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Abstract

In recent years, the evolution of social media platforms has introduced the need for systems

that detect the toxic behavior of users. A Toxicity Detection system tries to detect user

posts that are o�ensive and abusive. Abusive content can take many forms, including

threatening, harassment, intimidation, or discrimination over a person or a group. Bias

against users based on race, color, national origin, sex, sexual orientation, religion or other

characteristics frequently occurs online. The �eld of Natural Language Processing (NLP)

contributes to detecting this hateful content by automating it with classi�cation models

that categorize user posts as o�ensive or not o�ensive. In addition, classi�ers can label

abusive content according to the nature of the insult (e.g., racist, sexist etc.). As annotating

thousands of examples for training (NLP) models is expensive and time-consuming, it is

a signi�cant challenge to train a model e�ectively with the least amount of labeled data.

Although there is a lack of fully annotated datasets for many di�erent tasks, usually, there

is a much larger pool of task-speci�c unlabeled instances that could be used to improve a

system’s performance. In this thesis, we will focus on: toxicity detection in Greek tweets

and sexism detection in English posts crawled from platforms such as Reddit and Gab.

For instance, a system that tries to detect hate speech could bene�t from the abundant

online unlabeled data as there is a much smaller number of labeled instances in toxicity

datasets.

There are many methods explored in literature for few-shot learning scenarios. Self-training

is a semi-supervised method where a Teacher model is initially trained on the few available

labeled instances. Subsequently, it generates silver labels for the bigger pool of task-speci�c

unlabeled data. In each round, it samples a number of silver-labeled examples, in most cases,

based on the model’s con�dence. These examples and their silver labels act as additional

supervision to train a stronger Student model iteratively. In a large pool of unlabeled

instances, not all are equally useful for learning a speci�c task. Active Learning tries to

maximize the system’s performance gain by identifying the most informative examples to

be labeled by a human annotator or, in our case, to be selected among those silver-labeled

by the Teacher. In this thesis, we focus on applying the Teacher-Student approach to detect

toxic and sexist content when the initial training examples are limited. We experiment

with di�erent machine-learning models and apply various sampling techniques to augment
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our initial dataset. We also employ Active Learning criteria in the Self-training algorithm

to examine if they could further bene�t our system.
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Περίληψη

Τα τελευταία χρόνια, η εξέλιξη των πλατφορµών ϰοινωνιϰής διϰτύωσης έχει δηµιουργή-

σει την ανάγϰη ύπαρξης συστηµάτων που ανιχνεύουν την τοξιϰή συµπεριφορά χρηστών

των εν λόγω πλατφορµών. ΄Ενα σύστηµα Εντοπισµού Τοξιϰότητας προσπαϑεί να εντοπί-

σει προσβλητιϰές ϰαι υβριστιϰές δηµοσιεύσεις χρηστών. Το online περιεχόµενο ϑεωρεί-

ται τοξιϰό όταν περιέχει απειλές, εϰφοβισµό, σχόλια που έχουν στόχο την παρενόχληση

ή όταν αναπαράγει στερεότητα ϰαι διαϰρίσεις εις βάρος ενός ατόµου ή µίας οµάδας

ατόµων. Η προϰατάληψη µε βάση τη φυλή, το χρώµα, την εϑνιϰότητα, το φύλο, τον σεξ-

ουαλιϰό προσανατολισµό, τη ϑρησϰεία ϰαι άλλα χαραϰτηριστιϰά παρατηρείται συχνά

στις δηµόσιες αναρτήσεις. Ο τοµέας της Επεξεργασίας Φυσιϰής Γλώσσας (ΕΦΓ) συµ-

βάλει στην ανίχνευση ϰαϰοποιητιϰού περιεχοµένου, αυτοµατοποιώντας τη διαδιϰασία

µε µοντέλα ταξινόµησης που ϰατηγοριοποιούν τις αναρτήσεις των χρηστών σε προσ-

βλητιϰές ή µη προσβλητιϰές. Επιπλέον, οι ταξινοµητές µπορούν να επισηµάνουν το

περιεχόµενο µιας τοξιϰής ανάρτησης µε βάση τη φύση της προσβολής (ρατσιστιϰή, σεξ-

ιστιϰή ϰ.λπ.). Καϑώς η επισηµείωση χιλιάδων παραδειγµάτων για την εϰπαίδευση των

(ΕΦΓ) µοντέλων είναι µια αϰριβή ϰαι χρονοβόρα διαδιϰασία, η αποδοτιϰή εϰπαίδευση

τους µε τον ελάχιστο αριϑµό δεδοµένων µε ετιϰέτα πρόϰειται για µία σηµαντιϰή πρόϰληση.

Παρά την έλλειψη επαρϰών επισηµειωµένων βάσεων δεδοµένων για πολλές διαφορε-

τιϰές εργασίες, συνήϑως, υπάρχει ένα πολύ µεγαλύτερο σύνολο δεδοµένων χωρίς ετιϰέτα

που σχετίζονται µε την ϰάϑε εργασία. Τα εν λόγω δεδοµένα ϑα µπορούσαν να χρησι-

µοποιηϑούν για τη βελτίωση της απόδοσης ενός συστήµατος ταξινόµησης. Σε αυτή τη

διπλωµατιϰή ϑα επιϰεντρωϑούµε σε δύο εργασίες: τον εντοπισµό τοξιϰότητας σε Ελλη-

νιϰά tweets ϰαι τον εντοπισµό σεξιστιϰής συµπεριφοράς σε αναρτήσεις σταΑγγλιϰά που

έχουν συλλεχϑεί από πλατφόρµες όπως το Reddit ϰαι το Gab. Ενδειϰτιϰά, ένα σύστηµα

που προσπαϑεί να ανιχνεύσει περιεχόµενο που περιέχει ρητοριϰή µίσους ϑα µπορούσε

να επωφεληϑεί από τα άφϑονα δεδοµένα χωρίς ετιϰέτα που είναι διαϑέσιµα online, ϰα-

ϑώς ένας πολύ µιϰρότερος αριϑµός δεδοµένων µε ετιϰέτα είναι διαϑέσιµος για τη συγ-

ϰεϰριµένη εργασία.

Πολλές µέϑοδοι έχουν διερευνηϑεί στη σχετιϰή βιβλιογραφία για σενάρια µάϑησης µε

περιορισµένα δεδοµένα εϰπαίδευσης. ΗΑυτό-εϰπαίδευση είναι µία µέϑοδος ηµι-επιβλεπόµενης

µάϑησης ϰατά την οποία ένα µοντέλο Καϑηγητής εϰπαιδεύεται αρχιϰά στα λίγα δι-
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αϑέσιµα δεδοµένα µε ετιϰέτα. Στη συνέχεια, δηµιουργεί ψευδο-ετιϰέτες για ένα πολύ

µεγαλύτερο σύνολο µη επισηµειωµένων δεδοµένων από τον ίδιο τοµέα µε τα επισηµει-

ωµένα δεδοµένα. Σε ϰάϑε γύρο επιλέγεται ένας αριϑµός δεδοµένων µε ψευδο-ετιϰέτα,

στις περισσότερες περιπτώσεις µε ϰριτήριο τη πιϑανότητα που δίνει το µοντέλο Κα-

ϑηγητής να είναι σωστή η πρόβλεψή του, για να χρησιµοποιηϑούν ως επιπρόσϑετη επίβ-

λεψη στην εϰπαίδευση ενός ισχυρότερου µοντέλου Μαϑητή. Σε ένα τεράστιο σύνολο

παραδειγµάτων χωρίς ετιϰέτα, δεν είναι όλα εξίσου χρήσιµα ώστε να µάϑει µία εργασία

o ταξινοµητής. Η ∆ιαδραστιϰή Μάϑηση προσπαϑεί να µεγιστοποιήσει την απόδοση

ενός συστήµατος προσδιορίζοντας τα µη-επισηµειωµένα δεδοµένα που περιέχουν την

πιο χρήσιµη πληροφορία για την εϰµάϑηση της συγϰεϰριµένης εργασίας. Τα δεδοµένα

αυτά συνήϑως επισηµαίνονται από έναν άνϑρωπο µεσολαβητή ή, στην περίπτωση της

διϰής µας µελέτης, επιλέγονται ανάµεσα στα δεδοµένα για τα οποία έχει δηµιουργήσει

ψευδο-ετιϰέτες το µοντέλο Καϑηγητής. Σε αυτή την εργασία, εστιάσαµε στην εφαρµογή

της προσέγγισης Καϑηγητή-Μαϑητή για την ανίχνευση τοξιϰού ϰαι σεξιστιϰού περιεχό-

µενου όταν τα παραδείγµατα εϰπαίδευσης είναι περιορισµένα. Για τα πειράµατά µας

χρησιµοποιήσαµε διαφορετιϰά µοντέλα µηχανιϰής µάϑησης ϰαι εφαρµόσαµε διαφορε-

τιϰές τεχνιϰές δειγµατοληψίας για την επαύξηση του αρχιϰού συνόλου εϰπαίδευσης.

Αϰόµα εφαρµόσαµε ϰριτήρια εµπνευσµένα από την ∆ιαδραστιϰή Μάϑηση στον αλγόρι-

ϑµο Αυτό-εϰπαίδευσης για να εξετάσουµε αν µπορούν να αυξήσουν την απόδοση του

συστήµατός µας.
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1Introduction

1.1 Toxicity Detection

In recent years, as social media platforms are evolving rapidly with billions of users

worldwide, o�ensive posts and comments are increasingly common in online discussions.

