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Abstract 

Data augmentation is the practice of applying transformations to a given training set in order 

to synthetically expand it. This master thesis involves the implementation and evaluation of 

the domain-agnostic data augmentation techniques that operate in the input feature space. 

More concretely, in the context of contract element extraction (Chalkidis et al., 2017a, 

2017b), this thesis explores the effectiveness of three domain-agnostic data augmentation 

methods, namely: adding Gaussian noise, applying interpolation or extrapolation at the word 

representation level (word embeddings). The performance of the aforementioned 

augmentation techniques were tested with all LSTM-based contract element extraction 

methods of Chalkidis et al. (2017b), on a subset of six out of eleven contract elements types 

considered by Chalkidis et al., focusing mostly on element types with fewer data samples in 

the (non-augmented) training set of Chalkidis et al. The experimental results of this thesis 

indicate that interpolation performs better compared to adding Gaussian Noise or applying 

extrapolation. None of data augmentation techniques considered in this thesis, however, 

managed to consistently improve the performance of the LSTM-based extractors, and in 

some cases the performance of the LSTM-based extractors deteriorated, compared to using 

no data augmentation. 
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Chapter 1 

 

Introduction 

A contract is a legal text which concludes a voluntary, deliberate, and legally binding 

agreement between two or more competent parties. Several tasks, which are an integral part 

of the operation of law firms, companies, government agencies etc., involve monitoring 

contracts. For example, law firms need to inform their clients when contracts are affected by 

law replacements or amendments, because their contracts may need to be modified 

accordingly. Termination dates, governing laws, or agreed payments also constitute some of 

the key elements of contracts, which can summarize them. The aforementioned tasks can be 

automated by extracting key contract elements. The current methods of contract element 

extraction, however, require human involvement. Researchers currently attempt to reduce 

the human involvement in order to render the process of extracting key information 

contracts less time-consuming and costly.  

Chalkidis et al., (2017a, 2017b) studied how contract element extraction can be automated. 

They devised several contract element extraction methods, which were tested on a dataset 

of approximately 3500 English contracts they constructed. The dataset is publicly available 

and it is manually annotated with 11 types of contract elements. It is also encoded for privacy 

issues. The encoding involved the replacement of each vocabulary word with a unique 

integer identifier (Androutsopoulos et al., 2000). The word “legislation”, for instance, may 

have been replaced by the integer ‘1517’. For every token of the dataset, Chalkidis et al. also 

provide hand-crafted features, such as the part-of-speech (POS) tag, whether or not a token 

started with a capital letter before the encoding etc. Apart from the aforementioned 

features, word embeddings per vocabulary word are also provided. Word embeddings are 

dense real-valued vectors, constructed so that vocabulary words with morpho-syntactic 

and/or semantic similarity are in close proximity in vector space. Pre-trained word 

embeddings can be obtained via unsupervised techniques. In the dataset of Chalkidis et al., 

the word embeddings were pre-trained by applying word2vec (Mikolov et al., 2013b) to an 

unlabeled dataset of approximately 750,000 contracts. Additionally, POS-tag embeddings 

were obtained by applying word2vec to a subset of the same unlabeled dataset, with the 

only difference that the words were replaced by their POS-tags. Chalkidis et al. experimented 

with manually written rules, trainable linear classifiers and LSTM-based methods, with the 

latter leading to the best results. 

 This thesis does not attempt to develop new contract element extraction methods. It 

explores if and how domain-agnostic data augmentation techniques, namely: adding 

Gaussian noise, applying interpolation or extrapolation on the word representation level 

(word embeddings), affect the performance of the LSTM-based methods of Chalkidis et al. 

Due to time constraints of the thesis, the performance of the aforementioned data 

augmentation techniques were tested only with the LSTM-based methods of Chalkidis et al., 

http://www.businessdictionary.com/definition/voluntary.html
http://www.businessdictionary.com/definition/legally-binding.html
http://www.businessdictionary.com/definition/agreement.html
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as opposed to also applying them to their other methods, focusing on a subset of six out of 

eleven contract elements types considered by Chalkidis et al., mainly those with the fewer 

data samples in the non-augmented training set of Chalkidis et al. 

The experimental results of this thesis showed that applying interpolation was the method 

which performed better compared to adding Gaussian Noise or applying extrapolation. None 

of data augmentation techniques considered in this thesis, however, managed to consistently 

improve the performance of the LSTM-based extractors, and in some cases the performance 

of the LSTM-based extractors deteriorated, compared to using no data augmentation. 

1.1   Contract Structure and Elements 

Chalkidis et al. (2017a) realized that they could benefit from the structure of the contracts 

and the high frequency of the key contract elements in specific zones of the contracts. 

According to their observations, a contract starts mostly with a preamble, which contains the 

contract title (Fig.1 point 1), the start or effective date (Fig.1, point 2) and contracting parties 

(Fig.1, point 3). The following figure (Fig.1) contains a typical example of a contract preamble. 

 

 

 

 

Figure 1: Typical example of annotated contract preamble. 
 
It is common for the same information to be also provided in a cover page, which precedes 
the preamble along with a table of contents (also before preamble).  The preamble is usually 
followed by the recitals, which provide background information. The remainder of the 
contract is organized in clauses, often called ‘chapters’, ‘articles’ etc., whose headings 
indicate their topics. The following figure (Fig.2) contains typical examples of contract 
clauses. 
 
 

 

 

 

 

 

 

Figure 2: Typical example of annotated contract clauses. 

 

Let us now provide some more information about the contract element types that are 
considered in the work of Chalkidis et al. and, hence, also in this thesis.  

(1)SUPPLY SERVICES 

This agreement is made (2) the 25
th

 day of September 2017 between: 

(3) 1. Book Owl LTD., whose office is at 27 Mount Pleasant Ln, Llanrumney, Cardiff CF3 (“Publisher”); 

(3)2.  ABC Papers Inc., whose office is at 83 Abberley Rd, Liverpool L25 9QY (“Supplier”); 

 

(9)ARTICLE  II ð TERMINATION 

The supply period will be (4) for four years from the effective date. The agreement is considered to be 

terminated in (5) September 25, 2021. 

(9)ARTICLE  III ð PAYMENTS & FEES 

During the supply period monthly payments should occur. The estimated fees are (6) £50,000. 

(9)ARTICLE  IV ð GOVERNING LAW 

This agreement shall be governed and construed in accordance the (7) Laws of England & Wales. Each 

party hereby irrevocably submits to the exclusive jurisdiction of the (8) courts sitting in Northern London. 
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Contract Title (Fig.1, point 1): The title indicates the type or even the version of a contract. 

Extracting the contract title is useful, because it is a piece of information that facilitates the 

classification of contracts by type and/or clustering multiple versions (e.g., amendments) of 

the same contract. 

