
Master Thesis
in

Data Science

A Prompting-based Encoder-Decoder
Approach to Intent Recognition and Slot

Filling

Panagiotis Tassias

Academic
Supervisor:

Ion Androutsopoulos
Department of Informatics

Athens University of Economics and Business

Capstone
Project

Supervisor:

Themos Stafylakis
Omilia Ltd

November 2021



Panagiotis Tassias

A Prompting-based Encoder-Decoder Approach to Intent Recognition and Slot Filling

November 2021
Supervisors: Ion Androutsopoulos (AUEB), Themos Stafylakis (Omilia)



Abstract

In recent years, there is an increasing interest in developing advanced conversa-
tional agents that facilitate users to accomplish speci�c goals. Natural Language
Understanding (NLU), a sub�eld of Natural Language Processing, is at the core of
these task-oriented dialogue systems. In this thesis, we experimented with di�erent
ways of tackling NLU problems, focusing on the sub-tasks of Intent Recognition
and Slot Filling. By conducting various experiments on the publicly available ATIS
and SNIPS datasets, we con�rm that in cases where there is explicit slot label
alignment, �ne-tuning large Language Models like BERT, seems to be the gold
standard approach. However, regarding the Slot Filling problem, in most real-world
cases this method is not feasible due to the absence of human-annotated B-I-O tags
and it additionally performs poorly in few-shot settings, where there is a limited
set of labeled data. In order to overcome these limitations, we propose using an
encoder-decoder approach that incorporates the concept of prompting. Speci�-
cally, we utilize the T5 Language Model along with natural language templates
which the model is prompted to �ll in with the relevant information. This method
achieves 98% intent accuracy and 95.9% slot micro-F1-score on the SNIPS dataset.
More importantly, it provides substantial performance improvements in few-shot
settings and displays great adaptability to di�erent intents and domains, when
compared to its counterpart that does not embody prompts.
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1Introduction

1.1 Dialogue Systems

A dialogue system (or conversational agent) is a software system that converses
with a human in natural language. Dialogue systems have become an ubiquitous
part of our lives and a gold standard in research and industry. These systems have
the �exibility to be integrated into all kinds of applications; call centers, websites,
personal digital assistants and messaging platforms to name a few. Most individuals
use their phone’s integrated voice assistant to accomplish all kinds of tasks, like
listening to their favorite music or turning on the lights. Moreover, almost every
industry nowadays has adopted some kind of conversational agent to facilitate
the interaction with their customers. This adoption implies numerous bene�ts
for the corporate world which include reducing human costs and serving bulks of
customer requests instantaneously. According to [13], dialogue systems are divided
into two main categories; the task-oriented and the non-task-oriented dialogue
systems. The former refers to systems that their end goal is to help the user achieve
a speci�c task, like booking a �ight or completing a bank transaction. On the other
hand, non-task-oriented systems (also known as chatbots) are developed with focus
on mimicking humans in open-domain, end-to-end conversations with no speci�c
goals and are oftentimes used for entertainment purposes. In the present thesis,
we will focus on task-oriented systems and more speci�cally on their sub-task
called Natural Language Understanding.

1.2 Natural Language Understanding

A modern dialogue system consists of many di�erent components, which have
discrete roles and purposes. All these components collectively are collectively
assembled in a pipeline called a dialogue system. A detailed description of these
modules will be conducted in the next section. In the context of this writing, we
will focus on Natural Language Understanding (NLU), which is a vital component
of a conversational agent. As its name suggests, the NLU unit is responsible for
understanding the meaning of the user’s utterance. A typical NLU module aims at
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translating an utterance into a semantic representation and usually is decomposed
in three sub-tasks:

• Domain Classi�cation (DC), where the system needs to detect the general
subject of the user’s query, e.g. “Air Travel”,

• Intent Recognition (IR), which classi�es the intent of the utterance, e.g. “Book
a �ight”, “Cancel a �ight”,

• Slot Filling (SF), which performs a sequence tagging procedure, where input
tokens are labeled with tags indicating words expressing particular roles (e.g.,
the origin or destination of a requested �ight), thus extracting word-level
information with respect to the user’s intent.

In this work, we mainly concentrate on the problems of Intent Recognition and
Slot Filling, focusing mostly on the latter. Slot Filling is inherently more complex,
which makes it more challenging.

Intent recognition can be seen as a multi-class classi�cation problem, where the
input utterance should be classi�ed into one intent, from a set of prede�ned
classes. On the other hand, during the slot �lling process, each individual input
token or word is traditionally mapped to a token label, by utilizing the so-called
BIO tags. BIO stands for the words “Begin”, “Inside”, and “Outside”. For exam-
ple, assuming the input utterance is “Find me �ights to New York”, the word
“New” should be tagged as “Begin-destination_city_name” (or more often “B-
destination_city_name”) and the word “York” as “Inside-destination_city_name”
(or “I-destination_city_name”). This means that the two tokens together com-
prise a single entity of concern, that is a “destination_city”. In addition, all the
remaining tokens should be tagged as “Outside” (or “O”) as they hold no signi�cant
information in this speci�c context.