Social media content can be perceived as toxic when it contains insults, threats, intimidation,

identity attacks and, in general, aims to abuse individuals or groups of people. Hate speech

and xenophobia are increasingly prevalent despite living in the age of globalization. Users

that feel superior to others because of speci�c characteristics such as color, race, gender,

religion and sexual orientation often target and harass other users with the power of online

anonymity.

A speci�c category of hate speech is sexist behavior. It concerns prejudice and discrimina-

tion that targets mostly women but also homosexual, transgender or non-binary individuals.

As mentioned in Combating Sexist Hate Speech, a report of the Council of Europe, "the

aim of sexist hate speech is to humiliate or objectify women, to undervalue their skills

and opinions, to destroy their reputation, to make them feel vulnerable and fearful, and to

control and punish them for not following a certain behavior" [Chi+20].

Toxicity Detection systems aim to automate the process of o�ensive content detection to

facilitate human moderators to ban this content and to ensure healthy online conversations.

Using Natural Language Processing (NLP), a sub-�eld of Arti�cial Intelligence, to build

e�cient detection systems has very promising results. Hateful content is a complex

concept that is hard to de�ne and can take various forms. Attacks and threats can be

made directly or indirectly, and the meaning of speci�c words can change when placed

in a di�erent context. Hence it is di�cult to specify handcrafted rules and conditions for

rule-based systems to identify such o�ensive content. For instance, a rule that classi�es

user comments as toxic if they contain speci�c words or patterns generally considered

insulting can be misleading if the comment’s context is not considered. On the contrary,

online content can be abusive without consisting of a�ronting words. Thus it is often

necessary to develop and train more complex models to detect such cases.
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1.2 Few-shot learning and pretrained models

Deep learning models can learn di�erent concepts for several NLP and computer vision

tasks, including text or image classi�cation, intent recognition, sequence generation

and information extraction. Such remarkable performance is usually the result of high-

quality supervision as models are trained with thousands of examples available for a

speci�c task. As deep learning methods rely on large annotated datasets, a challenge

encountered in many implementations is the absence of labeled data. The cost of labeling

an e�cient amount of instances is very high: it takes a great deal of human e�ort, is

time-consuming or even requires some scienti�c expertise. For example, in the digital

pathology domain, exhaustively annotating large image datasets to train a histology image

classi�er is challenging when medical specialists are a scarce resource [Sha+20]. Hence,

few-shot learning, the ability to learn a task with the least amount of labeled task-speci�c

data, is increasingly important and valuable for many practical applications in low-resource

scenarios.

A lot of research has been conducted by NLP scientists to train models with compatible

performance to those with fully supervised learning when training examples are limited.

In recent years pre-trained language models (LMs) have been widely used in few-shot

learning scenarios as studies have proved that they are e�cient few-shot or zero-shot

learners [Bro+20]. In the NLP �eld, the task-agnostic knowledge that is acquired through

pretraining over a large general corpus seems to help state-of-the-art LMs to achieve high

few-shot performance. Intuitively, it provides a strong baseline that signi�cantly improves

all the tasks. The most common approach when training examples for end-tasks are limited

is to use pre-trained transformers [Dev+19], possibly pre-trained on a domain-speci�c

corpus [Lee+19], and further train them on the limited examples of the end-tasks with a

low learning rate (�ne-tuning).

Related research has been conducted on prompting LMs by reformulating tasks as natural

language “prompts” and conditioning on those prompts. By transforming a classi�ca-

tion task as a language modeling problem, LMs can accomplish great results after being

�ne-tuned on a few annotated examples or even without any training process [Che+21].

Speci�cally, [Bro+20] show that this method achieves remarkable performance in large-

scale LMs (GPT-3, 175B parameters) on many NLP datasets without any gradient updates

by incorporating task-speci�c prompts [Log+22; Bro+20; Che+21]. However, it is hard to

use large-scale LMs in many real-world applications where computational resources are

limited. Corresponding methods have been proposed by NLP researchers to use smaller

LMs like BERT and ROBERTa that are resource e�cient for few-shot learning. They can

achieve consistent performance to GPT-3 by conditioning on task-speci�c prompts after

being �ne-tuned on a few annotated samples [Che+21]. But even though using smaller

LMs is more e�cient, manually-written prompts require exhaustive tuning using large
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validation sets, as model accuracy depends on prompts engineering and is in�uenced by

simple prompt modi�cations [Log+22].

Another common approach for learning low-resource tasks is to create arti�cial examples

by transforming the original training dataset. Data augmentation (DA) techniques are

widely used to increase training examples’ diversity and to prevent the model from over-

�tting without collecting new data [PMA22]. In NLP, many DA methods are applied to

enhance the system’s robustness even when models with high capacity, such as large-scale

pre-trained LMs, are used. Most common DA techniques are based on word replacement.

Speci�cally, the augmented examples are created by replacing some tokens from the

original sequences with related words crawled from a thesaurus or with tokens that have

similar embeddings. Despite the bene�ts of such methods, [KCC20] note that researchers

should be cautious about preserving class labels when replacing words that could change

the meaning of an instance.

1.3 Proposed Approach

Labeled data that can be used for supervised learning is not always available in practice, but

there is usually a much larger pool of task-speci�c unlabeled data. Intuitively, unlabeled

in-domain instances also carry valuable information about the task that the model could

bene�t from. Hence, it could be bene�cial to apply a learning method that utilizes this

large set of available data to improve the system’s performance [Che+21]. For instance,

a toxicity detection system trained on a few annotated examples from toxicity datasets

could signi�cantly pro�t from thousands of user posts that are available online and can be

crawled from social network platforms.

Semi-supervised learning techniques are adapted to settings where few labeled instances

are available [Mi+21]. In this thesis, we implement Teacher-Student, a common semi-

supervised approach that exploits the large pool of unlabeled data for few-resource tasks.

It employs a Teacher model originally trained on a few annotated data, which creates silver

labels for the unlabeled dataset [Mi+21]. A portion of the silver-labeled data augments

the training set to further train a more robust Student model. This process is repeated

iteratively, and at the end of each round, the Student becomes the Teacher. This process is

executed for a �xed number of iterations or until the system reaches convergence.

In the related bibliography, Active Learning is often reviewed to deal with few-resource

challenges [Aro07]. Active Learning is the process of querying a human annotator to

create labels for a portion of unlabeled examples that carry the richest information about

the task. These instances are extracted from the unlabeled data pool according to di�erent

1.3 Proposed Approach 3



criteria. Subsequently, the sampled instances, along with their true labels (created by a

human specialist), are added to the training set to improve the model.

The purpose of this thesis is to explore the bene�ts of Self-training for few-shot learning.

We simulate few-resource scenarios by only considering a few samples per class for the

two tasks we focus on: O�ensive/Not O�ensive and Sexist/Not Sexist. We consider the

remaining data as unlabeled for the purpose of the experiment. We employ Self-training

in a machine learning model (a Logistic Regression classi�er) and test di�erent sampling

techniques to expand our training data. These techniques are based on methods applied to

Self-training in related work by NLP researchers and on Active Learning criteria found in

the related bibliography. We present these methods in a detailed manner in Chapters 2 and

3. Finally, we test the best sampling techniques on a deep learning model, speci�cally a

BERT-based model, to explore whether our methods can be bene�cial when high-capacity

models are used.

1.4 Main Findings

The experiments we conducted in this thesis proved that the Teacher-Student approach

could improve the performance of both a Logistic Regression classi�er and a state-of-

the-art BERT-based classi�er when the models are trained with limited labeled examples.

The pseudo-labeled instance con�dence score (Section 3.2) is the most important factor

when sampling the silver-labeled instances that will augment the initial labeled set in each

round of the Teacher-Student process. The sampling techniques that did not consider the

instance con�dence score failed to improve the system’s robustness or even degraded its

performance (compared to the few-shot learning scenario without the Teacher-Student

application).

When con�dence sampling is applied, the probability over a threshold is a more e�cient

sampling technique than the top-k technique as it achieves equal or higher scores with

fewer resources.

Augmenting the training set with the k most con�dent examples in imbalanced datasets

may improve only the evaluation of the majority class. In these cases, it is important to

experiment with the class ratio of the most con�dent examples to be added to the labeled

set. Alternatively, tuning the number of Teacher-Student rounds based on the score of the

minority category or on macro-averaged scores is crucial to ensure that the evaluation of

both classes is improved.

Active Learning criteria could bene�t the silver-labeled instance sampling when combined

with the con�dence sampling technique (Section 3.6). Although this method was not as

4 Chapter 1 Introduction



bene�cial as con�dence sampling in the case of the Logistic Regression Teacher-Student

framework, for the BERT Teacher-Student framework, it was the most resource-e�cient

sampling technique. In the case of the Sexism detection task, it reached the highest results

of all the sampling methods.

Finally, compared to full-supervision (where true labels for a bigger number of examples are

available), the Teacher-Student approach obtained higher scores in some of the evaluation

metrics we used in the case of the Logistic Regression classi�er. On the contrary, a

BERT classi�er trained under full supervision outperformed the BERT Teacher-Student

framework. However, Teacher-Student obtained promising results with the least amount

of training examples.

1.5 Thesis Structure

Chapter 2

Provides background information about models and methods used and presents previous

work related to the topic of this thesis.

Chapter 3

Analyzes the proposed methods.

Chapter 4

Provides statistics regarding the dataset, the evaluation measures and the experimental

results.

Chapter 5

Contains the conclusions and possible future work.