Contracting Parties (Fig.1, point 3): Extracting contracting parties facilitates the retrieval of 

contracts involving particular parties (e.g., by building an index of contracting parties), or 

even the construction of graphs showing the interdependencies between contractors. 

{ǘŀǊǘΣ 9ũŜŎǘƛǾŜΣ ¢ŜǊƳƛƴŀǘƛƻƴ 5ŀǘŜǎΣ Contract Period, Value: According to Chalkidis et al., the 

start (Fig. 1, point 2), effective and termination dates (Fig. 2, point 5) “specify when the 

contract was signed, becomes effective and terminates, respectively”. The contract period 

(Fig. 2, point 4) is “the number of working or calendar days the contract will be effective for”, 

while the contract value (Fig. 2, point 6) is “the price of the agreed transaction”. These 

elements are particularly useful. For example, law firms need to know when contracts are 

about to expire or become effective, in order to notify their clients. 

Governing Law, Jurisdiction, Legislation Refs: The governing law (Fig. 2, point 7), jurisdiction 

(Fig. 2, point 8) and legislation references specify “the country or state whose laws apply, the 

courts responsible to resolve disputes and the laws the contract depends on, respectively”. 

These elements are also particularly important, because contracts should be revised when 

the laws that affect them are amended or replaced. 

Clause Headings (Fig. 2, point 9): As already mentioned, clause headings indicate the topic of 

the clauses. Hence, clause headings are useful as they facilitate the identification of clauses 

where other contract elements are expected to be found. In case a contract does not include 

a table of contents, clause headings can also be used to construct it.  

 
Table 1: Extraction zones per contract element type. 
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Each type of contract element is almost always found in particular types of clauses or other 

zones of the contract. These zones are called extraction zones. For example, start dates can 

always be found in the preamble or cover page. Attempting to find the start date in other 

zones could unnecessarily increased the false positives during testing. It would also 

substantially increase the negative instances during training, resulting in a sizeable imbalance 

between negative and positive instances. Table 1 summarizes the extraction zones where 

contract elements of different types can be expected to be found, according to Chalkidis et 

al. (2017a).  

 

The process of contract element extraction starts with the following steps: 

1. Identifying the main parts of each contract (e.g., cover, table of contents, preamble) 

by using regular expressions. 

2. Identifying the clause headings by employing the extractors for this type of contract 

elements (the F1-score of the best clause heading extraction method is 0.97). 

3. Splitting the text after the recitals into headings. 

4. Identifying the topic of each clause using manually crafted lists of indicative words1. 

5. Identifying the extraction zones of each contract element type. 

The methods that extract the other types of contract elements (other than clause headings), 

which will be discussed in following chapters, are then applied only to the corresponding 

extraction zones of Table 1. 

 

For  each test or train contract and each contract element type, the tokens of the 

corresponding extraction zones that are parts of contract elements of that type (as indicated 

by the gold annotations) are treated as positive (test or train) instances, whereas the other 

tokens of the extraction zones are treated as negative (test or train) instances. The provided 

labeled datasets2 consisted of 993 contracts (893 training, 100 test) annotated with gold 

clause headings, and 2,461 contracts (2,111 training, 350 test) with gold annotations for the 

other 10 types of contract elements. Table 2 provides more information about the number of 

instances and tokens per element type in the training and test part of the dataset. Consult 

Chalkidis et al. (2017a) for further details about the dataset and the way it was constructed. 

 

 

Table 2: Number of instances and tokens per contract element type. 

 
1This lists of indicative words used to detect the topics of the clauses were constructed by inspecting only the training part of the 
labeled dataset. 
2The datasets are available at http://nlp.cs. aueb.gr/publications.html. 
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1.2 The purpose of this work 

 

The purpose of this thesis is to implement and evaluate  domain-agnostic data augmentation 

techniques that operate on the pre-trained word embeddings of the extraction zones (per 

contract element type), in order to synthetically augment the training set of six of the 

aforementioned contract element types: contract period, contract value, termination date, 

jurisdiction, contracting parties and effective date. We evaluate the data augmentation 

techniques indirectly, by evaluating the performance of the LSTM-based methods of Chalkidis 

et al. (2017b) with and without applying data augmentation to the training sets. 

 

1.3 Relation to Named-Entity Recognition 

Named-entity recognition (NER) is a subtask of information extraction that seeks to identify 

named entities in texts and classify them into pre-defined categories, such as the names of 

persons, organizations etc. Existing generic Named-Entity Recognizers are not directly 

applicable to contract element extraction, at least not without retraining them on contracts 

and possibly modifying their features and classes. For example, they can typically locate, for 

instance, a date but they cannot identify its type (start, effective or termination date). 

Consult Chalkidis et al. (2017a) for further details about the dataset and the way it was 

constructed. 

1.4    Notation 

The following table includes the abbreviations used throughout the remainder of this thesis: 

 
1.5 Outline 

The rest of the thesis is organized as follows: 

Chapter 2-Contract Element Extraction Methods: Description of the contract extraction 
methods of Chalkidis et al. (2017a, 2017b) that are used in this thesis.  

Chapter 3-Data augmentation: Description of the data augmentation task at hand and the 
techniques we implemented to synthetically expand the training dataset. 

Chapter 4-Experiments: Α description of how the experiments of this thesis were conducted 
and a presentation of the experimental results. 

Chapter 5-Conclusions and future work: Summary of the findings of the thesis and ideas for 
future work. 

https://en.wikipedia.org/wiki/Information_extraction
https://en.wikipedia.org/wiki/Named_entity
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Chapter 2 

 

Contract Element Extraction Methods  

This section presents the contract element extraction methods of Chalkidis et al. (2017a, 

2017b), especially their LSTM-based methods, which were employed in order to evaluate the 

data augmentation techniques. Chalkidis et al. treat contract element extraction as a 

sequence labeling task, where each element (in our case, word) of a given sequence (in our 

case, extraction zone) is classified by considering either a window of members around the 

element being classified or all the elements of the sequence. These contract element 

extraction methods of Chalkidis et al. involve linear classifiers that consider fixed-length 

sliding windows of the extraction zones (Chalkidis et al., 2017a), or bidirectional recursive 

neural networks that consider entire extraction zones (Chalkidis et al., 2017b) instead of 

sliding windows.  