1.3 Current Approaches

The problems of Intent Recognition and Slot Filling have been studied thoroughly
during the past [20]. Early approaches mainly included rule-based systems, which
utilized hand-crafted rules and conditions, in order to capture the intent and �ll the
relevant slots of an utterance. Later on, sequential neural networks like Recurrent
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Neural Networks (RNNs) and their variants (LSTMs, GRUs) became the dominant
models, capable of extracting meaningful information from textual sequences.
Moreover, taking into consideration the high interdependency between the two
problems and the invention of the attention mechanism [3], which enhanced the
performance of RNN-based models, previous work proposed joint attention-based
models [18, 10]. More recently, these neural network modules were replaced
by the pre-trained Language Models [9, 19]. These models produced state-of-
the-art results in almost every NLP task and also performed very well in NLU
in particular [5]. Finally, with the release of the GPT-3 model [4], a new way
of leveraging Language Models emerged namely, prompting. The concept of
prompting, attempts to transform every NLP problem to a “Masked Language
Modeling” problem, exploiting the unsupervised pre-training procedure Language
Models undergo. [8] applies prompting methods to tackle the problems of IR and
SF. An extensive analysis of the majority of the aforementioned approaches will
be conducted in the following chapter.

1.4 Limitations of existing methods

Despite the existence of a variety of approaches concerning NLU, the �eld still
remains extremely challenging, mainly due to the �exibility of the human language;
the vast possibilities of expressing a query in di�erent ways, impose extreme
complexity to language understanding. Hence, the approaches discussed above
have their own limitations. The currently dominant NLU approach is to �ne-
tune (further train on task-speci�c training data) a pre-trained model (e.g., pre-
trained with masked language modeling on large corpora). This approach usually
requires large volumes of human-labeled data, which is rarely the case in real-world
scenarios. That is the reason why there is a huge interest recently in evaluating
the di�erent methods in few-shot settings (where there is low data availability),
in which �ne-tuning seems to be under-performing. In addition, in the slot �lling
case, there is an explicit need for label alignment, meaning that each token should
be tagged with its corresponding BIO tag in the training data, as shown in Table 1.1.
However, in practice this process requires extensive human annotation and results
in extra costs. In most instances, there is a human agent who registers only the
relevant slot �llers as they have been extracted by the user utterance, producing a
kind of weakly labeled dataset, in the sense that there is no explicit alignment
between the query and the slot tags, as illustrated in Table 1.2. Moreover, there
are cases where the slot �ller of concern is not explicitly mentioned inside the
utterance. Inspecting again the example of Table 1.2, although the user mentions
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the cities “Toronto” and “Big Apple”, we are interested in transforming these tags
to the code names “Trn” and “NY”. To the best of our knowledge, little e�ort in the
relevant literature has been put in addressing the issue of the absence of slot label
alignment.

Utterance Find me �ights from Toronto to Big Apple
BIO Tags O O O O B-fromloc O B-toloc I-toloc

Tab. 1.1: An example of slot annotation with the usage of BIO tags.

Utterance Find me �ights from Toronto to Big Apple
Slots fromloc: Trn, toloc: NY

Tab. 1.2: An example of slot annotation where there is no alignment between the input
utterance and the slot labels. Additionally, the slot labels do not necessarily
consist of an input word or span.

1.5 Proposed Approach

Following the work of Chen et al. [5], we initially implement a BERT model,
�ne-tuned on the publicly available ATIS and SNIPS datasets [11, 7], to jointly
model both the intent and the slots of an utterance. This approach bene�ts from
the alignment present in these datasets and operates as a strong baseline for further
experiments. In the sequel, taking into consideration the limitations of the existing
techniques, we propose using a sequence-to-sequence model, in our case the T5
model [21]. Using an encoder-decoder architecture, sequence-to-sequence models
are capable of producing outputs of various lengths which renders them suitable for
cases where there is lack of explicit alignment in the slot labels. Furthermore, with
regard to the restrictions imposed by the small size of the annotated datasets, we
utilize the concept of prompting and transform the IR and SF problems into a kind
of masked language modeling one. This experiment is conducted using the SNIPS
dataset. To sum up, regarding the slot �lling sub-task of NLU, our contributions
are two-fold:

• we transform the problem into a text-to-text scheme, by utilizing a sequence-
to-sequence Language Model (T5) in order to tackle the problem of lack of
slot label alignment,

• we examine utilizing the concept of prompting along with T5, in low data
regimes.
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Furthermore, the main �ndings of this thesis are:

• �ne-tuning BERT is a dominant approach when slot label alignment is
present,

• in the absence of slot label alignment, modern sequence-to-sequence Lan-
guage Models constitute a decent workaround in reformulating slot �lling
as a text-to-text problem,

• in few-shot settings, prompting techniques provide substantial performance
improvements to slot �lling.

1.6 Outline

The remaining of the thesis is organized as follows:

Chapter 2

Provides background information and discusses previous work related to the topic
of this thesis.

Chapter 3

Analyzes the proposed methods.

Chapter 4

Provides details regarding the datasets, the evaluation measures and the experi-
mental results.

Chapter 5

Contains the conclusions and possible future work.
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2Background and Related
Work

2.1 Dialogue System Architecture

As depicted in Figure 2.1, a modern dialogue system consists of several components,
namely:

• the Automatic Speech Recognition (ASR) module, which transforms the user’s
speech signal into textual format,

• the Natural Language Understanding (NLU) module containing the Domain
Classi�cation, Intent Recognition and Slot Filling procedures, which are the
focal points of this writing. This component processes the text obtained by
the ASR module and produces the so-called Semantic Frame of the query,
holding the relevant information of the turn,

• the Dialogue Manager, which consists of the Dialogue State Tracker (DST)
and the Dialogue Policy. DST is responsible for tracking the current state
of the conversation including the dialogue history as well as the slot-�llers
de�ned by the user. Dialogue Policy refers to the decisions the system makes,
regarding the next action/response to the user,

• the Natural Language Generation (NLG) component, which produces the text
response in natural language, taking into account the output of the Dialogue
Policy sub-module and

• optionally, if the system supports voice-based replies, a Text-to-Speech (TTS)
module is invoked, that converts the textual output of NLG into a vocal
message.