1.5 Thesis Structure 5





2Background and Related Work

In this chapter, we provide background information regarding the models we used for our

experiments: a Logistic Regression classi�er and a pre-trained BERT Model. We concentrate

on previous related work along four dimensions. First, we examine previous approaches

for the task of abusive content/sexism detection. Second, we focus on Teacher-Student

approaches and sampling techniques. Third, we present DA techniques combined with

Self-training for few-shot scenarios. Finally, we describe Active Learning approaches.

2.1 Logistic Regression

In this thesis, we implemented a toxicity detection system that tries to predict for every

user post if it belongs to the O�ensive/Sexist class. Otherwise, it classi�es the instance

as Not O�ensive/Not Sexist. We can interpret this task as a binary classi�cation problem

where we want to calculate the value of a variable Y that corresponds to the class label

given an input text x. We will use the convention that the binary variable Y ∈ {0, 1},
where 1 corresponds to the O�ensive/Sexist class.

The �rst classi�er we employed in our experiments is a Logistic Regression classi�er.

It is a well-known supervised linear classi�er that takes as input a feature vector ~x =
(x1, x2, ..., xk) of k dimensions. Text features can be represented by boolean vectors, term

frequency (TF) vectors etc. At the training phase, the algorithm uses stochastic gradient

ascent to update the coe�cients (θ) of the linear function to maximize the (conditional)

log-likelihood of the training examples. The model uses the sigmoid function to calculate

each input vector’s probability of belonging to each class. The classi�er assigns a label to

the input based on the predicted probability of each class.

Pr(1|~x~θ) = 1
1 + exp(−~x~θ)

(2.1)

Pr(0|~x~θ) = 1− Pr(+1|~x~θ) = exp(−~x~θ)
1− exp(−~x~θ)

(2.2)

More information about the Logistic Regression classi�er can be found in [Jan05].
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2.2 Pre-trained Language Models (LMs)

In recent years the role of LMs has evolved from generating or evaluating the �uency of

natural text to being a powerful tool for text understanding [Jia+21]. The shortage of large

datasets with su�cient supervised data has been a signi�cant challenge for many NLP

tasks. This challenge led to the emergence of pre-trained LMs. They are deep learning

models pre-trained on tasks that do not require human supervision (manual annotations),

typically predicting masked words based on the surrounding context. As these tasks do not

require human e�ort, LMs are usually trained on huge general corpora, such as documents

from Wikipedia pages.

The objective of pretraining is to learn universal language representations that can bene�t

speci�c downstream tasks. Typically these models consist of millions or even billions

of parameters learned while pretraining on abundant unsupervised data. The concept

of transfer learning is applied, where the task-agnostic knowledge that the model has

acquired is used as a starting point for a second speci�c task, and there is no need to train

models from scratch. The most common approach using LMs is �ne-tuning. A task-speci�c

head, a fully connected layer or a Multi-layer Perceptron (MLP), is attached on top of the

LM, and the model is �ne-tuned (further trained), usually with a low learning rate. During

this process, typically, the weights of the LM and of the task-speci�c head are updated. In

other approaches, the LM layers are kept frozen, or only some of its top layers unfreeze.

Transformers are LMs that use an encoder-decoder architecture. As explained in [Vas+17],

the encoder maps an input sequence x = (x1, x2, ..., xn) to a hidden representation

z = (z1, z2, ..., zn). Given z, the decoder generates an output sequence y = (y1, y2, ..., ym).

Both the encoder and decoder are stacks of layers. Every encoder layer is composed of

two sub-layers, a multi-head self-attention mechanism and a fully-connected feed-forward

network. Residual connection and Layer normalization are applied after each of these

sub-layers. This means that the output of each sub-layer is equal to LayerNorm(x+F (x))
where F (x) is the function of the sub-layer [Vas+17]. In addition to the two sub-layers of

the encoder layer, the decoder has an extra sub-layer that performs multi-head attention

over the output of the encoder. Encoder-decoder transformers are widely used in NLP

tasks related to sequence generation, such as text summarization, machine translation and

question answering.

We will use a BERT model pre-trained on a general corpus in our experiments. BERT stood

for Bidirectional Encoder Representations from Transformers [Dev+19] and was introduced

by the Google AI team. BERT follows a transformer architecture by implementing an

Encoder stack. BERT Base has 12 layers in the Encoder stack, while BERT Large has 24

layers in the Encoder stack. Due to its architecture, BERT can be �ne-tuned and be used
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Fig. 2.1: Tranformer model architecture. Figure is taken from [Vas+17]

in any downstream task simply by adding just one additional output layer on top of the

encoder stack, resulting in state-of-the-art performance.

2.3 Abusive Content Detection

Identifying toxic language on social media platforms is di�cult, as o�ensive content

can take many forms. Users can experience hate-speech attacks for their race, gender,

religion or political beliefs. In some cases, discrimination or harassment over speci�c

groups of people can take place without insults or profane phrases. Counter to that, online

comments could contain irony or sarcasm for entertainment reasons (e.g., in the case of

stand-up comedians’ posts), so the perceived meaning of the words can change based on

their context. Social media are trying to restrict harmful content but mostly rely on tools

that detect frequent patterns and phrases that, in many cases, could be misleading in the

classi�cation of online posts [PMA17].

Researchers have experimented with di�erent approaches for the task of Abusive context

Detection. Initially, machine learning methods with lexical or syntactic features were

adapted. [Dav+17] have applied machine learning models such as Logistic Regression and

Naive Bayes with the use of morpho-syntactic features (Part-Of-Speech tags). [KW13]

trained a Naive Bayes hate-speech classi�er with a bag-of-word approach that employed

unigrams to construct the vocabulary of the training set. In the �rst case, although the
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model reached high micro-averaged precision (0.90), recall (0.90) and f1-score (0.91), it did

not perform equally well for the hateful class as it misclassi�ed most of the hate tweets

(0.44 precision). In the second case, the model tended to over-classify tweets as hateful in

cases where they contained words that, when placed out-of-context, could be perceived as

hateful.

In recent approaches, deep learning techniques with word embeddings were employed for

detecting toxic content. [PF17] trained three Convolutional Neural Networks (CNN) with

multiple �lter sizes, large feature map sizes, and a max-pooling layer after the convolution

to capture the feature with the most powerful signal. They focused on a single-label

multi-class classi�cation problem with three class labels: {Sexist, Racist, None}. Their deep

learning models had similar overall results as the Logistic Regression baseline classi�er

but outperformed it at the o�ensive categories evaluation, where the baseline had a low

recall score. [PMA17] developed a Recurrent Neural Network (RNN) operating on word

embeddings that outperformed Detox, the previous state-of-the-art comment moderation

system. Detox used Logistic Regression or an MLP classi�er that operated on n-grams

[WTD17]. They experimented with two di�erent deep learning models (RNN, CNN) and

reproduced Wulczyn et al.’s system [WTD17] as a comparison measure. They reported

Area Under Curve (AUC) score as their evaluation metric. Their RNN model, especially

when a self-attention mechanism was added (Figure 2.2) to compute the weighted sum of

all the hidden states, outrun the Detox system.

Fig. 2.2: Illustration of RNN with an attention mechanism. Figure is taken from [PMA17]

2.4 Self-training

Semi-supervised learning bene�ts from unsupervised data that are available for a speci�c

task (Section 1.3). A common implementation of semi-supervised learning is Self-training.

It is an iterative method that employs a Teacher model initially trained on the labeled

instances to create silver labels for the unlabeled dataset [Yar95; BM00]. A subset of the

silver-labeled instances, along with the pseudo-labels, is sampled and added to the labeled
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dataset. The Student, usually a model with the same architecture as the Teacher, is then

trained on the augmented labeled dataset. Subsequently, the Student model becomes the

new Teacher to sample and silver-label additional instances for the next round [Li+21;

Mi+21]. These steps can be repeated in cycles for a �xed number of iterations or until the

evaluation metric starts to drop or it reaches convergence.

This approach is called Self-training when the Student model has a similar or higher

capacity than the Teacher, and knowledge distillation [HVD15] when the Student model is

smaller than the Teacher. Self-training utilizes unlabeled data in a task-speci�c way during

the pseudo-labeling process to train a more robust Student model and has been applied in

a variety of NLP, computer vision and speech recognition tasks. More speci�cally, recent

research has been conducted on Self-training in tasks such as sentiment analysis [Du+21],

intent-classi�cation and dialog-state tracking [Mi+21], evidence-extraction [Niu+20], natu-

ral language inference [Li+21], toxic span detection [SJ21], text classi�cation and rationale

extraction [BSM21].

2.4.1 Pseudo-label process

Self-training utilizes arti�cial labels generated by the trained Teacher to act as additional

supervision to the Student [Che+21]. During the pseudo-labeling process, silver labels are

assigned to the unannotated examples by picking up the class with the higher predicted

probability by the Teacher model. The con�dence score of the prediction is de�ned as

the predicted probability score. In binary classi�cation problems, the prediction score is

the probability generated by the model to the predicted label. In multi-label multi-class

classi�cation problems, [Mi+21] use the mean of the prediction scores corresponding to

the predicted labels to acquire a con�dence score for each unannotated example.