 

2.1   [ƛƴŜŀǊ /ƭŀǎǎƛŬŜǊǎ hǇŜǊŀǘƛƴƎ ƻƴ {ƭƛŘƛƴƎ ²ƛƴŘƻǿǎ 

The first contract element extraction methods of Chalkidis et al. (2017a) involved Logistic 

Regression (McCullagh & Nelder, 1989; Yu et al., 2011) and SVM (Vapnik, 1995; Cristianini & 

Shawe-Taylor, 2000) classifiers3, one classifier per contract element type (11 classifiers in 

total). Each classifier scans each token of the corresponding extraction zones and it either 

classifies it as positive, if it decides that is part of a contract element of the corresponding 

contract element type, or as negative (all classifiers are binary).  When classifying a token, 

each classifier considers not only the particular token itself, but also a sliding window of 5-6 

tokens around it (11-13 tokens in total). The size of the window depends on the contract 

element type. The classifiers do not actually take words as input, but feature vectors. 

Chalkidis et al. (2017a) experimented with three alternatives to map the words to feature 

vectors: 

1. In the first case, each token of the sliding window is represented by a 200-

dimensional word-embedding (a dense real-valued vector). The word-embeddings 

were obtained by pre-training them on an unlabeled dataset of contracts using 

word2vec4. The embeddings of all the tokens in the sliding window were 

concatenated in one feature vector, given as input to the classifier. The methods 

which used Logistic Regression and SVM classifiers with word embeddings are called 

SW-LR-EMB and SW-SVM-EMB, respectively. 

2. In the second case, each token of the sliding window is represented by 17-21 hand-

crafted binary features. The first 14 features are all the same for all the contract 

element types. They are:  

¶ 4 binary features indicating if the token being classified consists of all 

upper, all lower, mixed case letters, or contains numbers. 

 
3 Τhe SCIKIT-LEARN implementations of LR and SVM (http://scikit-learn.org/) classifiers were employed. 
4 The Gensim’s (v. 0.12.4) implementation of word2vec (http://radimrehurek.com/gensim/), with 10 minimum occurrences per   
word and default values for other parameters was employed 

http://scikit-learn.org/
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¶ 7 binary features indicating the length of the token. Each feature 

corresponded to a specific length range, in characters: the first feature to 

1-2 characters, the second feature to 3-4 characters, and so on up to the 

last feature, which corresponded to more than 12 characters. 

¶ 3 binary features indicating if the token is numeric, a special character, or 

stop-word.  

               The features that differ per contract element type indicate if the token is frequently 

a part or near parts of a particular element type.  Furthermore, given that the POS 

tag of each token of the labeled dataset is provided5 (45 distinct POS tags in total), 45 

additional binary features per token can be used, along with previous hand-crafted 

ones, to indicate the POS tag of the token. The feature vectors of all the tokens in the 

sliding window are again concatenated in one feature vector, given as input to the 

classifier. The methods that employ Logistic Regression and SVM classifiers with the 

hand-crafted and POS-tag features are called SW-LR-HCF and SW-SVM-HCF, 

respectively. 

3. In the third case, each token of a sliding window is represented a 200-dimensional 

word embedding, a 25-dimensional POS tag embedding and 17-21 hand-crafted 

binary features. The word embeddings and the hand-crafted features are the same 

as in the previous two cases above. The POS-tag embeddings were pre-trained by 

applying word2vec to 50,000 contracts of the same unlabeled dataset that was used 

to pre-train the word embeddings; however, the only difference was that the words 

had been replaced by their POS tags. The methods that employed Logistic Regression 

and SVM classifiers with word embeddings, POS tag embeddings and hand-crafted 

features are called SW-LR-ALL and SW-SVM-ALL, respectively. 

 

 
 

Table 3: F1-scores of linear classifiers operating on sliding windows 
 
Table 3 shows the F1-scores of the methods described above. It can easily be observed that, 
in the vast majority of the element types, the best scores resulted from the combination of 
linear classifiers with hand-crafted features, word and POS tag embeddings. 
 
 

 
 

 

5 The POS tag of each token was obtained via NLTK’s (v. 3.2.1) default POS tagger (http://nltk.org/). 

http://nltk.org/
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2.2   Deep Learning Methods 

In addition to simple linear classifiers, Chalkidis et al. (2017) experimented with recurrent 

neural networks (RNNs) were applied. RNNs iteratively perform the same computation 

for every element of a sequence (the words of an extraction zone in our case), with the 

output at each time step depending on the previous computations. Another way to think 

about RNNs is that they have a “memory” which captures information about what has been 

calculated so far. An RNN unrolled over time is depicted in its simplest form below (Fig.3): 

 

 
Figure 3: A typical RNN, unrolled. 

 

By unrolled we simply mean that the network is written out for the complete sequence, as if 

it were non-recurrent. For example, if the sequence is a sentence of five words, the network 

would be unrolled into a 5-layer neural network, one layer for each word. Notice, however, 

that the weights of the network would be shared (they would be the same) across all five 

layers. 

 

RNNs take as input an ordered sequence (of arbitrary length) of n ind -dimensional vectors 

1:n 1( ,..., )nx x x= ,e.g. word embeddings, and produce an ordered sequence of n outd -

dimensional vectors 1: 1( ,..., y )n ny y= , where each iy  “summarizes” the sub-sequence 

1: 1( ,..., x )i ix x= .The RNN is defined recursively, by means of a function f  (usually a 

nonlinearity such as sigmoid, tanh or ReLU) taking as input a hidden state vector 1is-  and an 

input vector ix  at time step i  and returning a state vector is . The state vector is  is then 

mapped to an output vector iy  using a simple deterministic function RO . The initial state 

vector, 0s , is also an input to the RNN, and it is often assumed to be a zero vector. Given an 

input sequence 1:x n , the formulas that a standard RNN uses are the following: 

1( b ),i rec i x i ss f w s w x-= + +  

( ) w b ,i R i y i yy O s s= = +  

i [1,n]," Í  

x ,ind

iÍ  

y .outd

iÍ  

 

https://reference.wolfram.com/language/ref/Tanh.html
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
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A bidirectional-RNN (BIRNN) is an extended version of an RNN, which allows, the prediction 

for the thi element of a given sequence to be based not only on the previous elements, but 

also on the following ones.  The BIRNN maintains two separate states, b

is  and f

is , for each 

input position i . The forward state f

is , at time step i , is based on 1x ,..., ix  , while the 

backward state b

is  is based on x ,...,n ix . The forward and backward states are generated by 

two different RNNs, which are fed the input sequence 1:x n  and its reverse version, 

respectively. Given an input sequence 1:x n , the formulas that a BIRNN uses are the following:                                     

1(w b ),f f f f f

i rec i x i ss f s w x-= + +  

1(w b ),b b b b b

i rec i x i ss f s w x-= + +  

[ ; ] [ ; ]f b f f f b b b

i i i y y y y y yy y y w s b w s b= = + +. 