In the following sections, we will analyze the di�erent strategies adopted in relevant
bibliography to confront the challenges opposed by NLU problems. Speci�cally,
we will present them in chronological order.
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Fig. 2.1: Components of a modern Dialogue System [6].

2.2 Rule-based Models

In these early methods, the system developer was responsible for identifying
the underlying patterns that comprise an intent and its corresponding slots. As
depicted in Figure 2.2, this was achieved by using regular expressions or, more
generally, grammars. Hand-written conditions attempted to capture the semantics
of an utterance by matching speci�c hard-coded keywords to intents and entities
of concern, often requiring prior domain knowledge.

Fig. 2.2: Rule-based systems [13].
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2.3 RNNs and joint models

When machine learning and especially deep learning techniques emerged, they led
to substantial progress in the development of a wide variety of Natural Language
Processing (NLP) applications, including NLU tasks, thus rendering data-driven
approaches the new standard. More speci�cally, RNNs, particularly LSTMs and
GRUs became the new standard for processing text sequences. The majority of
these methods tackled IR and SF as separate problems [26, 14]. Later on, approaches
that addressed the two problems jointly emerged. These methods train a single
system on both tasks, thus reducing the computational and storage overhead while
at the same time exploiting the interdependence between the two problems. [18]
follows such an approach and constructs a joint model adopting a bidirectional
RNN encoder-decoder framework, while taking advantage of the attention mech-
anism. It is also referring to the problem of the absence of slot alignment and
in order to address this, it incorporates attention to help the model learn a soft
alignment and decode at the same time. Indicatively, the F1-score of the proposed
method drops from 95% to 81% when alignment is not present in the ATIS dataset.
Based on this work, [10] introduced a slot-gated mechanism to explicitly model
the relationship between the intents and the slots and achieved state-of-the-art re-
sults. However, lately these approaches are dethroned by the so-called Pre-trained
Language Models.

2.4 Pre-trained Language Models (LMs)

Language Models was initially a term referring to models that had the sole pur-
pose of evaluating the �uency of a natural language text, however lately they
demonstrate great capabilities in text understanding and in incorporating com-
mon knowledge [12]. In order to address the absence of human-annotated data
for most NLP applications, there is a recent shift in research towards exploiting
the abundance of publicly available unlabeled text. Thus, the concept of transfer
learning is utilized and a variety of pre-trained Language Models emerged. The
term pre-trained refers to the unsupervised procedure these systems undergo,
which includes training on di�erent objectives on huge text corpora like Wikipedia.
Typically these LMs consist of millions or even billions of learnt parameters which
ideally embody broad language knowledge, hence the name Language Models.
Most contemporary approaches using Language Models, apply the �ne-tuning
paradigm, that is appending a task-speci�c head (e.g. a Fully Connected Layer or

2.3 RNNs and joint models 9



MLP) for the downstream task of concern and jointly �ne-tune (further train) the
weights of the pre-trained LM and learn the weights of the task-speci�c head.

2.4.1 Transformers

Transformers, introduced by [25], have led to huge performance improvements in
a variety of NLP tasks. As shown in Figure 2.3 1, they comprise an encoder-decoder
architecture. Models with this type of structure have traditionally been used
for tasks like machine translation, summarization and text generation. They are
capable of producing sequences of various lengths rendering them more �exible.

Fig. 2.3: A Transformer consisting of 2 stacked encoders and decoders.

They are based solely on the attention mechanism and a few Feed-Forward and
Layer Normalization blocks. They replace the recurrent architecture of earlier
sequential neural networks with the so-called residual attention blocks, while
still being able to handle long-range dependencies e�ciently. More importantly,
the novelty of their structure is that these residual attention blocks they consist
of, allow high parallelization, which implies dramatically reduced computational
needs and increased training speeds. Transformers constitute the gold standard in
the development of the majority of modern Language Models.

1https://jalammar.github.io/illustrated-transformer/
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2.4.2 BERT

BERT [9] stands for Bidirectional Encoder Representation for Transformers and
since its release in 2018 has achieved signi�cant results on multiple downstream
tasks. The backbone of BERT is a stack of bidirectional Transformer layers [25].
In particular BERT-base, which is the model of choice for our experiments, uses a
stack of 12 encoder transformer blocks. In essence, BERT learns context-aware
representations of the input sentences or tokens taking into account both the left
and the right context. It is pre-trained with two main objectives in mind; the �rst
is Masked Language Modeling and refers to the procedure where 15% of the input
tokens are “masked” and the model attempts to predict these missing tokens, as
depicted in Figure 2.4 2. A special [MASK] token is used for representing these
tokens. The second objective is called Next Sentence Prediction and is a binary
classi�cation task. As its name suggests, given a pair of sentences, the model
decides whether the second sentence is actually the sentence that follows the �rst
one. Finally, it is important to note that BERT is pre-trained on BooksCorpus (800
million words) and Wikipedia (2.5 billion words). [5] utilizes the BERT model to
cope with the Intent Recognition and Slot Filling problems. Our �rst approach is
based on this work.