2.4.2 ST sampling methods

The most common approach for selecting the subset of unlabeled data to augment the

training dataset is based on the model’s con�dence score [Yar95; Niu+20]. This method

samples k instances from the unlabeled data pool that produced the highest con�dence

scores [Mi+21; Du+21], or all instances with probability (con�dence score, Section 2.4.1)

above a certain threshold at the end of each round [Yar95]. This technique is often compared

in literature with random sampling, where random k instances are added to the training set

iteratively or with least-k sampling, where k instances that produced the lowest con�dence

scores in the previous round are selected. The Student is then trained on the augmented

dataset. Algorithm 1 describes the Teacher-Student iterative process steps when the top-k

technique is applied.
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[Mi+21] implemented Self-training for four downstream tasks, including intent classi-

�cation, dialog state tracking, dialog act prediction, and response selection. They used

large-scale pre-trained LMs with di�erent task-speci�c heads for each task and experi-

mented with di�erent sampling techniques such as the top-k, the least-k and the random-k

technique. The top-k sampling outperformed all other sampling methods. [Mi+21] sug-

gested that the initial Teacher trained on limited labeled data is not good enough to assign

reliable labels to a large number of unlabeled data, so the instance con�dence score should

be considered when sampling the silver-labeled data to be added to the training set.

[Du+21] employed Self-training and knowledge-distillation for Natural Language Under-

standing in dialogue systems using RoBERTa-Large. In the case of knowledge distillation,

they used a Student model that had an order of magnitude fewer parameters than the

RoBERTa Teacher model. They also produced few-shot settings as their third experiment

by considering only a few samples per class. Self-training outperformed the baselines,

which were large pre-trained LMs in all of their experiments. [Du+21] observed that the

most signi�cant improvement was in the few-shot scenario, where the model’s accuracy

increased by 3.5%. [Niu+20] performed experiments on the Teacher-Student approach by

applying both con�dence and random sampling. Based on the evaluation of their system

when both these techniques were used, they concluded that the top-k sampling strategy is

more e�cient as it tends to prevent the model from learning the wrong knowledge of the

wrong Teacher predictions made in previous rounds.

Algorithm 1 Self-training (ST), K most con�dent instances

Require: Labeled data: L, Unlabeled data: U
Require: Teacher: Ft, Student: Fs
Require: Number of pseudo-labeled data in an iteration: k
Ensure: A trained Student Fs

Initialize Ft and train Ft on L
while Fs not good enough and U 6= Ø do

Initialize Ft, L
′ ← Priority_list()

while x ∈ U do
Compute prediction label yx = Ft(x)
Compute con�dence score sx
L′.insert(x, yx, sx)

L′ ← L′.top(k)
L← L ∪ L′
U ← U \ L′
Train Fs on L
Ft ← Fs

Another method used to augment the labeled dataset is the select-all technique. [Li+21;

Du+21]. At the end of each round, the Student is trained with the union of the labeled data

and the entire set of unlabeled data, provided with soft labels by the Teacher (Algorithm

2). However, this method may be e�ective only when a good fraction of the predictions

on the unlabeled samples are correct. Otherwise, early mistakes made by the Teacher can
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reinforce themselves by generating incorrectly pseudo-labeled data. Re-training with this

data will lead to an even worse Student model in the next round [Li+21].

Algorithm 2 Self-training (ST), Select-all instances

Require: Labeled data: L, Unlabeled data: U ,

Require: Teacher: Ft, Student: Fs
Ensure: A trained Student Fs

Train Ft on L
while Fs not good enough do

while x ∈ U do
Compute prediction label yx = Ft(x)

U ′ = {(xj , yx)|∀xj ∈ U}
L′ ← L ∪ U ′
Train a Student model Fs on L′

Ft ← Fs

[Li+21; Du+21] propose task-adaptive pre-training as a complementary semi-supervised

method to deal with this challenge. By pre-training masked LMs with a large number of

unlabeled in-domain training examples and then �ne-tuning the Teacher model on labeled

data in a standard supervised way, they achieve a better initialization for the Teacher model.

As the initial model is pre-trained with task-speci�c data, it performs better at early stages,

can avoid early mistakes and generate more accurate predictions. Algorithm 3 describes

the steps of task adaptive pretraining and Self-training with the select-all technique. In

addition, [BSM21] introduced a weighted pseudo-labeled loss function used during Student

training. A weight is assigned to each training example based on the con�dence score of

the Teacher’s prediction. These weights are normalized across each mini-batch during the

training process. Their experiments showed that upweighing most con�dent examples

and downweighing noisy ones are bene�cial for the Student’s training. It prevents the

model from relying on wrong knowledge obtained from previous rounds.

Algorithm 3 Task adaptive pre-training and Self-training, Select-all instances

Require: Labeled data: L, Unlabeled data: U ,

Require: Teacher: Ft initialized with pθ , Student: Fs
Ensure: A trained Student Fs

Update model pθ with Task-adaptive pre-training on U
Train Ft initialized with pθ by �ne-tuning on L
while Fs not good enough and U 6= Ø do

while x ∈ U do
Compute prediction label yx = Ft(x)
U ′ = {(xj , yx)|∀xj ∈ U}

Train Fs on L ∪ U ′
Ft ← Fs
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2.5 Data augmentation (DA)

DA refers to strategies for increasing the diversity of training examples without explicitly

collecting new data [Fen+21]. It is a common technique used in machine learning to

prevent models from over�tting on training data and improve generalization. For few-shot

learning where training examples are hard to obtain, models can signi�cantly bene�t from

DA techniques. [PMA22] showed that DA can lead to very signi�cant performance gains,

even when using large pre-trained transformers, by experimenting with seven di�erent

DA techniques for question answering in the biometrical domain.

DA has been commonly used in Computer vision, where techniques like cropping, �ipping,

and color jittering are a standard component of model training [Fen+21]. However, in

NLP, where the input includes complex syntactic and semantic structures, the way of

generating e�ective augmented examples that preserve the class label is less obvious. In

addition, [Fen+21] note that the distribution of the augmented data should be neither too

similar nor too di�erent from the original dataset. In the �rst case, the risk of over�tting

is not reduced when using the augmented dataset, while in the second case, the model’s

performance could drop further through training on examples not representative of the

given domain.

Two of the most common DA techniques used in several NLP tasks are Back Translation

and Word Substitution. Back Translation [Fen+21] refers to the case where training

examples are machine-translated from a source to a pivot language and back, obtaining

paraphrases of the original example. Word substitution, a DA method widely applied in

NLP, replaces words from the original sentence with synonyms or other relevant words

drawn from a thesaurus or words with similar embeddings [PMA22]. In more recent works,

word substitution is performed using large pre-trained masked LMs, which suggest the

replacement of randomly masked words from the initial training example (Masked LM

Word Substitution).

2.5.1 DA techniques applied with Self-training

An important goal of Self-training is to improve the robustness of the Student model

trained from potentially noisy pseudo-labeled samples. DA techniques are widely used

for that purpose [Mi+21]. DA acts as a form of regularization as the model is encouraged

to generate consistent predictions on original sequences and augmented ones, based on

the assumption that a model that has not learned to memorize the training data should

produce similar predictions for relevant inputs. Some implementations of Self-training

combined with DA methods are presented below.
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Fig. 2.3: Self-Training pipeline when DA is included. The Teacher generates pseudo labels for

data in U. Then, the Selector chooses the most con�dent samples based on the Teacher’s

predictions and adds them to L. Afterwards, L is augmented by a DA technique to train

the Student. Lastly, the trained Student becomes the Teacher in the next iteration. Figure

is taken from [Mi+21].

[Du+21] have created a sentence encoder that outputs similar hidden representations

for sentences of similar meaning to produce task-speci�c sentence embeddings. These

embeddings are then used as queries for retrieving in-domain sentences from a large bank

of sentences crawled from the web. [Niu+20; Mi+21] have used Masked LMs to create

label-preserving augmentations. [Niu+20] applied augmentation to the examples with the

highest con�dence scores that are more likely to be reliable and performed random masking

(15% of the sequence tokens). They replaced masked tokens with tokens suggested by the

pre-trained LM based on the assumption that the label would be preserved because of the

context-aware representations on top of the LM. Contrary to that assumption, [Mi+21]

suggested that masking and replacing the most crucial tokens for each task might lead

to changing the semantics after the sequence reconstruction. In order to preserve the

label of the initial example, they suggested measuring the importance of each token xi by

accumulating the gradients of all elements in its embedding by di�erentiating Ft(x) w.r.t.

xi (Ft(x) is the Teacher prediction score). Based on their intuition, they suggested that

tokens with large gradients are important to the label y.

[Vu+21] have proposed the implementation of "task augmentation" for few-shot learning.

This approach utilizes a BERT model �ne-tuned on a dataset with thousands of examples

for an auxiliary task, such as Natural Language Inference (NLI), before the target task. For

the NLI task, they used MNLI, a dataset that contains sentence pairs labeled as {entailment,

contradiction, neutral}. They transformed each training example from its basic form [textA,

textB] -> label to [textA, label] -> textB. They trained the BERT LM with the transformed

examples in order to generate textB. The �ne-tuned data generator could then be used to

augment training examples for any downstream task.

Dropout is also used in related research as an additional form of augmentation. [Xie+20] in

the task of image classi�cation suggested that adding model noise to the Student makes it

more powerful. More speci�cally, when dropout is used as noise, the Teacher behaves like
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an ensemble at inference time, whereas the Student behaves like a single model. In other

words, the Student is forced to "mimic a more powerful ensemble model" [Xie+20].

2.6 Active Learning

As discussed in Sections 1.2 and 1.3, large datasets of supervised data are scarce for many

NLP tasks. Manually annotating thousands of examples takes a great deal of human e�ort

and is error-prone and expensive. In addition, not all examples are equally useful in

order to learn a speci�c task. For example, instances very similar to what the model has

already seen do not provide signi�cant new information. Active Learning is the task of

reducing the amount of labeled data required to learn the target concept. By querying the

user to annotate only the most informative instances, the concept is learned with fewer

examples [Aro07]. The success of an active learner is demonstrated by showing that it

needs to be trained with fewer examples than the traditional learner to achieve the desired

performance.