 

The BIRNN is very effective for sequence tagging tasks and was introduced to the NLP 

community by Irsoy and Cardie (2014). RNNs or BIRNNs can also be stacked in layers. Each 

layer, i.e. RNN (or BIRNN), takes as input the output of the RNN (or BIRNN) below it, except 

for the first RNN (or BIRNN), which takes as input the sequence of vectors :x i n . 

 

 RNNs and BIRNNS that use the simple formulas above face the ‘vanishing gradient’ problem. 

The quickly diminishing error signals in the back-propagation process do not allow them to 

capture long-range dependencies. The problem was explored in depth by Hochreiter (1991) 

and Bengio et al. (1994). Long Short Term Memory networks (LSTMs) are a special kind of 

RNN, capable of learning long-term dependencies to a larger extent. They were introduced 

by Hochreiter & Schmidhuber (1997). In LSTMs, the state vector
js , at time-step j , is 

composed of two components, the memory and the hidden state component jh . The 

memory component
jc  preserves the long-term memory, with the help of gates and prevent 

error gradients from vanishing, across time.  At each time-step, a gate is used to decide how 

much of the new input should be written to the memory component, and how much of its 

current content should be forgotten. There are three gates, i , f , and o , controlling for input 

,forget ,and output. The forget and input gates control how much of the previous memory 

and the proposed update should be maintained, respectively, whereas the output gate 

controls the value of 
jh (i.e., the output corresponding to thj sequence position). The 

formulas that a LSTM recursively computes the following formulas (Goldberg, 2017):  

[ ; ],j j js c h=  

1 ,j jc f c i z-= +  

()h tanh ,j jo c=  

( )1 ,xi hi

j j ii w x w h bs -= + +  

( )1 ,xf hf

j j ff w x w h bs -= + +  

( )1 ,xo ho

j j oo w x w h bs -= + +  

http://people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf
http://people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf
http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
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( )1z tanh ,xz hz

j j zw x w h b-= + +  

() ,j L j jy O s h= =  

,h , , , ,z ,hd

j jc i f o Í  

2
,hd

js Í  

,xd

jx Í  

w ,w ,w ,w ,

w ,w ,w ,w ,

h h

h x

d dhz hi hf ho

d dxz xi xf xo

³

³

Í

Í
 

b ,b ,b ,b ,hd

z i f oÍ  

where σ is the logistic sigmoid function and denotes the element-wise multiplication. 

LSTMs are responsible for many state-of-the-art sequence modeling results. 

 

 In their more recent work, Chalkidis et al. (2017b) employed a bi-directional LSTM (BILSTM). 

A BILSTM consists of two LSTMs, a forward and a backward one, which are fed the input 

sequence 1:x n  and its reverse version, respectively. The advantage of BILSTM compared to 

LSTM is that it preserves information from both past and future as it maintains, similarly to 

BIRNNs, two separate states, 
f

js  and
b

js , for each input position j . Each LSTM uses the 

formulas mentioned above. In the end, the outputs, 
f

jy  and
b

jy , obtained from the two 

LSTMs are concatenated into one vector [ ; ]f b

j j jy y y= . On top of the output vector of the 

BILSTM, Chalkidis et al. (2017) connected a single neuron. Each vector 
jy  passed through a 

sigmoid activation function in this layer:  

( )j y j yp w y bs= + . 

If 0.5jp > ,then the thj  token of a given sequence  is classified as positive ,i.e., its tag is 1, 

because it has more than 50% probability to be part of the element type which we wish to 

extract. The method described above is called BILSTM-LR.  

 

It should be noted that for each contract element type and for each LSTM-based method 

described in this section, a separate extractor is constructed (11 extractors per method in 

total).  Moreover, each extractor takes as input a sequence of concatenated word, POS tag6, 

and token shape embeddings; the latter are 5-dimensional embeddings pre-trained on 

approximately 2,000 contracts from the unlabeled dataset, containing information regarding 

the form of the token, for example, if uppercase letters or numbers are included in a token. 

Each concatenated word (token) embedding represents a word of an extraction zone7 of the 

element type considered by the particular extractor. The BILSTM converts each (concatena- 

 
 6Ιn these methods the word  and POS tag embeddings are the same pre-trained ones on the unlabeled dataset of contacts by 

the word2vec algorithm, which were used in the methods involving linear classifiers . The words, for which no word embedding 

was available, were mapped into random embeddings.  
7Ιn these methods the word sequences (in the form of vector sequences), with which the extractors are fed, are equivalent to 

entire export zones and not sliding windows of 11-13 tokens as in the case of the linear classifiers. 

 



16 
 

ted) token embedding into a context-aware embedding, which eventually passes through a 
Logistic Regression (LR) layer to estimate the probability that the particular token is positive 
(i.e., part of the corresponding contract element type) to be calculated. Each (concatenated) 
input token embedding is a 230-dimensional vector, whereas the hidden states of each LSTM 
(both forward and backward), are 300-dimensional vectors. Dropout (Srivastava et al., 2014) 
is also applied after the token embeddings layer, before the BILSTM chain, and again before 
the Logistic Regression layer, in order to avoid overfitting. More specifically, dropout zeroes 
each dimension of an input sequence of the corresponding sequence of vectors  with a 
probability tuned via k-fold cross-validation. Furthermore, Glorot initialization (Glorot & 
Bengio, 2010), binary cross-entropy loss, and the Adam optimizer (Ki- ngma & Ba, 2015) are 
used to train each extractor.  
 

  
 

 
Figure 4: BILSTM-(LSTM)-LR architecture for sequence labeling. 

 

The second stacked LSTM-based method of Chalkidis et al. (2017b) was called BILSTM-LSTM-

LR. The only difference with the previous method is that it has an additional LSTM between 

the BILSTM and the Logistic Regression layer, which is fed with the 600-dimensional context-

aware token embeddings derived from the BILSTM. The figure above (Fig. 4) depicts the 

BILSTM-LSTM-LR (and BILSTM without the upper LSTM boxes) architecture for sequence 

labeling.  

 

The last LSTM-based method of Chalkidis et al. (2017b) is called BILSTM-CRF. Linear-chain 

Conditional Random Fields (CRFs) layer (Lafferty et al., 2001) is used in top of the BILSTM. 

Roughly speaking, the CRF layer predicts a label for each element of the input sequence by 

considering the predictions for its neighbors. The linear-chain CRF is quite popular in natural 

language processing and it is mostly used in sequence labeling tasks. In our case the linear-

chain CRF layer predicts the label (class) of each one of the tokens in an extraction zone, 

instead of using a Logistic Regression layer, by also taking into account the predictions for the 

neighboring tokens. The CRF layer’s objective is to assign a probability to each possible tag 

https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
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sequence { }1,..., t 0,1
n

nt t= Í  over a word sequence, 1,..., nw w . The optimum label 

assignment is the one that maximizes the following joint conditional probability (Chalkidis et 

al., 2017b): 
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where 600

jy Í  is the embedding produced by the BILSTM chain (after dropout) that 

corresponds to token 
jw , 600 2 2 2 2 2, , ,V U a b³ ³Í Í Í Í  are the parameters to be 

learned , and ktis a 2-dimensional one-hot vector indicating the value of kt (2 possible 

values).  