Fig. 2.4: BERT mask-�lling pre-training objective.

2https://jalammar.github.io/illustrated-bert/
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2.4.3 T5

T5 stands for Text-to-Text Transfer Transformer and was released by [21] in 2019.
It constitutes a generative Language Model which embeds a sequence-to-sequence
architecture. Models with this type of structure have traditionally been used
for tasks like machine translation, summarization and text generation. They are
capable of producing sequences of various lengths, rendering them more �exible.
T5 is also a Transformer-based model, but unlike BERT it uses both encoder and
decoder Transformer blocks, like the original Transformer implementation. Its
base model is composed of 12 encoder and 12 decoder blocks.

Fig. 2.5: T5 framing various NLP tasks in a text-to-text scheme [21].

T5’s authors attempt to formulate every NLP task as a text-to-text problem as
Figure 2.5 shows. For instance, to classify a sentence with regards to its sentiment,
instead of outputting +1 and -1 for positive and negative sentiment respectively,
it outputs the text “positive” or “negative”. In addition, T5 supports task-speci�c
pre�xes that can be prepended to the input text, such as “classify sentiment: ” or
“summarize: ” leading to performance boost.

Di�erent unsupervised pre-training “denoising” objectives were tried out, with the
most notable and e�cient being the span corruption depicted in Figure 2.6. This
method closely resembles the masking objective of BERT, except that in this case
whole spans of various lengths are masked out and the model is challenged to
unveil them correctly. T5 enumerates the missing spans in a sequence, by utilizing
special tokens, called sentinel tokens, shown as <X>, <Y>, <Z> in Figure 2.6. T5
actually calls the sentinel tokens <extra_id_x> where x ranges from zero up to
100. T5 is pre-trained in an enormous custom dataset scrapped by the authors,
named Colossal Clean Crawled Corpus (C4), which contains about 750 gigabytes
of text.
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Fig. 2.6: T5’s span corruption pre-training objective [21].

[1] proposed using T5 to tackle the problems of Intent Classi�cation and Slot Filling
in a sequence-to-sequence manner. Although it achieves remarkable results, it is
limited in searching speci�c input spans, whereas we are interested in providing
the �exibility to output values not explicitly mentioned in the input utterance.
Referring to the example given in the previous section (Table 1.2), the user may
mention the city “Big Apple”, while the corresponding slot label of concern is “New
York” or merely “NY”.

2.5 Prompting

After the recent work of Brown et al. [4] that was accompanied by the release of the
GPT-3 model, there is an increasing interest in a new paradigm called prompting.
Prompting is one of the main inspirations of this thesis. The reasoning behind
this new concept is simple yet powerful. It aims at taking full advantage of the
pre-training objective of masked language modeling and aligning every NLP task
with this objective. It follows a kind of �ll-in-the-blanks scheme by inserting a few
extra tokens to the input sequence, often referred to as template, along with one
or more mask tokens and asks the model to �ll these blanks (mask tokens) with
natural language. Hence, in its simplest form prompting does not add new model
parameters, in contrast to traditional �ne-tuning methods. As a simple binary
classi�cation example, assume that we have a sentiment classi�cation problem in
which we would like to classify the movie review “Don’t waste your time watching
it”. In this case, a template containing a mask token can be appended to the input
resulting in the phrase: “Don’t waste your time watching it. It was [mask]”. It is
natural to expect from the model to produce a higher probability for the word
“terrible” than “great” for �lling the mask token, thus indirectly classifying the
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sequence to the negative sentiment, by using these two label words, as they are
called, to map each class to a word.

What is important about prompting is the fact that it displays great performance
in the so-called few-shot settings, namely in situations, where there is limited data
availability for a downstream task, or even in zero-shot settings, where no training
data is available. The extensive analysis of [15] concludes that a prompt is “worth”
hundreds of training examples highlighting the impact of this method.

After GPT-3, the predecessor of prompting, the PET papers [22, 23] proposed
two radical changes that inspired many of the following research papers. Firstly,
the authors of these papers decided to use bidirectional LMs, like BERT and its
variants, in contrast to GPT-3 which constitutes a unidirectional autoregressive
model. This facilitates the procedure of prompting, by allowing the model to
attend to the full sentence context when �lling a mask. Secondly, they proposed
to further �ne-tune the LM, as opposed to GPT-3 where the model parameters
are kept frozen, achieving signi�cant results, especially in few-shot settings. [2]
provides further evidence that prompt-based �ne-tuning, where the weights of the
LM are �ne-tuned along with the prompt tokens, outperforms standard �ne-tuning
in the full data regime. In addition, a competitive model can be constructed in
low-resource settings, by only tuning the biases of the model.

Taking into account the bene�ts of prompting, it is worth investigating the di�er-
ent ways of designing a prompt. The aforementioned bibliography uses manually
designed prompts, by incorporating domain knowledge and commonsense. [12]
utilizes text mining and paraphrasing to construct a prompt that helps in mining
factual knowledge. The authors also state that prompt ensembling, i.e. training
di�erent prompts and utilizing them in a majority voting manner, leads to per-
formance improvements. [24] follows a di�erent approach by training a model
to automatically generate prompts that contain words from the vocabulary and
achieves remarkable results in a variety of tasks. However, the resulting prompt is
not in natural language, which heavily undermines the explainability part of the
procedure.