In a typical Active Learning scenario, there is a limited amount of labeled data and a large

pool of unlabeled data available for a speci�c task. A classi�er is initially trained on the

labeled examples. Selective sampling is then used to select a subset from the unannotated

set in order to be labeled by a human annotator. The classi�er is subsequently further

trained with the newly manually-labeled instances. This iterative process of training,

selective sampling and annotation is repeated until convergence [Aro07]. Algorithm 4

presents the steps of the Active Learning process. Active Learning has been successfully

applied in a wide range of NLP tasks, including text classi�cation [MN98a], named entity

recognition [She+04], semantic role labeling [RS06] and parsing [Hwa00].

2.6.1 Selective Sampling

Several di�erent techniques for selective sampling have been explored in the literature.

Uncertainty-based sampling selects examples that the model is least certain about and

presents them to the user for correction/veri�cation [Aro07]. Several de�nitions of uncer-

tainty have been used, but all are based on estimating how likely a classi�er trained on

previously labeled data would be to produce the correct class label for a given unlabeled

example. [LG94] use a probabilistic text classi�er for uncertainty sampling. Speci�cally,

the classi�er samples a subset in each iteration based on the max-entropy decision rule.

[GG16] apply Monte Carlo Dropout (MC Dropout) to a Neural Network to generate the

prediction and compute the uncertainty of each training example. MC Dropout refers

to the case where Dropout is also applied at the inference time instead of only being

applied during training. By predicting the label of a test instance in many rounds, the same

model will produce di�erent probability scores because each time, di�erent neurons of the
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network would be randomly switched o�. The instance’s uncertainty is then computed by

the variance of the model’s predictive probabilities in each round of the inference time.

The query-by-committee sampling method generates a group of predictions and selects

a set of unlabeled examples based on the disagreement among these predictions. In

particular, it selects the examples on which the disagreement within the committee is

the highest [Aro07]. The committee consists of k classi�ers acting like an ensemble of

models. Vote Entropy, de�ned as "the entropy of the class label distribution obtained when

each committee member votes with probability 1/k for its winning class" [Aro07], and

the KL divergence of each committee member’s predictive probability to the mean of all

committee members’ predictive probability [MN98b] are the two metrics often used to

measure disagreement among the committee of classi�ers.

In literature, the diversity criterion is often used to measure the training utility of a batch

of examples. Speci�cally, it is suggested that a batch of examples with high variance may

be pretty informative and useful to the training process. [She+04] propose two methods for

diversity sampling, global and local sampling. For global consideration, they create clusters

of the remaining unlabeled examples (using k-means clustering) based on similarity and

then select examples from di�erent clusters. For local consideration, examples that are

most di�erent from instances already in the training pool of the labeled data are sampled

in each iteration.

Another technique of sampling valuable examples from the unlabeled data pool is repre-

sentativeness sampling. This method is based on the assumption that the most informative

examples are the ones that best cover the dataset. The representativeness of an example can

be calculated as the number of unlabeled examples that are similar to it [Aro07]. Examples

with high representativeness are less likely to be an outlier, and adding them to the training

set will have an e�ect on a large number of unlabeled examples. If the examples were

clustered together based on similarity, the centroids of the clusters would be the most

representative examples according to [Aro07]. During their experiments, [She+04] used

cosine similarity and Dynamic Time Warping to measure the similarity of examples.

In our experiments, we applied the Active Learning criteria that measure the represen-

tativeness and diversity of the silver-labeled instances described above to augment our

training set in each Teacher-Student round. Instead of using con�dence sampling, we

reproduced Self-training by sampling the most representative or diverse instances from the

unlabeled data pool and the generated labels. We performed this experiment to examine

whether the informative score gx of an instance (representativeness/diversity score) could

be a more critical factor than the Teacher’s prediction con�dence score sx when expanding

the training set with arti�cial labels. In addition, we examined if these two factors (sx, gx)

could be combined when sampling the silver-labeled instances to train a stronger Student

model. More details about our experiments can be found in Chapter 3.
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Algorithm 4 Active Learning

Require: Inital model f(x; θ0), Unlabeled data U , number of iterations T , sampling

algorithm A
D = {}, t = 0
while iterations t < T do

Qt ← Apply A on model Mt(x), data U
Dt ← Label queries Qt
D ← D ∪Dt

U ← U \Dt

θt ← Fine-tune f(x; θ0) on D
t = t+ 1

return f(x; θT )

2.6.2 Combining Active Learning with Self-training

In related research, various implementations combine Active Learning with Self-training.

The combination of these two learning techniques aims to reduce annotation costs. The

Self-training method discovers highly reliable instances based on a trained classi�er,

while Active Learning queries the most informative instances based on active query

algorithms. [Wu+06] developed a system for spoken language understanding in domain-

speci�c dialogue systems that consisted of two parts. The �rst part was a topic classi�er

used to reduce the search space of the correct answer by identifying the topic of the slot.

The second classi�er (semantic classi�er) was trained to extract the corresponding slot-

value pairs using the restriction of the recognized target topic. They employed the strategy

of combining Active Learning and Self-training for training the topic classi�er. For Active

Learning, they selected uncertainty-based sampling where the most uncon�dent examples

were selected for a human to label and then added to the training set. For Self-training, the

examples with classi�cation con�dence scores over a certain threshold and their predicted

labels were added to the training set to retrain the classi�er. They used the class probability

as the con�dence score of the example to apply both methods and repeated this process

iteratively until no unlabeled examples were left in the pool. To evaluate their approach,

they compared it with random sampling as their baseline and with the implementation only

of Active Learning. Their experiments showed that Active Learning signi�cantly reduces

the amount of labeled data needed for the task, as it almost reached the performance of

the baseline classi�er using only 1/3 of the labeled examples. The combination of Active

Learning and Self-training further boosted the baseline classi�er performance by using

1/3 of the labeled examples.

[GKP11], followed a similar approach for the task of argumentative zoning (i.e., analysis of

the argumentative structure of a scienti�c paper). In their experiments, they implemented

supervised training with Support Vector Machines as their baseline and compared it with

various weakly supervised techniques, including Active Learning alone and in combination

with Self-training. The sampling method used for Active Learning was uncertainty sam-
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pling, where the unlabeled instances with the lowest posterior probabilities were queried

for the next round of learning. In each round, the model was jointly trained with the

machine-labeled and manually annotated data from the Active Learning sampling. When

using only 10% of the labeled data from the initial training set, their method outperformed

the fully-supervised learning and the weakly-supervised learning that was based only on

Active Learning.

[Tra+17] combined Active Learning and Self-training for the named entity recognition

task from tweet streams. They employed Self-training queries based on both diversity

and uncertainty sampling to select the most informative instances. The probability of

individual token labels was considered while looking for uncertainty instances. They

considered that the model is uncertain about its prediction if it assigns to the instance

at least one label with a probability less than a prede�ned threshold. The diversity of

instances was examined based on their context and content to select instances that di�ered

from the current training data. A vector model was used to measure the context similarity

of instances, where each instance was represented as a vector. The vector’s dimensions

represented the POS tags of the sequence tokens. Diversity was then evaluated by counting

the number of tokens with the same POS tag sequence as the instances already in the

training set. For content diversity, they constructed word vectors using the Word2Vec

model and then added the word vectors to compose an instance vector. They evaluated

similarity for two instances using a function based on cosine similarity. In each round, the

instances with similarity scores less than or equal to the prede�ned similarity threshold

were human labeled. In addition, the most con�dent instances were machine-labeled and

added to the training data.
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3System Design and
Implementation

As discussed in Section 1.3, in this thesis, we implement a Teacher-Student approach for

the two following tasks: Toxicity detection on Greek tweets and Sexism Detection on

English posts. We interpreted these tasks as binary classi�cation problems where the class

labels for the input user posts are 1 (O�ensive/Sexist) and 0 (Not O�ensive/Not Sexist).

We implement Self-training by applying di�erent sampling techniques to augment our

initial labeled dataset. First, we examine di�erent techniques using a Logistic Regression

classi�er. Second, we apply Self-training with the best sampling techniques tested on the

Logistic Regression Teacher-Student framework to a BERT model pre-trained on a large

general corpus.

To reproduce few-shot settings, we randomly sampled a small number of instances from

the dataset’s training examples as our initial labeled set (L). We detached 10% from the

original training dataset for our validation set (V) and 10% as a test set to evaluate our

�nal results. The rest of the supervised set was used as our unlabeled Dataset (U).

We will �rst describe the di�erent sampling techniques applied to the Logistic Regression

Teacher-Student framework. We will then present our experiments on the Teacher-Student

framework based on a pre-trained LM (Section 3.7).

3.1 Teacher-Student with Logistic Regression
classifier

In our approach, both the Teacher Ft and the Student Fs are Logistic Regression classi�ers

with the same hyperparameter values. During training, two data pools are maintained,

denoted as U (unlabeled data) and L (labeled data). We have two class labels: 1 for

O�ensive/Sexist and 0 for Not O�ensive/Not Sexist. Following Algorithm 1, we initially

train the Teacher model on L. Then the Teacher generates predictions for U by assigning

each input sequence ~x to the class with the highest probability. In the case of a Logistic

Regression classi�er with weights vector ~w :

Probability for positive class: P (1|~x) =
1

1+exp(−~x~w)
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Probability for negative class: P (0|~x) = 1 - P (1|~x) =
exp(−~x~w)

1+exp(−~x~w)

The predicted class is assigned as the silver label for the input x : yx = Ft(x). The Selector

(the function that is responsible for the sample selection) samples a number of silver-labeled

instances based on di�erent criteria to expand the initial labeled set (L). The Student is

trained on the augmented training set, and at the end of each round, he becomes the new

Teacher. We evaluate the Student’s performance on the validation set at the end of each

round. At the next iteration, the new Teacher predicts the class labels for the remaining

instances on U. These steps are repeated in rounds until the evaluation metric starts to

drop by evaluating our system on the validation dataset. The �nal model is then evaluated

on the test set.