 

Figure 5:  BILSTM-CRF architecture for sequence labeling. 

 

Given the i.i.d. assumption and assuming that T  training sequences are available, the joint 

conditional log-likelihood of the correct label assignments of all the training sequences is the 

following: 

 

( ) ( )1 1

1

V, , ,b log (t ,..., t | ,..., ;V, , ,b) ,
T

i in n

i

l U P w w Ua a
=

=ä  

where t ij
 the correct tag of the thj word of the thi sequence. The goal is to learn the 

parameters ,U, ,V a b which maximize the joint conditional log-likelihood ( )V, , ,bl U a . 

Training, in this case, requires the combination of dynamic programming or beam search 

decoding with backpropagation; see Yao et al. (2014) and Andor et al. (2016).  The figure 

above (Fig.5) shows the BILSTM-CRF architecture.  
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The results of the LSTM-based methods of this section (with and without augmentation) will 

be presented in following sections. 
 

2.2 Related work  

LSTM-based methods have been successful in various sequence labeling tasks. For example, 

Ling et al. (2015) employed stacked LSTM-based models for POS-tagging. The first layer of 

their model was a BILSTM, which operated on the characters of the tokens and constructed 

word embeddings aiming to capture morphological features of the tokens. The resulting  

morphology-aware vectors were then combined with pre-trained word embeddings, 

produced by employing  word2vec, and were passed on to the second LSTM or BILSTM layer 

(each with a softmax), to perform language modeling and POS tagging respectively.  

 

Huang et al. (2015) used LSTM-based models combined with CRF layers to perform POS 

tagging, chunking and named-entity recognition (NER). Ma and Hovy (2016) used a similar 

model consisting of a BILSTM and a CRF layer for POS tagging or NER purposes, with the only 

difference being that they fed their model with embeddings produced by a Convolutional 

Neural Network (CNN), which operated on characters.  

 

Regarding the extraction of information from legal documents, mostly linear methods and 

hand-crafted extraction rules have been applied so far, with the exception of Chalkidis et al. 

(2017b), who also considered LSTM-based methods as already discussed. Curtotti and 

Mccreath (2010) classified lines of Australian contracts into 32 classes, four of which 

correspond to classes  extracted by Chalkidis et al. (2017a,2017b); the four classes are: 

contract titles, clause headings, contracting parties and start date. Curtotti and Mccreath 

employed several algorithms, such as SVM and decision trees, along with hand-crafted rules. 

Indukuri and Krishna (2010) also used SVMs to identify the clauses of each contract and 

determine clauses that describe payment terms. Gao et al. (2012) used only manually crafted 

rules to locate exception clauses in contracts.  
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Chapter 3 

 

Data Augmentation  

Labeled training datasets are crucial for any supervised machine learning algorithm, 

especially, for deep neural architectures which are susceptible to overfitting. Deep learning 

has resurged and flourished mostly in domains where large training datasets are readily 

available. The lack of large labeled datasets in some domains, including the legal domain 

which this work focuses on, prevents state-of-art deep learning methods from performing as 

well  as in others domains where much larger labeled datasets are available. The process of 

acquiring more labeled data requires investment of human effort; hence, the need for 

automated, less time-consuming and cheaper methods emerges. 

 Data augmentation is the practice of applying transformations to existing training datasets in 

order to synthetically expand them. In this chapter, we discuss about data augmentation 

techniques, including where and how they have been applied so far and, more importantly, 

we describe the methods that were used in this thesis to augment the contract element 

extraction dataset of Chalkidis et al. (2017a, 2017b). The data augmentation techniques of 

this thesis involved perturbing, interpolating or extrapolating existing examples (training 

instances). For simplicity, we chose to operate in the input feature space, meaning the word 

embeddings level of the LSTM-based methods of Chalkidis et al., instead of working in the 

vector space of higher layers, such as the space of the hidden states produced by the LSTMs 

or BILSTMs of Chalkidis et al. We note that Bengio et al. (2013) and Ozair & Bengio (2014) 

claimed that augmenting the training data by operating in the representation spaces of 

higher layers (e.g., perturbing, interpolating, or extrapolating the points of the manifold that 

a deep neural network maps the input feature space to) makes it less likely to augment the 

dataset with non-realistic samples. We note, however, that the word embeddings level, 

where our data augmentation techniques operate, is already a learned level and, thus, may 

have similar properties, for data augmentation purposes, with higher layer representations. 

For example, the word embeddings are pre-trained on legal texts, hence they already capture 

morpho-syntactic and semantic properties of words occurring in legal texts; consequently, 

perturbing, interpolating, or extrapolating the sequence of word embeddings of a training 

extraction zone may lead to sequences of word embeddings that, although synthetic, may 

still be realistic, in the sense that they may correspond to word sequences that are likely to 

be found in extraction zones of the same contract element type. 

We were mostly interested in augmenting the training sets of contract element types that 

had few training instances. For completeness, however, we also applied the data 

augmentation techniques to the training sets of some contract element types with more 

training instances. In both cases, we wanted to examine if the performance of the 

corresponding contract element extractors could be improved and to what extent.  
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3.1 Related Work on data augmentation 

This section provides a review of related work that has applied data augmentation 

techniques to existent training data to improve the performance of the models induced from 

the training data. For many machine learning tasks, data augmentation has been employed 

as a tool against overfitting while training supervised learning models. The more (and more 

diverse) examples the models see during training, the better they generalize, and 

consequently the better they predict when presented with new instances.  

Salamon and Bello (2016) applied various audio data augmentations (deformations), while 

training a deep CNN for environmental sound classification. The deformations involved time 

stretching (i.e., slowing down or speeding up the audio sample), pitch shifting, and inserting 

background noise (i.e., mixing the existing sound samples with another recording containing 

background sounds from different types of acoustic scenes) or dynamic range compression. 

Each deformation was applied directly to the audio signal prior to converting it to the input 

representation used to train the neural network. Combined with data augmentation, their 

proposed model produced state-of-the-art results for environmental sound classification. 

Data augmentation is also very popular for visual recognition tasks, due to the fact that the 

generation of new data can be easily achieved by simple image manipulations, such as 

shifting, scaling, rotation, mirroring, adjusting contrast or grayscale, or randomly cropping. 

LeCun et al. (1998), while training LeNet5, or Krizhevsky et al. (2012), while training AlexNet8, 

applied a series of such transformations to the input images in order to improve the 

performance of these models.  