A few following papers use soft prompts, i.e. continuous vectors learnt through
backpropagation. The main idea of this approach is to add some extra tokens in the
input sequence and train the embeddings of these pseudo-tokens, while keeping
the rest of the model frozen. The initialization of these token embeddings is either
random or based on some prior hand-crafted prompt which uses words from the
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LM’s vocabulary. [27] follows such an approach for knowledge probing tasks,
pointing out that manual prompt initialization provides a good prior for better
optimized soft prompts. [17] proposes “pre�x tuning” which prepends a sequence
of continuous pre�xes at every transformer layer and demonstrates competitive
results on generative tasks. In essence, the model learns transformer activations
that are kept �xed across examples at every network layer. [16] simpli�es this
idea by only prepending a few tunable tokens to the input text, while keeping the
rest of the model parameters �xed and accomplishes on par performance with
the traditional �ne-tuning method on a variety of NLU datasets. This approach
uses the T5 model and in essence, expands the vocabulary of the model with the
addition of some learnt pseudo-tokens.

It is obvious that prompting has been examined in a variety of tasks in recent
literature. However, little work has been conducted regarding the adoption of
prompting techniques in NLU. To the best of our knowledge [8] is the only work
following a relevant approach for Named Entity Recognition (NER) problems, with
emphasis in few-shot settings. It utilizes a sequence-to-sequence model, in particu-
lar BART and adopts the prompting paradigm by providing di�erent templates
for the model to complete. Even though it achieves great performance, it follows
a kind of counterintuitive method, as it is inspecting consecutive n-grams of the
input text, until �nding the entity of concern. This requires many extra forward
passes for the model, leading to increased computational complexity, whereas our
approach outputs the relevant slot �llers in a single run.

2.5 Prompting 15





3Methods

3.1 BERT Fine-Tuning

Following the line of [5], as a �rst step we �ne-tune the BERT-base model to jointly
model IR and SF, experimenting on both the ATIS and the SNIPS datasets.

For the IR case, we utilize the �rst special token of BERT, i.e. the [CLS] token
as shown in Figure 3.1. The output embedding corresponding to this token con-
tains a representation vector for the whole sequence. Hence, it can be used for
sequence classi�cation purposes following the traditional �ne-tuning approach.
We put a classi�cation head on top of that representation, in our case a Linear Fully
Connected (FC) Layer, followed by a Dropout layer. Formally, for a given input text
x = (x1, . . . , xN) , let c ∈ RdBERT be the output vector of BERT corresponding to
the [CLS] token, where dBERT = 768 is the hidden dimensionality of BERT-base.
The intent prediction is obtained as follows:

yc = softmax(W cc + bc),

where yc ∈ R#intents, Wc ∈ R#intents,dBERT , bc ∈ R#intents. The Cross-entropy
loss is utilized to compare the predicted distribution with the gold one-hot label
vector denoted l:

LI = −∑#intents
i=1 li log yc

(i)

For the SF problem, we utilize the BIO tags as described in the introduction.
Similarly to the IR case, we obtain a context-aware representation produced by
the BERT module for each individual token and insert a task-speci�c classi�er
(again a FC layer) on top of each token embedding, followed by a Dropout layer.
Formally, given the input sequence x = (x1, . . . , xN), let T = (t1, . . . , tN) be
the context-aware hidden states of BERT corresponding to the input tokens. For
a given token i, we can calculate the probability distribution related to the slot
classi�cation as:
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ys
(i) = softmax(W sti + bs),

where ys
(i) ∈ R#slots×2+1, W s ∈ R#slots×2+1,dBERT , bs ∈ R#slots×2+1 . The di-

mensionality of ys
(i) is equal to #slots× 2 + 1 because of the “Begin” and “Inside”

tags which double the initial number of slots, plus one for the “Outside” case.
As in the intent detection case, we utilize the cross-entropy loss to compare the
predictions with the true labels. We jointly update the parameters of both the
task-speci�c classi�ers and the BERT module itself, based on the sum of the losses
of the two problems.

Fig. 3.1: BERT �ne-tuning for classi�cation and NER tasks [9].

3.2 T5 Fine-Tuning

For methods implemented from here on, we separate the problems of IR and SF and
deal with them independently. The reason is that intent classi�cation constitutes a
simpler problem and we would like to pay special attention to the more challenging
slot �lling process. Moreover, we will concentrate on the SNIPS dataset, which is
multi-domain and contains richer vocabulary with more discrete intents and slot
values. Finally, we should note that during the sequence-to-sequence experiments,
the T5-small variant of T5 is utilized, since the base model is much bigger and
is highly demanding with regards to computational power and time. Table 3.1
compares the backbone structures of BERT-base and T5-small, which are the
models of choice for the experiments of the present thesis. It can be seen that
T5-small contains almost half of the BERT-base weights.

We initially focus on predicting the intent of the utterance. As opposed to the BERT
procedure described above, we are no longer able to use discrete integer labels to
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BERT T5-small
#Vocab 30000 32000
Embedding dim 768 512
Attention heads 12 8
#Layers 12 12
#Params 110m 60m

Tab. 3.1: Underlying architecture comparison between BERT and T5-small.

classify the intents, as T5 is a text-to-text model, thus we should formulate the
problem as such. A simple solution to this is letting the model produce a description
of the intent in natural language. In other words, given the query of the user as
input to the model, we expect a text describing the label to be generated. Hence,
we map each prior intent label to a natural language counterpart, which will be
easier for the model to understand. For instance, the intent “AddToPlaylist” is
mapped to “playlist” and “SearchScreeningEvent” to the simpler “movie” keyword.
To give an example from the SNIPS training set, supposing that the utterance is
“give me a list of movie times for �lms in the area”, T5 is expected to output the
word “movie”.

