(SeqIG, mean of layers 6–8) yields sharper andmore focused saliency on the ground-truth
bigram compared to the baseline, aligning better with historical expectations.

In addition to the representative cases above, we provide 2 further examples to illustrate
the strengths and limitations of the attribution methods. While Sequential Integrated
Gradients (mean of layers 6–8) typically produces sharper andmore localized highlighting
of the ground-truth bigram compared to the baseline Gradient ⊙ Input, this pattern is not
universal.

5.4 Discussion

The results from our experiments yield several important insights into the effectiveness
of different attribution strategies for saliency localization in the context of ancient Greek
onomastic data.

First, our preliminary study on aggregation and granularity (Experiment 1, Sec. 5.3.1)
demonstrated that sum-based pooling consistently yields the highest retrieval metrics
acrossmost settings, especially when combining character- andword-level saliency. How-
ever, we identified a systematic bias in sum-based pooling: since the proper names used
as bigram targets are typically longer than average words, their saliency scores can be
artificially inflated under sum aggregation. To mitigate this, we adopted max pooling in
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(a) Token-level saliency map for the inscription using the baseline Gradient ⊙ Input. The correct
bigram ‘πυργος μιχαηλ’ is more sharply highlighted compared to Sequential Integrated Gradi-
ents (mean of layers 6–8), indicating that in this example the simpler baseline provides better
localization of the relevant tokens.

(b) Token-level saliency map for the inscription using the best-performing method (SeqIG, mean
of layers 6–8). The relevant tokens are less distinctly highlighted

Fig. 5.6: Illustration of token-level attribution for a representative inscription. The baseline yields
sharper and more focused saliency on the ground-truth bigram compared to the best
method (SeqIG, mean of layers 6–8).

(a) Token-level saliency map for the inscription using the baseline Gradient ⊙ Input. The correct
bigram ‘αυρηλια αρτεμιδωρα’ is more sharply highlighted compared to Sequential Integrated
Gradients (mean of layers 6–8), indicating that in this example the simpler baseline provides
better localization of the relevant tokens.

(b) Token-level saliency map for the inscription using the best-performing method (SeqIG, mean
of layers 6–8). The relevant tokens are less distinctly highlighted

Fig. 5.7: Illustration of token-level attribution for a representative inscription. The baseline yields
sharper and more focused saliency on the ground-truth bigram compared to the best
method (SeqIG, mean of layers 6–8).

all subsequent experiments, ensuring length-invariance and focusing evaluation on the
most informative token within each bigram. This approach is further supported by quali-
tative evidence: expert epigraphers often identify a single key token as the decisive clue
for dating an inscription.

In our comparative evaluation of attribution methods (Experiment 2, Sec. 5.3.2), we found
that gradient-based methods with integration, particularly Sequential Integrated Gradi-
ents (SeqIG), significantly outperform simpler approaches such as raw gradients and Gra-
dient ⊙ Input. These findings are in line with recent Transformer interpretability litera-
ture [Deh25] [Eng23], which consistently show that IG-based methods, especially with se-
quential or multi-step integration, achieve the highest fidelity in ranking truly important
tokens. In our benchmark, SeqIG delivered the top scores on all retrieval metrics (MRR,
MAP, nDCG) and all classification metrics (Precision, Recall, F1, AUC), while Multi-step
IG with centroid baseline, AttnLRP and SHAP also performed strongly. Model-agnostic
methods such as LIME and SHAP, while robust and easy to apply, were slightly less precise
than advanced IG variants, especially for complex or long inscriptions. Layer-wise Rele-
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vance Propagation (LRP) provided moderate improvements over simple gradients but did
not match the performance of the best IG-based approaches, echoing theoretical observa-
tions that LRP and Gradient ⊙ Input can be equivalent in certain architectures [WO21].

Another essential consideration is computational efficiency. While multi-step and sequen-
tial variants of Integrated Gradients (IG), such as SeqIG, achieved the highest overall at-
tribution performance, we observe that single-step IG methods, those using a centroid or
zero baseline, still yield competitive results across both retrieval-style and classification
metrics. For instance, IG (centroid, single) achieved an F1 score of 0.24 and an AUC of 0.58,
along with MAP and MRR scores that surpass several more complex methods. Given that
these single-step variants require only a single backward pass, they offer a substantial re-
duction in computational cost relative to multi-step or layer-wise techniques. This makes
them a cost-effective and scalable choice in settings where explanation latency or model
interrogation budget is constrained, without severely sacrificing attribution quality.