As far as NLP tasks are concerned, one of the most commonly used method to augment a 

text dataset is to replace words with their closest synonyms. Mueller and Thyagarajan (2015) 

augmented their training dataset by employing thesaurus-based augmentation while training 

a siamese adaptation of the Long Short-Term Memory (LSTM) network to assess semantic 

similarity between sentences. Mueller and Thyagarajan generated additional training 

examples by replacing random words of the training dataset with one of their synonyms 

found in WordNet (Fellbaum, 1998); the best results were obtained by training their model 

on the augmented dataset. Kolomiyets et al. (2011), in an attempt to improve the 

performance of the Logistic Regression classifier they used to identify time expressions, 

augmented their training dataset by substituting words found in the training dataset with 

likely synonyms. The synonyms were selected both via WordNet, and via predictions from 

the Latent Words Language Model (LWLM) (Deschacht and Moens, 2009).   

The methods mentioned above are domain-specific ones (e.g., for image classification, or 

sentence similarity). Domain-agnostic methods have also been employed. Lu et al. (2006), in 

order to enhance the classification performance of an SVM model they employed for 

biomedical text analysis, applied a semi-supervised learning algorithm described by Zhu et al. 

(2005). This algorithm is based on the theory of Gaussian random fields, which allows the 

labels of the training cases to be propagated to the unlabeled data probabilistically. 

Schlüter& Grill (2015), apart from shifting the pitch of the audio signal, time stretching, vary- 

8Both models were used in image recognition tasks. 
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ing the loudness of the audio signal or applying random frequency filters, also applied 

domain-agnostic methods such as adding Gaussian noise to the input, or interpolating 

between samples in input space. The domain-agnostic methods, unfortunately, did not work 

as well the domain-specific ones.  

DeVries and Taylor (2017) applied domain-agnostic techniques to various datasets, such as 

images of hand-written characters or audio clips. Based on the hypothesis of Bengio et al. 

(2013) and Ozair & Bengio (2014) as already discussed, DeVries and Taylor used a sequence 

autoencoder to produce higher level representations (feature vectors), and then applied 

simple transformations to the latter to generate new data. The autoencoder consists of two 

parts, an encoder, which receives each input and, via nonlinear transformations, converts it 

into a new representation, and a decoder which, subsequently, takes the new representation 

and tries to reconstruct the original input in the same way. As a sequence autoencoder they 

used a stacked LSTM with two layers for both the encoder and decoder. In order to augment 

the dataset, they fed the sequence autoencoder with each available sample, extracted the 

encoder’s hidden state vector at the final time step (i.e., the projection of the raw input to 

the feature space) and applied a set of transformations on the new data points such as 

adding noise, interpolating or extrapolating between them. The following figure (Fig. 6) 

shows an example of what it is produced if we interpolate (a) or extrapolate (b) between the 

feature vectors of two hand-written characters. 

 

Figure 6: Interpolation (a) and extrapolation (b) between two handwritten characters. The 

original characters are shown in bold. 

The experimental results of DeVries and Taylor showed that the most effective method was 

extrapolating between neighbor feature vectors representing existing samples, whereas the 

rest of the methods (i.e., interpolating between them or adding random noise) proved less 

effective not only comparing with extrapolation, but also with the case of not augmenting 

the available dataset at all.  

Wang and Yang (2015) improved significantly the performance of SAGE (Eisenstein et al., 

2011), a state-of-the-art mixed-effect topic model that they used to conduct behavioral 

analysis using social media text (tweets), by adopting a novel approach of creating additional 

training instances. Wang and Yang generated new training instances by searching the nearest 

neighbor word, in terms of cosine similarity between word-embeddings, for each token in a 

tweet and then replacing each word by its nearest neighbor.  
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3.2 Data augmentation methods used in this thesis 

For some of the contract element types of the dataset of Chalkidis et al. (2017a, 2017b), we 

hypothesized that the number of instances (Table 2) was insufficient to train the LSTM-based 

extractors. More specifically, we believed that the lack of data afflicted the performance and, 

in some cases, even the robustness of at least some of the LSTM-based extraction methods 

(Section 2.1.2) and this is why this data augmentation work started. We note, however, that 

there does not seem to be a consistent relation between the number of samples of each 

contract element type and the performance of its extractors. Contract period was the 

element type with the lowest number of available samples, and also with the worst results. 

Termination date was the second lowest element type in number of samples, and its 

extractors performed better than those of contract period. The performance of the 

extractors for effective date was among the best (its highest F1-score was 0.97), even though 

effective date was the third lowest in number of samples. For Contract Value, more than 

twice the number of instances was provided, compared with Contract Period, and its 

extractors performed better than those corresponding to Contract Period. Regarding 

Jurisdiction, its number of instances was significantly higher, and the performance of its 

extractors was better compared to the aforementioned element types. Contracting Parties is 

the second highest in data availability element type and its performance was also among the 

best. 

 

We chose to apply domain-agnostic data augmentation techniques to the word embeddings 

of the training extraction zones of the aforementioned contract element types, in order to 

see if and how the additional, synthetically created data would affect the performance of the 

extractors of those contract element types, whose results and sizes of available data differ 

from each other. Each dataset is split in 3 parts for training, validation and testing. We 

operated on the training part of each dataset. For words with no available word2vec 

embeddings, Chalkidis et al. use a randomly generated embedding. 

We increased the number of training instance sizes in two ways (before and while training), 

depending on the data augmentation technique. In the case of adding Gaussian noise, the 

number of training samples is increased during training. More specifically, another layer  is 

added to the BLSTM-based extractors after the token embedding layer and before dropout 

being applied, which receives the original training sequences of token embeddings as input 

and adds Gaussian noise to the word embedding of each token of each training sequence 

with probability equal to 50% . In this way, each original training sequence may be modified 

completely, partially, or not at all in each epoch. Also, the noise added (if it is added) to the 

word embedding representing a particular token of a training sequence differs from epoch 

to epoch.  Hence, the BILSTM-based extractors are prevented from translating the added 

noise uniformly, as it would probably happen if the noise was added once before training. In 

the case of applying interpolation or extrapolation, we increased the number of training 

extraction zones (each viewed as a sequence of embeddings) of each dataset before training 

by 50%, i.e., we randomly selected half of the existing training extraction zones, and created 

a new synthetic training extraction zone from each selected one.  In order to create a new 

training extraction zone, we iterated over the tokens of the original extraction zone, 

excluding line breaks, punctuation, brackets, tokens containing digits, other special 
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characters etc., as well as tokens we did not have pre-trained word embeddings for, 

applying one of the transformations we describe below to the word embedding of each 

token. The resulting new synthetic word embedding was then concatenated with the POS 

tag and token shape embeddings of the original token. No transformation was applied to 

the POS tag and token shape embeddings, because we wished the properties of these 

embeddings to remain the same as in the original tokens, to avoid generating synthetic 

embeddings that would be too far from the original ones. It would also be impossible to 

produce new POS tag and token shape embeddings, given that the new synthetic word 

embeddings do not necessarily correspond to actual words.  