Regarding the slot �lling problem, we are concerned about the case in which
there is no explicit alignment between the tokens and their corresponding slot BIO
tags. As an example we will use the query “please add iris dement to my playlist
this is selena.”, where we would like to obtain the slot information {“artist”: “iris
dement”, “playlist owner”: “my”, “playlist”: “this is selena”}. Hence, we transform the
dataset accordingly by removing the BIO labels. As an intermediate step, because
the problem of intent classi�cation is relatively trivial, we assume that there is an
oracle for predicting the intent and thus, it is considered known in advance. In
the sequel, we map each intent to its corresponding slots as the training dataset
dictates. For instance, among the total of 39 slots (after removing the BIO tags),
the intent “AddToPlaylist” is related to only 5 of them, i.e. ”artist”, ”entity_name”,
”music_item”, ”playlist” and “playlist_owner”. We sort these slots out in alphabeti-
cal order and ask T5 to produce a value for each one of those. If the slot �ller of
concern is present in the input utterance, we expect the model to locate it and put
it in the correct slot. Otherwise, it should produce the prede�ned word “none”,
which represents the absence of that slot. To achieve this, we leverage the special
mask tokens used during the pre-training procedure of T5, i.e. the “<extra_id_x>”
sentinel tokens as described in the previous chapter, by inserting one mask token
for each relevant slot. Referring again to the previous example, Figure 3.2 depicts
the input to the model, as well as the desired output.
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Fig. 3.2: Slot Filling approach using the T5 model. The model is expected to output a text
for each relevant slot (with regards to the intent of the input). The keyword “none”
is produced when the corresponding slot �ller is not present in the utterance.

Giving a high level formulation of the training procedure, let x = (x1, . . . , xN) be
the input sequence of the model. We feed this input to the encoder part of T5 and we
obtain the hidden representation henc = encoder(x). At the i−th step of the decod-
ing procedure, we obtain the hidden representation hdec

i = decoder(henc, o1:i−1),
where o1:i−1 are the previous output words of the model. The probability distribu-
tion of the word oi is:

ti = p(oi | o1:i−1, x) = softmax(Whdec
i + b),

where ti ∈ R|V |, W ∈ R|V |,dT 5 , b ∈ R|V |, with | V |= 32000 and dT 5 = 512.
The training objective is the minimization of the Cross-entropy loss of the predic-
tion tokens compared with the label tokens denoted as L = (l1, . . . , lm), where
li ∈ R|V |, i = 1, . . . , m:

L = −∑m
i=1

∑|V |
j=1 lijlogtij

3.3 T5 Fine-Tuning with Prompting

Inspired by the paradigm of prompting and its success in low-resource settings,
we are also interested in investigating its impact in few-shot scenarios. For that
reason, we obtain di�erent slices of the SNIPS dataset. In particular, from the total
of about 13K training examples, we take small batches of 200 and 500 training
examples at random, preserving the same distribution of intents and slots as the
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original full dataset. In the sequel, in order to adopt the concept of prompting,
we modify the previous problem formulation with the addition of a hand-crafted
template dictating the kind of information we expect the model to generate at each
point.

Regarding the intent classi�cation case, a template phrase is appended to the
input utterance, along with the special mask token that should be �lled. The
phrase of choice is “This sentence refers to ”, so in the case of the previous example
the full model input text would be “please add iris dement to my playlist this is
selena. This sentence refers to <extra_id_0> ” and the model should generate the
word “playlist” which is mapped to the original “AddToPlaylist” intent class.

Fig. 3.3: Slot Filling approach using the T5 model along with templates. The model is
guided to produce the slot �ller of concern with the utilization of templates.

Following the same reasoning for the slot �lling problem, having the prior knowl-
edge of the correct intent, we construct a template that attempts to prompt-out all
the relevant slot values. This is achieved by providing a template phrase for each
individual slot and concatenating all these phrases at the end of the input sequence.
Additionally, in order to assist the model in exploiting its internal knowledge of the
language, we transform the slot labels into “natural” language terms. That is after
removing the underscore symbol where needed, we assign each slot to a word or
sequence of words that closely resemble the true slot semantics. For instance, the
slot “entity_name” refers to the name of a song, thus it is mapped to “track name”.
Furthermore, each mapped sequence is surrounded by the phrase “The [slot_name]
is [mask]”. Figure 3.3 illustrates this formulation, using again the same example as
before.The training procedure is exactly the same as in the previous method where
no prompting techniques were utilized.

3.3 T5 Fine-Tuning with Prompting 21



3.4 T5 Generalization to Few-Shot Slots

Relevant bibliography contends that utilizing the concept of prompting results in
better performance for unseen intent and slot labels. To validate this claim we
perform another experiment. In this scenario, we consider the full training set
except for the slots referring to 2 of the total of 7 intents (di�erent pairs were tried
out), which were kept few-shot. For those two intents only 40 training examples
were used for model training and the evaluation measures are reported only for
the subset of the test set referring to those intents.
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4Experiments

4.1 Datasets

• The ATIS (Airline Travel Information Systems) [11] dataset consists
of manual transcripts from audio recordings of people asking for �ight
information. It is one of the most used benchmarks for NLU and SLU (Spoken
Language Understanding) systems and contains simple single turn utterances.
It incorporates 21 di�erent intents and 120 slot labels, but as shown in Figure
4.1 the dataset is extremely imbalanced, with over 70% of the intents being a
�ight search.