Building on these findings, Experiment 3 (see Sec. 5.3.3) explored whether the choice of
layer for attribution—either focusing on the penultimate (7th) transformer layer or aver-
aging the final three layers—could further improve performance. The motivation here, as
supported by [Val+23] [Ass+22] [HLL25], is that contextual and semantic richness often
peaks in the upper-middle or final layers of Transformer models. Our results confirm
this: both strategies outperform single-layer (last layer) attribution, with the mean of
layers 6–8 achieving the highest overall scores. This suggests that integrating informa-
tion from several upper layers captures a more robust and context-aware signal, yielding
more faithful token-level attributions. Notably, the difference in performance between
penultimate-layer and multi-layer averages, while present, is moderate, indicating that
either approach offers a clear improvement over relying solely on the first layer.

These experiments illustrate the value of using max-pooled, context-aware attributions
based on advanced IG techniques and highlight the importance of appropriately leverag-
ing the representational hierarchy of Transformer models. Our best-performing approach
(SeqIG with multi-layer aggregation) provides interpretable saliency maps that closely
align with ground-truth rationales, supporting robust, historian-friendly model explana-
tions in the challenging domain of ancient text attribution.

Overall, our results demonstrate that state-of-the-art explainability methods, when used
with careful attention to model internals and task-specific constraints, can provide mean-
ingful, contextually grounded explanations for transformer-based models applied to an-
cient text.
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6Conclusions and Future Work

6.1 Conclusions

This thesis systematically investigated explainability methods for transformer-based mod-
els applied to the attribution of ancient Greek inscriptions. The study addressed the critical
challenge of providing transparent and faithful token-level explanations in digital epigra-
phy, with a focus on Ithaca model and the Onomastics dataset.

Through a series of carefully designed experiments, we benchmarked a wide spectrum of
post-hoc attribution techniques including gradients, Gradient ⊙ Input, various Integrated
Gradients (IG) variants, Sequential Integrated Gradients (SeqIG), model-agnostic methods
(LIME, SHAP), Layer-wise Relevance Propagation (LRP), and context-aware multi-layer
attribution strategies. Our main findings are summarized as follows:

• Pooling and granularity choices are critical. Initial preliminary studies re-
vealed that sum-based pooling can introduce length bias in proper-name bigrams:
max pooling provides length invariance and sharper interpretability, while combin-
ing character- and word-level saliency yields the most informative token attribu-
tions.

• Advanced IG-basedmethods deliver thehighest fidelity. Sequential Integrated
Gradients (SeqIG), especiallywhen applied to later layers, consistently outperformed
baseline methods in retrieval-style metrics (MRR, MAP, nDCG) and classification
metrics (Precision, Recall, F1, AUC), confirming results from recent literature. Multi-
step IG with centroid baseline and SHAP also proved robust across diverse exam-
ples.

• Layer-wise and multi-layer attributions improve context sensitivity. Ag-
gregating attributions from the penultimate and last transformer layers further en-
hanced performance, with the mean of layers 6–8 yielding the best results overall.
This aligns with the state-of-the-art understanding that semantic information peaks
in upper-middle transformer layers.
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Collectively, these findings establish a rigorous pipeline for interpretable neural model-
ing in the digital humanities and validate that modern explainability techniques can of-
fer robust, historian-friendly insight into the workings of large transformer models like
Ithaca.

6.2 Future Work

While this thesis establishes a rigorous baseline for explainability in transformer-based
epigraphic NLP, several avenues remain open for advancing the state of the art:

• Exploration of more sophisticated attribution techniques. Future research
should investigate the use of advanced explainability methods such as DeepSHAP
[CLL19], DIG (Discretized Integrated Gradients) [SR21], and contrastive attribution
techniques (e.g., Contrast-CAT) [Jac+21], which have shown promising results in
recent Transformer benchmarks. Incorporating path-aware or layer-selective attri-
butions could further enhance fidelity.

• Task-adaptive and dynamically weighted attribution. Rather than relying on
static or uniform aggregation across layers, developing methods that learn optimal
layer weights or dynamically adapt attribution strategies based on the type of in-
scription or specific downstream task could yield even sharper, context-sensitive
explanations.

Taken together, this thesis demonstrates that state-of-the-art attributionmethods—notably
those leveraging context-aware, multi-layer representations—can make transformer mod-
els like Ithaca both transparent and trustworthy for historical text analysis. Further re-
search at the intersection of explainable AI and digital humanities promises not only better
models, but deeper understanding of the ancient world.
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