 

3.2.1 Gaussian Noise 

 

The simplest way to transform the original word embeddings of an extraction zone is adding 

Gaussian noise to them. In our experiments, when an extraction zone passes through the 

additional layer we described above, for each word embedding of the particular extraction 

zone, a new noise vector is generated in each epoch with probability equal to 50% by 

drawing from a Gaussian distribution with mean equal to zero and standard deviation equal 

to 0.5 and then the noise vector is added to the original word embedding. More specifically, 

the element  iw¡ of the thi  dimension of the new word embedding was computed as follows: 

,

(0,0.5),

i i i

i

w w x

x N

¡= +
 

 

where iw  denotes the element of the thi  dimension of an original word embedding and  ix  

denotes  the element of the thi  dimension of the  noise vector drawn from a Gaussian 

distribution with zero mean and standard deviation = 0.5.  

 

 

3.2.2 Interpolation and Extrapolation 

 We also employed two alternative approaches for data augmentation, according to which, 

roughly speaking, we can create a new word embedding by finding the K nearest neighbors 

(words with the closest word embeddings) of the original embedding, computing the 

centroid of the K nearest word embeddings (the average of the neighboring embeddings) and 

finally interpolating or extrapolating between the original word embedding and the centroid. 

We use cosine similarity when computing embedding distances. Recall, also, that each token 

of an input training sequence (training extraction zone) is manually labeled as positive or 

negative, with respect to a contract element type, depending on whether or not it is part of a 

contract element of the particular type. The same word may be labeled as positive in one 

training sequence and negative in another. Additionally, if a word is encountered more than 

once in the same sequence, it is possible for the occurrences of the word to have different 

labels.  
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When searching for the K nearest words of a particular word that we wish to replace in a 

training extraction zone, we actually search the embeddings of words that occur with the 

same label in every training extraction zone of the same contract element type. For instance, 

let us assume that “This agreement shall be governed and construed in accordance to the 

Laws of England & Wales” is a training extraction zone of the Governing Law contract 

element type, and that the token “laws” is labeled as positive. Searching for the two nearest 

neighbors in the entire vocabulary (meaning words we have pre-trained embeddings for) 

without taking into consideration the (positive) label of “laws” in the particular extraction 

zone, would return “jurisdictions” as the second closest neighbor. However, “jurisdictions” is 

never a positive token in the training extraction zones of Governing Law, i.e., it has never 

been encountered as part of a Governing Law element. Hence, including “jurisdictions” in the 

centroid would be a poor choice; for example, when using interpolation, it would contribute 

towards replacing “laws” by words that are close to “jurisdictions”, and the new word would 

still be labeled as positive. This is like feeding the extractors with an incorrect synthetic 

example. Moreover, in an attempt to create syntactically realistic sequences, we created 18 

broader groups out of the 45 existing POS tags. For example, one group included all the types 

of nouns, such as singular (proper) nouns, plural (proper) nouns, another group included all 

the types of verbs, such as verbs in past or present tense, etc., and we did not allow words 

belonging to a POS tag group different than the focus token’s group to be included in its K 

nearest neighbors; by focus token we mean the token to be replaced.  

More concretely, the steps we followed in order to create new training sequences (training 

extraction zones) by applying interpolation or extrapolation are the following: 

1. For each token t (excluding line-breaks or special characters, such as comma, period, 

bracket, tokens containing digits etc.) in the training dataset of a particular contract 

element type e, we found the 5 nearest neighbors (in terms of cosine similarity of 

word embeddings) of t, searching for neighbors in all the other tokens (with the same 

exclusions) of the dataset of e, but considering only tokens in the same POS tag 

group and binary class (positive or negative) as t. 

2. In order to create a new training sequence (training extraction zone) based on an 

existing one, we iterated over the tokens of the existing sequence twice. In the first 

iteration, for each token t of the sequence (again excluding line-breaks or special 

characters, such as comma, period, bracket, tokens containing digits etc.), we 

randomly chose 2 out of its 5 nearest neighbors (found as in step 1 above) and 

created the centroid (average) of the 2 selected neighbors. We randomly chose 2 of 

the 5 available nearest neighbors, because we wanted their centroid to differ to a 

larger extent from sequence to sequence, to avoid generating very similar synthetic 

examples. In the second iteration, for each token t of the original sequence, we used 

the word embedding of t and the centroid of the neighbors of t (calculated during the 

first iteration) to generate a new embedding by interpolating or extrapolating 

between the embedding of t and the centroid. The formula we used when we 

applied interpolation was the following: 

 

(w ) ,j k j jw w wl¡= - +  
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               where w k  , 
jw  and 

jw¡ are the centroid , original word embedding and synthetic 

word embedding corresponding to the thj member of the sequence, respectively, 

while lis a parameter in the range [0,1]  that controls the degree of interpolation. 

Similarly, when we employed extrapolation, we used the following formula: 

(w ) .j j k jw w wl¡= - +  

In case of extrapolation, λ is a value in the range [0,¤) which controls the degree of 

extrapolation. Ιn our experiments, we tried various values for lon the validation data 

of each element type, and the best results were obtained for 0.8l= or 0.5,in case 

of interpolation, and 0.2l= or 0.5,in case of extrapolation, depending on the 

dataset. In the following figure, we illustrate how interpolation (a) and extrapolation 

(b) work. 

 

Figure 7: Interpolating (a) or extrapolating (b) between the centroid and the embedding of the 

focus word to create a new embedding. 