Fig. 4.1: ATIS intent distribution.

• The SNIPS [7] dataset embodies queries from the users of the Snips voice
platform. It comprises a multi-domain dataset, with intents varying from re-
questing information related to the weather condition, to �nding a restaurant
or playing a song. In particular, it contains 7 di�erent intent types and 72 slot
labels. As opposed to the ATIS dataset, SNIPS is a balanced dataset in terms
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of the intents’ distribution and has about three times more training examples.
Moreover, due to the diversity in the topics of the queries, it consists of a
much richer vocabulary. Table 4.1, summarizes the main statistics of the two
datasets.

Fig. 4.2: SNIPS intent distribution.

ATIS Snips
Vocabulary Size 722 11,241
#Slots 120 72
#Intents 21 7
Training Set Size 4,478 13,084
Development Set Size 500 700
Testing Set Size 893 700

Tab. 4.1: Datasets statistics.

4.2 Evaluation Measures

All the di�erent models and con�gurations are evaluated with respect to their
performance over the test datasets.

Regarding the Intent Recognition sub-task, accuracy is the evaluation metric
of concern, following the related bibliography. Accuracy is de�ned as the ratio
of correctly classi�ed intents over the sum of the test examples. Nevertheless,
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during our experiments, we also recorded the F1 score in the ATIS dataset, because
its intents form a highly skewed distribution. However, the F1 score seemed to
harmonize with the accuracy score, thus, we are �nally reporting accuracy, so as
to be consistent with the rest of the relevant literature. Concerning the Slot Filling
sub-task, we report the micro-averaged F1 score, de�ned as follows:

micro-F1-score = 2 micro-precision·micro-recall
micro-precision+micro-recall

In other words, micro-F1-score constitutes the harmonic mean of micro-precision
and micro-recall which are de�ned as:

micro-precision =
∑

c
T Pc∑

c
T Pc+

∑
c

F Pc
,

micro-recall =
∑

c
T Pc∑

c
T Pc+

∑
c

F Nc
,

where TPc, FPc, FNc represent the True Positives, False Positives and False Nega-
tives referring to the class c respectively. In the case of BERT �ne-tuning, there are
two classes for the begin (B) and inside (I) tokens of each slot, respectively, plus
an outside (O) class. Hence, the number of classes is equal to twice the number of
slots plus one.

4.3 Training Details

Regarding the initial �ne-tuning approach, we use the uncased variant of BERT-
base as our datasets are already in lower case format. The maximum length of the
sequences is 64. Moreover, the AdamW optimizer is used, which is a variation of
the Adam optimizer using weight decay, with zero warm-up steps and a learning
rate of 5e-5. The dropout rate is set to 0.1. The maximum number of epochs is
10 and 5 for the ATIS and the SNIPS datasets respectively, since SNIPS contains
more training examples hence, the model converges faster. The micro F1-score of
the development set is used for early stopping, so as to select the best performing
model. Finally, the batch size used is 32.

For the sequence-to-sequence approach, T5-small is utilized for the experiments,
since the T5-base model is quite larger and requires lots of computational resources.
The maximum length of the input is set to 64 for the intent detection and also the
slot �lling problem where no template was used. In the case of prompting, we
expand the input length to 240 in order to �t the added template phrases. AdamW
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is again used as the optimizer with a learning rate of 1e-3, adhering to the value
used in the original paper for �ne-tuning on downstream tasks. Smaller values for
the learning rate, as well as the Adafactor optimizer used in the paper were also
tried out, but led to reduced performance. The maximum number of epochs is set
to 8 when training on the full dataset and to 15 when simulating few-shot scenarios.
The micro F1-score of the development set is again used for early stopping, whereas
the batch size is set to 16.

Finally, we note that all experiments were conducted using a single Nvidia GTX-
1070Ti GPU, with 8GB of VRAM.

4.4 Experimental Results

Table 4.2 depicts the performance of the �ne-tuned BERT model on the ATIS and
SNIPS datasets. It can be seen that this method takes full advantage of the presence
of the BIO tags for slot �lling while also displaying great e�ectiveness in the
classi�cation of the intents.

ATIS SNIPS
Intent Accuracy Slot F1 Intent Accuracy Slot F1

Attent. – BiRNN [18] 91.1 94.2 96.7 87.8
Slot-Gated [10] 94.1 95.2 97.0 88.8
Joint BERT 97.0 95.0 98.9 95.8

Tab. 4.2: Results of the �ne-tuned BERT model on the ATIS and SNIPS datasets.

As far as the sequence-to-sequence approach is concerned, dealing with the intent
detection problem, both models (with and without template) seem to perform on
par, as Table 4.3 depicts. In the full training set case, they achieve remarkable
accuracy, whereas in the few-shot scenario there is a foreseeable, relatively small
performance drop. In this case, adding templates does not seem to provide clear
improvements.

Full Train Set (13K
examples)

Few-shot (100 exam-
ples)

w/out template 97.9 91.8
with template 98.0 92.1

Tab. 4.3: Intent Detection results of T5 on the Snips dataset.