3.2 Confidence sampling

3.2.1 Top - k instances

In each round of the Teacher-Student approach, the Teacher generates predictions for the

entire unlabeled set U. The con�dence score sx of each instance in U is the probability

of the classi�er’s predicted class. In the top-k technique, the Selector subtracts the k

instances with the highest con�dence score from U and inserts them in L. We considered k

a hyperparameter and experimented with di�erent values [20, 50, 100, 200]. For each k we

performed Teacher-Student training iteratively until the round that the system achieved

the max micro F1-score
1

based on the validation set and reported the results on the test

set.

For the second dataset, although the micro F1-score increased after applying Self-training

with con�dence sampling, we observed that the F1-Score of the minority class
2

(Sexist

instances) decreased after the addition of the silver-labeled examples. Hence we considered

both the micro F1-Score and the F1-Score of the minority class to monitor the number of

Teacher-Student iterations. More speci�cally, we set the number of rounds equal to the

iteration where the max F1-Score of the minority class is achieved while micro F1-Score

does not drop (compared to the micro F1-score achieved in few-shot learning). Given

the class imbalance of our datasets, an alternative could have been to monitor the macro

F1-Score that assigns equal weight to each class regardless of the number of instances that

belong to each category.

In addition, for the second dataset, we examined if the class ratio of the top-k instances

added in each iteration is responsible for the performance drop in the minority class

1
Information about the micro F1-score evaluation metric can be found in Section 4.3.

2
Information about the F1-score of each class can be found in Section 4.3.
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detection. Instead of adding the top k instances irrespective of their silver labels, we

selected a batch that contains 24% minority class instances and 76% majority class instances

to preserve the class balance of the initial labeled set. We also examined if adding batches

of di�erent �xed class ratios when expanding our training set could have better results.

Hence we performed the same experiment by adding batches of 25%, 26%, 27% and 28%

sexist instances and 75%, 74%, 73%, 72% not sexist instances, respectively.

3.2.2 Instances with confidence above a certain threshold

Another quite common technique when con�dence sampling is applied is to sample all

instances with sx above a certain threshold t. We performed this experiment by assigning

di�erent thresholds in the interval [0.81, 0.99] and repeated Teacher-Student training until

the round in which our system had the best performance on the validation set. Speci�cally,

for the Toxicity dataset, we set as monitor micro F1-Score, while for the Sexism dataset,

we repeated the iterations monitoring both micro F1-Score and F1-Score of the minority

class.

3.2.3 Adaptive number of top confident instances

The next experiment we performed based on con�dence sampling was adding an adaptive

number of top con�dent examples. The idea was to examine how the Student’s performance

would be a�ected if we augmented the labeled dataset by a variable rather than a �xed

number of examples in each round. Based on the assumption that the Student becomes

more robust after each iteration and it generates more accurate predictions for the unlabeled

dataset, we examined two approaches that increase k in each round: k + 20, 2 ∗ k.

In addition, we tried to adapt k based on the di�erence in the score of the Student’s micro

F1-Score after each iteration. In each round, if the Student was evaluated with the same or

lower micro F1 score as before, we kept k stable. Instead, if the Student’s micro F1-score

increased by adding k examples in round l, we doubled the examples inserted in the Labeled

dataset in round l + 1.

To tune the Teacher-Student rounds, for the Toxicity dataset, we set as monitor micro

F1-Score, while for the Sexism dataset, we repeated the iterations until the max F1-Score

of the minority class is obtained, and the micro F1-Score does not drop compared to the

few-shot results (based on the validation set).

3.2 Confidence sampling 23



3.3 Select - all instances

Following algorithm 2, the Self-training process follows the same steps described in Section

3.1 except for the Selector function. The entire dataset U and the predicted labels are

combined with the L in each round (L′ ← L ∪ U ′). Then the Student model is trained

on the augmented dataset L′ and generates pseudo-labels for U . The number of Teacher-

Student rounds was set equal to the iteration where the micro F1-score started to drop

based on the evaluation of the validation set.

3.4 Active Learning

After experimenting with di�erent Self-training techniques extracted from the related

bibliography, we tried to examine if Active Learning criteria could be useful when selecting

instances from the unlabeled data pool U to augment our training set. As described in

Section 2.6.1, selective sampling tries to locate the most informative instances, i.e., the

instances that have the maximum training utility for the concept that the model is trying to

learn. In most cases, a human annotator is then queried to assign labels to these examples

instead of annotating a huge task-speci�c dataset. This process can be repeated in rounds

to further boost the performance of the model.

We applied this method iteratively to our framework to study if Active Learning criteria

are helpful when sampling and assigning true labels to the selected unlabeled instances to

augment L. To conduct the Teacher-Student experiments, we removed the ground-truth

labels of the remaining training set to use it as the unlabeled set U. Hence, for the Active

Learning application, we did not need a human annotator to create ground-truth labels for

the examples, as their true labels were already available. We augmented the training set in

each round with top-k instances (based on Active Learning criteria) and their gold labels.

The criteria we employed are described in the following two subsections.

3.4.1 Representativeness sampling

The �rst Active Learning criterion we implemented is representativeness sampling. Ac-

cording to this criterion, the most informative instances of the Unlabeled dataset U are the

most representative of the dataset. They are less likely to be outliers, and they represent

a signi�cant portion of the unlabeled examples. As the representativeness score of an

instance in U, we de�ne the average distance from its nearest neighbors in U. The metric

for distance was set as cosine similarity. Hence, we implemented the K-NN (K-Nearest

Neighbors) algorithm �tted on the unlabeled dataset to �nd the ten nearest neighbors of

each instance. Then we calculated the average distance from these neighbors to produce
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the instance score rx. Speci�cally, we assigned the highest rx to the instances in U that

had the lowest average distance from their neighbors in U. In each iteration, we sampled k

instances that had the highest rx and added them to the labeled set.

3.4.2 Diversity sampling

The diversity criterion suggests that the instances that are most di�erent from the examples

already in the training pool L are the ones with the highest training utility. This technique

is popular in Active Learning based on the assumption that the model could bene�t more

from instances di�erent from those it has already seen so it can gain new knowledge

for the task. We calculated the diversity score of an instance in U from the training set

as the average distance of the instance from its nearest neighbors in L. We used our

implementation of k-NN (�tted on the Labeled dataset) search to �nd the ten nearest

neighbors of each unlabeled instance. Then we calculated the average distance from them

and set it as the instance diversity score dx. During the iterative process, we selected

k instances with the highest dx along with their true labels and inserted them into the

training data pool.

Figure 3.1 illustrates each sequence’s average distance from its nearest neighbors in L and

the average distance from its nearest neighbors in U, respectively. In the left �gure, as

the average distance increases, the samples are more diverse from those already in the

labeled dataset. Correspondingly in the right �gure, as the average distance decreases,

the samples are more representative of the examples that have not yet been added to the

training set.

Fig. 3.1: Toxicity Dataset: Samples Diversity from L and Representativeness of U

As mentioned in Section 3.4, since the true labels of the instances in U were available,

we used the ground truth labels to simulate a human annotator that would be consulted

during Active Learning. We applied Active Learning to demonstrate whether expanding

the training set with the k most informative instances could lead to a more robust model

with fewer training examples than other sampling techniques. We performed the same
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experiment by selecting in each round the k most con�dent samples based on the model’s

predictions and random k examples, along with their true labels, to compare the results.

Fig. 3.2: Toxicity Dataset: Micro F1-Score per iteration when Active Learning with di�erent

techniques is applied.

As shown in Figure 3.2, when ground-truth labels are available, the representativeness score

of the instance is the most bene�cial criterion when expanding the initial few-resource

dataset. The diversity criterion did not work as well as the other three techniques at �rst,

but after the �rst 20 iterations, it performed better than con�dence sampling. Random

sampling performs better than diversity sampling during the �rst TS rounds and better

than con�dence sampling as the iterations increase. The curve of the micro F1-Score when

representativeness sampling is applied is on top of the other curves in most iterations, and

it is probably a more reliable option.

3.5 Teacher - Student with Active Learning
Criteria

Following algorithm 5, we reproduced Teacher-Student with Active Learning criteria

as sampling techniques for a few-shot learning scenario. Similar to the Teacher-Student

approach, when con�dence sampling is applied, two data pools are maintained: L, the initial

annotated dataset and U , the unsupervised data. A Teacher model is originally trained

on L and generates predictions for all instances in U . Then a Selector function samples k

most informative instances based on two di�erent criteria (representativeness/diversity).

These instances and their silver labels are added to the training set. After adding the

queried examples, the Student is initialized and trained on the extended set. These steps

are iteratively repeated until the Student’s micro F1-score starts to drop based on the
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evaluation of the validation set. At the end of this process, the Student is evaluated on the

test dataset.