 

In Figure 7, assuming that the focus token (the token we wish to replace) is the word “laws” 

(blue point) and the words “legislation” and “law” (green points) are the two randomly 

chosen neighbors (among the 5 nearest ones) of “laws”, which are used to generate a 

centroid (red point). We can see the new data points (purple points) constructed by 

interpolating (point np1 in Fig. 7a) or extrapolating (point np2 in Fig. 7 b) between the 

centroid and the word embedding of the word “laws”. 
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Chapter 4 

 

Experiments 

We performed experiments for each combination of extractor, augmentation technique and 

augmentation size. We did not experiment with all the contract element types, due to time 

constraints. We used Glorot initialization (Glorot & Bengio, 2010), binary cross-entropy loss, 

and the Adam optimizer (Kingma & Ba, 2015) similarly to Chalkidis et al. (2017b), to train 

each extractor, with early stopping examining the validation loss. Furthermore, we used the 

same hyper-paremeters, such as dropout rate, learning rate, and batch size for each element 

as in the work of Chalkidis et al. (2017b). The additional parameters l and K , which control 

the degree of interpolation or extrapolation and indicate the number of nearest neighbors 

based on which we generated each centroid (Section 3.2.1), respectively, were trained in the 

same way as the aforementioned hyper-parameters had been trained in the work of 

Chalkidis et al. (2017b), i.e., 3-fold cross validation on 80% of the training extraction zones (of 

the corresponding contract element type). The evaluation of each combination of extractor, 

augmentation technique and augmentation size is based on the decisions of the extractor per 

token. The performance measures are the following: 

1. precision : 
TP

P
TP FP
=

+
 

2. recall : 
TP

R
TP FN
=

+
 

3. F1-score: 1

2
,

P R
F

P R

Ö Ö
=
+

 

 where TP, FN and FP are the true positives (i.e., correctly classified as positive tokens), false 

negatives (i.e., incorrectly classified as negative tokens), and false positives (i.e., incorrectly 

classified as positive tokens), respectively. In order to show if and how each applied 

augmentation technique affected the performance of each extractor, we also provide the 

difference in performance in terms of F1 score, more specifically we compared the F1 scores 

of each extractor (for each element type) with the original and augmented training dataset, 

respectively. Along with the performance of each technique, we also wanted to see if the 

techniques improved the robustness of the extractors, so we calculated the standard 

deviation of the F1–score for each combination of extractor, augmentation technique and 

augmentation size9. It can be observed that none of the augmentation techniques leads to 

consistently better results comparing to the results before data augmentation. Overall, 

however, interpolation appears to be the best among the three data augmentation 

techniques. 

9 We ran each type of experiment, i.e., for each extractor, augmentation technique and augmentation size 3 times. In Table 5, 

precision, recall and F1-score are averaged over the corresponding results of the multiple runs. 
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Adding Gaussian noise is the technique with the worst performance. Combining a BILSTM-

CRF extractor with any of the domain-agnostic augmentation techniques produced the worst 

results, as, in the majority of cases, the performance per element was adversely affected, and 

at the same time, no increase in F1 score exceeded 2 percentage points. Moreover, a 

tremendous decrease of 38 percentage points and a standard deviation of 13% were 

recorded in the F1 score of the BILSTM-CRF extractor for Termination Date when combined 

with adding Gaussian noise. Overall, interpolation was the technique that produced the most 

frequently positive results when using BILSTM-CRF, but never leading to an improvement 

larger than 2 percentage points in F1 score, and causing a maximum deterioration of 4 

percentage points (for Contract Period).  

 In the case of BILST-LSTM-LR extractors, the only case of a tremendous decrease (of 29 

percentage points) was recorded in the F1 score of the BILSTM-LSTM-LR extractor for 

Termination Date when combined with adding Gaussian noise. Except for the 

aforementioned case, no other decrease in F1 score exceeded 2 percentage points. Adding 

Gaussian noise affected adversely or not at all the performance of the BILSTM-LSTM-LR 

extractor, while applying interpolation or extrapolation produced both positive and negative 

results, across the element types, with the number of positive and negative results being 

almost equal. Noteworthy was the improvement in terms of performance and robustness of 

Contract Period’s BILST-LSTM-LR extractor combined with extrapolation (F1 score’s increase 

reached 10 percentage points while its standard deviation was only 3%).  

Data augmentation worked much better overall with the BILSTM-LR extractors. The increase 

in F1 score ranged from 2 to 5 percentage points. Each method produced both positive and 

negative results, across the element types, with the number of positive results exceeding 

slightly the number of negative ones (in total). Again, interpolation was overall the best 

among the three data augmentation techniques. Notably, adding Gaussian noise 

deteriorated the F1 score of Termination Date by 27 percentage points and extrapolation 

deteriorated the F1 score of Contract Period by 11 percentage points.   

Studying the results of Table 4 per contract element type, we can observe that Contract 

Parties (the element type with the second highest number of instances) was not affected by 

any form of data augmentation. Jurisdiction (an element with sufficient data whose 

performance before data augmentation was very satisfying and stable) had only some minor 

positive changes with respect to F1 score that did not exceed 1 percentage point. Contract 

Value (the second worst element in performance even before data augmentation, but only 

the fourth lowest in number of instances) was affected more intensely than the 

aforementioned elements, however not consistently. Termination date (an element with half 

the number of instances compared to Contract Value, but with significantly better 

performance before data augmentation) showed very pronounced fluctuations in the 

performance of its extractors with respect to F1 score, especially in the case of adding 

Gaussian noise. Effective Date (an element with more than impressive performance before 

data augmentation, despite its small number of instances) was slightly, but inconsistently 

affected. Finally, Contract Period (the element with the worst and least robust performance 

before data augmentation, and with the lowest number of instances) performed either 

unexpectedly well or terribly badly after data augmentation.  
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To conclude, none of the three data augmentation techniques worked well for every type of 

extractor and element we experimented with, probably because contracts are complex and 

difficult to understand documents, and domain-agnostic augmentation techniques cannot 

preserve the semantic and syntactic properties of the original contracts when creating new 

synthetic training instances, or because applying the augmentation methods at this early 

stage, i.e., at the level of word embeddings, did not allow the techniques to produce 

consistent results.   
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Chapter 5  

 

Conclusions and future work 

In this thesis, we explored three domain-agnostic data augmentation techniques applied to 

legal documents, more specifically contracts. We experimented with (a) adding Gaussian 

noise to the word embeddings of training instances differently in each epoch, (b) 

interpolating or (c) extrapolating between the word embeddings of existing training instances 

and neighboring embeddings of words with similar properties (class, POS tag group) obtained 

from other existing training instances of the same contract element type. The evaluation of 

these three techniques was based on how they affected the performance of the BILSTM-

based extractors proposed by Chalkidis et al. (2017b). We showed that interpolation was the 

technique that produced the best results, compared to extrapolation and adding Gaussian 

noise.  However, none of the three techniques was consistently successful, regardless of the 

type of LSTM-based extractor it was combined with. Furthermore, the contract element 

types whose performance was very good before data augmentation were slightly or not 

affected by these techniques (e.g., Contract Parties, Effective Date, Jurisdiction). Regarding 

the other types of contract elements, the results after data augmentation were affected 

more intensely, however inconsistently.  

Future work could explore domain-specific augmentation techniques. Alternatively, it could 

apply the techniques of this thesis to the vector spaces of higher layers, for example to the 

output of the lower BILSTM layer of the methods of Chalkidis et al. (2017b), as opposed to 

applying them to the input word embeddings. 
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