On the other hand, inspecting Table 4.4, there is a clear pattern regarding the
few-shot settings in the slot �lling problem. The approach that utilizes templates
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substantially outperforms the method which does not. More importantly, the
di�erence between them grows as the training set shrinks. This constitutes a
strong con�rmation that prompting does provide a clear edge in few-shot settings.
Furthermore, when trained on the full set, T5 gains a small advantage with the
usage of templates. This may imply that prompting provides a slight edge not only
in few-shot scenarios, but also in full data settings of problems that are adequately
complex, like the slot �lling one in this case.

Finally, regarding the experiment that examines the generalizability a model gains
from prompting, the results are very enlightening. The model that utilizes tem-
plates outperforms the one that does not by more than 20% in terms of micro
F1-score, when evaluated on the two few-shot intents. This result provides a
strong indication that prompting enhances the model’s extrapolation ability to
unknown intents. In a sense, the model becomes more agile and capable of trans-
ferring its “knowledge” to di�erent domains.

As a side note, we report that while T5 was �ne-tuned for the slot �lling prob-
lem, slightly changing the template’s content resulted in marginal performance
di�erences, probably indicating that the model is able to adapt to small template
variations, at least when the di�erent template texts are semantically close with
each other. This partly goes along with [2] which argues that �ne-tuning the LM
reduces the need for prompt engineering and [15] which claims that prompting
is mostly robust to template choice. Nevertheless, further experiments should be
conducted to reach a more reliable conclusion.

Full Train
Set

Few-shot
(500 exam-
ples)

Few-shot
(200 exam-
ples)

2-Intent
Few-shot
(40 exam-
ples)

w/out template 95.2 70.2 57.5 61.2
with template 95.9 82.4 71.3 83.6

Tab. 4.4: Slot Micro-F1-score for the T5-small model.

4.5 Ablation Analysis

For the traditional BERT �ne-tuning approach, we perform an ablation analysis,
that is we train the model for fewer epochs on the SNIPS dataset. We observe that
by just training the system for 1 epoch, it outperforms the methods conducted
in [18] and [10]. Speci�cally, it achieves 97.4% Intent accuracy and 89.2% Slot
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micro F1-score, highlighting the dominance of BERT when compared to previous
sequential neural network based approaches.

Regarding the sequence-to-sequence approach to the slot �lling problem, we
examine the in�uence of the encoder and the decoder parts of the network. For
that reason, we successively freeze the parameters referring to each individual
part thus, signi�cantly reducing the number of trainable weights as well as the
computational time. As Table 4.5 shows, the model is able to adapt to the dataset
even though it trains under half of its available parameters. In particular, in the
case where we keep the decoder part frozen, it displays almost on par performance
with the case where we �ne-tune the full model.

Full Model
Train (60m
params)

Frozen En-
coder (25m
params)

Frozen De-
coder (18.8m
params)

w/out template 95.2 86.1 92.0
with template 95.9 86.0 92.6

Tab. 4.5: Slot Micro-F1 score for the T5-small model with frozen encoder and decoder
parts respectively.
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5Conclusions and Future
Work

In this thesis, we examined di�erent methods for tackling the problems of Intent
Recognition (IR) and Slot Filling (SF), which constitute two core tasks of Natural
Language Understanding. Traditionally, rule-based and various machine learning
techniques were adopted, but led to limited performance. With the recent advances
in the �eld of Deep Learning and the advent of Pre-trained Language Models,
various approaches have been proposed that address these two problems, using
modern Transformer-based LMs. However, as far as the more challenging SF
problem is concerned, little research has been conducted regarding the cases where
there is weakly-annotated data, i.e. the so-called BIO tags are absent. In addition, in
most real-world scenarios, there is limited labeled data availability, hence studying
few-shot scenarios has attracted increasing attention in recent bibliography.

Considering the above problems encountered, following the line of Chen et al.
[5], we initially implement a BERT model, �ne-tuned to jointly model the IR
and SF tasks, by exploiting the presence of BIO tags. This model signi�cantly
outperforms previous state-of-the-art approaches that used some kind of recurrent
neural network structure (e.g. RNN, LSTM), on the publicly available ATIS and
SNIPS datasets. These results prove that �ne-tuning LMs on the SF task is the
dominant approach, when BIO tags are available.

In the sequel, in order to address the problem of slot label alignment, we propose
using a sequence-to-sequence framework (T5 is our model of choice). Thus, IR
and SF are reformulated into a text-to-text scheme, which leads to very compet-
itive results. Subsequently, regarding the few-shot scenario, we incorporate the
paradigm of prompting by providing hand-crafted templates to the model. The
model is then asked to locate the relevant information from the user utterance, by
�lling up these templates. In a set of experiments conducted on the SNIPS dataset,
the combination of T5 with this prompting technique achieves 98% Intent accuracy
and 95.9% Slot micro F1-score (after utilizing an oracle in order to know the intent
in advance), when trained on the full dataset. Additionally, in low-data regimes,
it substantially improves the micro F1-score metric compared to its counterpart
model, which does not employ templates.
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In future work, we plan to examine the concept of soft-prompts. Speci�cally, by
slightly adapting the line of [16], we intend to replace the hand-crafted prompts
with continuous vectors (embeddings of pseudo-tokens) learnt through backprop-
agation and either freeze the rest of the model’s parameters or keep �ne-tuning
the model along with the embeddings of the pseudo-tokens. The reasoning behind
this idea, is that providing hand-written prompts is sub-optimal and imposes con-
straints to the inherent knowledge or abilities of the Language Model. Hence, by
letting the model decide which arti�cial embeddings (not necessarily correspond-
ing to real words) best describe the corresponding slot, we optimize the prompt,
which implies maximum performance.
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