Algorithm 5 Teacher - Student with Active Learning criteria

Require: Labeled data: L, Unlabeled data: U ,

Require: Number of pseudo-labeled data in an iteration: k
Require: Teacher: Ft, Student: Fs
Require: Informativeness criterion: i
Ensure: A trained Student Fs

Train Ft on L
while Fs not good enough and U 6= Ø do

Initialize Ft, L
′ ← Priority_list()

while x ∈ U do
Compute prediction label yx = Ft(x)
Compute informativeness score gx based on the informativeness criterion i
L′.insert(x, yx, gx)

L′ ← L′.top(k)
L← L ∪ L′
U ← U \ L′
Train Fs on L
Ft ← Fs

3.6 Active Learning criteria combined with
confidence sampling

We attempted to combine Self-training and Active Learning criteria to employ a Teacher-

Student method that samples instances based on both these techniques (Algorithm 6). In the

�rst experiment, we converted the Selector function to extract instances from the unlabeled

data pool U based on a linear combination of con�dence (sx) and representativeness (rx)

of the instance. Speci�cally, we used the equation ax = λ ·sx+(1−λ) · rx. We considered

λ a hyperparameter and manually tuned it by testing di�erent values in the space [0.1, 0.9].
When λ = 0.1, the Selector pays little attention to the con�dence score of the instance,

whereas when λ = 0.9, the model takes into little account the representativeness score

of the instance. For the case of con�dence and diversity of the samples, the Selector

again sampled instances based on the score of the linear combination of these two criteria

ax = λ · sx + (1− λ) · dx.

Figure 3.3 illustrates micro F1-Score per iteration for di�erent values of λ in the interval

[0, 1] for both datasets when evaluating the validation set. The �gure on top shows the

results of the Teacher-Student application using the Toxicity dataset, while the �gure on

the bottom presents the results of Teacher-Student using the Sexism dataset. As shown

below, as we increase the weight assigned to the con�dence score of the instance, the

micro F1-Score increases. The best results in the interval [0.1, 0.9] for both datasets were
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Algorithm 6 Teacher - Student with con�dence sampling and Active Learning criteria

Require: Labeled data: L, Unlabeled data: U ,

Require: Number of pseudo-labeled data in an iteration: k
Require: Instance con�dence score weight λ
Require: Teacher: Ft, Student: Fs
Require: Informativeness criterion: i
Ensure: A trained Student Fs

Train Ft on L
while Fs not good enough and U 6= Ø do

Initialize Ft, L
′ ← Priority_list()

while x ∈ U do
Compute prediction label yx = Ft(x)
Compute con�dence score sx
Compute informativeness score gx based on the informativeness criterion i
ax = λ · sx + (1− λ) · gx
L′.insert(x, yx, ax)

L′ ← L′.top(k)
L← L ∪ L′
U ← U \ L′
Train Fs on L
Ft ← Fs

obtained when setting λ = 0.9 (when the largest weight is attributed to the instance’s

con�dence score). We also present the curves of micro F1-Score per iteration when setting

λ = 0 (representativeness sampling) and λ = 1 (con�dence sampling) for comparison

reasons.

Respectively, �gure 3.4 depicts micro F1-Score per iteration for di�erent values of λ in

the interval [0, 1] when evaluating the validation dataset. The �gure on the top depicts

the results of the Teacher-Student framework for the toxicity detection task, while the

�gure on the bottom shows the results of the Teacher-Student framework for the sexism

detection task. For con�dence and diversity, the results are comparable to con�dence

and representativeness sampling. The highest scores for both datasets when tuning λ

in the interval [0.1, 0.9] were obtained when setting λ = 0.9, and the largest weight is

assigned to the instance’s con�dence score. We also present the curves of micro F1-Score

per iteration when setting λ = 0 (diversity sampling) and λ = 1 (con�dence sampling) for

comparison reasons.

3.7 Self-training with BERT

Our �nal experiments included Self-training using a pre-trained BERT model trained

on large general corpora. After experimenting with di�erent sampling methods with a

Logistic Regression classi�er, we wanted to explore whether Self-training can be e�ective
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Fig. 3.3: Self-training when the sampling function is a linear combination of the instance con�dence

and representativeness score. Di�erent values of con�dence weight are applied (λ ∈ [0, 1]).

On the top: System evaluation for the Toxicity Dataset. On the bottom: System evaluation

for the Sexism Dataset.

even when applied to models with higher capacity, such as the state-of-the-art NLP models,

and further boost their performance. Based on the fact that BERT models are already

pre-trained on unsupervised data, a question that arose was whether Self-training captures

the same information as pretraining or if these semi-supervised learning methods can

be complementary and bene�cial to the model when applied together. In addition, we

wanted to examine if the sampling techniques that had the best results for the Teacher-

Student Logistic Regression framework are equally e�ective in the Teacher-Student BERT

framework application.

In our implementation, Teacher is a classi�er that consists of a BERT base LM with a task-

speci�c head (MLP) to classify the instances into O�ensive/Sexist or Not O�ensive/Not

Sexist. The Student is a BERT base model with the same architecture as the Teacher.

First, the Teacher is �ne-tuned on the initial labeled set L. In each round, the Students

weights are initialized, and the Student is �ne-tuned on the union of the labeled and

silver-labeled examples that the Selector sampled. The Student becomes the Teacher to
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Fig. 3.4: Self-training when the sampling function is a linear combination of the instance con�dence

and diversity score. Di�erent values of con�dence weight are applied (λ ∈ [0, 1]). On the

top: System evaluation for the Toxicity Dataset. On the bottom: System evaluation for

the Sexism Dataset.

generate predictions for the rest of the unlabeled dataset U at the end of the round as the

Self-training algorithm suggests .

We experimented with the sampling techniques that had the best results on the Logistic

Regression framework. More speci�cally, we applied con�dence sampling by adding the

top-k most con�dent silver-labeled instances or all instances with a con�dence score above

a certain threshold iteratively to train the Student. We also applied combined con�dence

and representativeness scores as factors contributing to the selection of the unannotated

instances.
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3.8 Full - Supervision

To evaluate the results of our best Teacher-Student methods, we also employed full super-

vision for comparison reasons. Speci�cally, we trained both a Logistic Regression classi�er

and a BERT model with the same architecture as the Teacher of our previous experiments

with the entire labeled dataset without removing the ground-truth labels of the remaining

training set to be used as unlabeled data. The results of our experiments are presented in

the next section.
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4Evaluation

We present the dataset statistics, the con�gurations of our experiments, the evaluation

measures we used and our experimental results.

4.1 Datasets

4.1.1 OGTD

The O�ensive Greek Tweet Dataset (OGTD) is a publicly available dataset for o�ensive

language identi�cation [PZR20]. Although there are many toxicity datasets in English, it

was the �rst Greek annotated dataset for the speci�c task [PZR20]. It contains a total of

10,287 posts from Twitter labeled as O�ensive or Not O�ensive. The posts were collected

using popular hashtags, mostly from television programs such as reality and entertainment

shows and hashtags concerning political events like European parliament elections. The

researchers note that they focused on these categories as TV and politics usually gather

more disputes and insulting language than other topics.

The dataset contains o�ensive tweets of di�erent types (racist, sexist, etc.). It consists of a

training subset of 8,743 tweets and a test subset of 1,544 tweets. The dataset is imbalanced

as most tweets are labeled as Not O�ensive, as shown in Figure 4.1. The training data

consist of 2,486 o�ensive tweets and 6,257 not o�ensive Tweets, with an o�ensive class

ratio of 28% of the total set. The test dataset is even less balanced as it consists of 242

o�ensive tweets and 1,544 not o�ensive tweets with an o�ensive class ratio of 15% of the

total set. To experiment with datasets with the same class balance, we united the training

and test data and produced a random split for the test set. In addition, the average length

of training and test sequences is 18 words, and the max sequence length is 72 tokens.

4.1.2 Explainable Detection of Online Sexism Dataset

The Explainable Detection of Online Sexism Dataset (EDOSD) was introduced for SemEval

2023 for the task of Sexism Detection. It consists of 20,000 user English posts sampled

from Gab and Reddit. All entries are labeled as Sexist or Not Sexist by human annotators.

The available training data consists of 14,000 entries. The validation and test data will be
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Fig. 4.1: OGTD Class distribution

released at the �nal phase of the competition, so they cannot be used in this thesis. The

training set is imbalanced as there are 3,398 sexists samples (24% of the entire dataset) as

shown in Figure 4.2. The training samples have an average length of 27 words and a max

length of 84 tokens.

Fig. 4.2: EDOSD Class distribution

4.2 Few-shot settings

As mentioned in Chapter 3, we reproduced few-shot settings for our experiments. We

randomly sampled 2,000 instances from the training subset as our initial labeled set (L) for

both datasets. We detached 10% of the original training data for our validation set (V) and

10% as the test set (T) to evaluate our �nal results. The rest of the supervised set was used

as our unlabeled dataset (U) for both datasets. Tables 4.1 and 4.2 summarize the statistics

of our settings.
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O�ensive Not O�ensive Total % O�ensive

Labeled Set (L) 527 1473 2000 26%

Unlabeled Set (U) 1697 4635 6332 27%

Validation Set (V) 240 686 926 26%

Test Set (T) 264 765 1029 26%

Tab. 4.1: OGTD - Few shot settings

Sexist Not Sexist Total % Sexist

Labeled Set (L) 484 1516 2000 24%

Unlabeled Set (U) 2246 7094 9340 24%

Validation Set (V) 316 944 1260 25%

Test Set (T) 352 1048 1400 25%

Tab. 4.2: EDOSD - Few shot settings

4.3 Evaluation metrics

We evaluated the �nal Student model after applying Teacher-Student with the techniques

and con�gurations described in Chapter 3 on its performance on the test set based on the

evaluation metrics described in this Section.

We report the F1-Score of each class to test the success of our methods for detecting both

the minority and the most frequent class. The F1-Score of each class is the harmonic mean

of class precision and recall, respectively, and can be de�ned by the following equations:

precisionc = TPc
TPc + FPc

(4.1)

recallc = TPc
TPc + FNc

(4.2)

F1-scorec = 2 · precisionc · recallc
precisionc + recallc

(4.3)

TPc, FPc, FNc refer to the True Positive, False Positive and False Negative predictions

respectively, for each class c.

We also set as evaluation metric micro F1-Score, which computes the global average F1-

score by counting the sum of the True Positives (TP), False Negatives (FN), and False

Positives (FP) of the two classes. We used this metric to evaluate our system because we

wanted to give equal importance to all instances regardless of their class. Our purpose
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was to train a Student model that would correctly classify the maximum number of test

instances irrespective of their category. Micro-averaged F1-score constitutes the harmonic

mean of micro-precision and micro-recall, which are de�ned as follows:

micro-precision =
∑
c TPc∑

c TPc +
∑
c FPc

(4.4)

micro-recall =
∑
c TPc∑

c TPc +
∑
c FNc

(4.5)

micro F1-Score = 2 · micro-precision ·micro-recall
micro-precision + micro-recall

(4.6)

We con�gured the number of Teacher-Student iterations for each technique based on the

micro F1-Score of the Student evaluated on the validation set. However, in some of our

experiments, we observed that although micro F1-Score increased, there was a considerable

decrease in the minority class evaluation. That means that although our classi�er labels

more test examples correctly, it cannot e�ectively predict the O�ensive/Sexist instances

that occur more rarely. In these cases, we used both micro F1-Score and F1-Score of

the minority class to monitor the number of Teacher-Student iterations. An alternative

evaluation metric to monitor the con�gurations of our experiments could have been macro

F1-Score, as it assigns equal weight to both categories regardless of their frequency.

This thesis aimed to examine which sampling method had the best impact on our system by

leading to the highest values of the evaluation metrics. In addition, as in real case scenarios,

the resources we could use for the Teacher-Student iterative process were limited. Hence,

we also considered the number of rounds and the number of unlabeled samples required

for each technique to reach the highest scores to conclude its success.

4.4 Training Details

4.4.1 Text prepossessing

To transform the toxicity dataset into a clean and consistent format, we followed some text

preprocessing steps. Speci�cally, we removed tweet hashtags (tokens that start with #)

and usernames (tokens that begin with @). In addition, we removed URLs and converted

all sequences to lowercase. Finally, as it is a Greek dataset, we removed Greek accents and

excluded stop words.
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The dataset we used for the task of sexism detection contains user posts in English. We

removed punctuation, numbers and single characters from the posts to preprocess the

text. We converted all tokens to lowercase and used a lemmatizer which converts any

word to its base form (lemma) as a text normalization technique. Finally, we removed stop

words.

4.4.2 Logistic Regression

Considering our few-shot learning scenario, we set the Logistic Regression solver as

"liblinear" as it is the suggested option for small datasets by scikit-learn library
1
. We

performed tuning using grid search to determine the model’s hyperparameter values. We

speci�ed as hyperparameters the regularization term with candidates L1 and L2 penalty,

the inverse of regularization strength C (de�ned in the interval [0.1, 1.0]), and the weights

assigned at each class with candidates: "balanced" and "None." With no weights assigned

to each label, all classes are supposed to have equal weights. In contrast, with "balanced"

weights, the algorithm "automatically adjusts weights inversely proportional to class

frequencies in the input data" (based on the scikit-learn documentation). We applied 5-fold

cross-validation on the initial labeled dataset (L) to compute the hyperparameter values.

The evaluation metric was the micro F1-score. For text vectorization, we converted the

sequences into TFIDF feature vectors with unigrams and bigram features.

4.4.3 BERT

For our BERT experiments on the Greek tweets dataset, we used GreekBERT. It a Greek

version of uncased BERT-base introduced by AUEB’s NLP Group [Kou+20]. It is pre-trained

on large Greek corpora, such as the Greek part of Wikipedia. Regarding the (English)

sexism dataset, we used BERT-base uncased, a masked LM introduced by Google [Dev+19],

which was pre-trained on general English corpora. Our �nal classi�er for both tasks

consisted of BERT followed by a task-speci�c MLP head.

In both cases, we set the top-level embedding of the CLS special token as the output from

the transformer model. We performed a hyperparameter search to determine the values

of the following parameters: the number of layers of the task-speci�c MLP in the range

of [1, 5], the number of units (neurons) of each layer with distinct candidates, the values:

[64, 128, 256, 512, 1024] and the activation function of each layer with candidates: relu

and tanh activation functions. We also considered the dropout rate between MLP layers as

a hyperparameter and tuned it in the interval [0, 0.5].

1https://scikit-learn.org/stable/modules/generated/sklearn.linear_
model.LogisticRegression.html
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We �rst trained only the MLP layers by keeping the transformer layers frozen with a

higher learning rate for 50 epochs and set early stopping with micro F1-Score as the

monitor. Then, we �ne-tuned the model with a lower learning rate by keeping frozen

the embeddings layer and the �rst two encoder blocks. We set the learning rate’s search

space when training the MLP layers in the interval [10−4
, 10−2

]. For the �ne-tuning of

the entire network (by keeping only the lowest transformer layers frozen), we tuned the

learning rate in the interval [10−8
, 10−5

]. We used the Adam optimizer [KB14]. We used

one unit (neuron) at the network’s output layer with the sigmoid activation function as it

concerns a binary classi�cation task.

4.5 Experimental Results

4.5.1 Teacher - Student with Logistic Regression

Tables 4.3 and 4.4 depict the performance of our Teacher-Student approach when top-k

is applied. As stated in Section 3.2.1, the Selector function samples k instances with the

highest con�dence score sx to be added to the training set at the end of each round. The

number of iterations for di�erent k values was determined by monitoring performance on

the validation set. We set the number of iterations equal to the round where the micro

F1-Score starts to drop based on the validation set. We present the results of our method

for di�erent values of k, and the evaluation of our system when trained only with the

initial limited labeled data (L) for comparison reasons.

In addition, we report the O�ensive/Sexist class ratio of the training data (labeled and

pseudo-labeled that were used in each method), the number of rounds and the number of

total samples required for training.

Micro F1-Score F1 O�/ve F1 Not O�/ve O�/ve% Round Samples

Initial L only 0.831 0.644 0.889 26% 1 2000

k = 20 0.849 0.640 0.904 37% 50 2980

k = 50 0.858 0.662 0.910 39% 26 3250

k = 100 0.858 0.663 0.910 38% 15 3400

k = 200 0.854 0.657 0.907 37% 8 3400

Tab. 4.3: Self-training with con�dence sampling (OGTD Dataset).

For the toxicity dataset, the Teacher - Student approach with con�dence sampling seems to

considerably impact our system’s performance for the few-setting scenario. We observed

that di�erent values of k do not produce a remarkable di�erence in the evaluation results.

However, when setting k = 50 or k = 100, our system gains 2.7 percentage points for

the micro F1-score and approximately 2 percentage points for each class F1-Score. We

conclude that the best method was adding the top 100 (highest con�dence) instances to the
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Micro F1-Score F1 Sexist F1 Not Sexist Sexist% Round Samples

Initial L only 0.779 0.577 0.850 24% 1 2000

k = 20 0.816 0.524 0.886 38% 37 2740

k = 50 0.817 0.527 0.886 38% 16 2750

k = 100 0.815 0.525 0.885 38% 8 2700

k = 200 0.817 0.532 0.886 37% 4 2600

Tab. 4.4: Self-training with con�dence sampling (EDOSD Dataset).

training set in each iteration as it reached the highest scores in fewer rounds than when

setting k = 50.

For both datasets, we observe that as we increase k, the number of rounds needed for

this process drops. If our resources are limited and it is impossible (or too costly) to

apply Teacher-Student for many rounds, we should set a higher k as con�guration. In

addition, we observe that the class ratio of the augmented training set changed after self-

training (38% O�ensive instances compared to 26% O�ensive samples of the labeled set

and 37% Sexist samples compared to 24% initially labeled Sexist examples). The classi�er

seems more con�dent when labeling an instance as O�ensive/Sexist, as it assigns a higher

probability to the examples pseudo-labeled as the minority class.

Figure 4.3 presents the curves of the Student’s micro F1-score per Teacher-Student iteration

where the top-k sampling technique is applied (by setting k = 100). To compare the results

of this method, we also present the Student’s micro F1-score per iteration when the same

instances from U are sampled, but their true labels are available. We observe that during

the �rst twenty iterations concerning the toxicity detection task, the Teacher-Student

framework performs even better than supervised learning. For the sexism detection task,

the Teacher-Student framework performs similarly to training under supervision for more

than ten iterations. However, as the iterations increase, the performance of the Student

model drops when Teacher-Student is applied.

In the case of Teacher-Student for the sexism detection task, we observe that although

micro F1-Score increased for 3.8 percentage points at the best setting (k = 200), the

F1-Score of the Sexist Class decreased considerably (-4.5 percentage points) as shown in

Table 4.4. That means that when our classi�er is trained with silver labels, it struggles to

detect sexist cases.

We performed two experiments based on the top-k technique for the second dataset to

improve the evaluation of the minority category (Sexist class) detection, as described in

Section 3.2.1. The �rst experiment was monitoring the Teacher-Student rounds based

on the F1-Score of the Sexist class when evaluating our approach on the validation set

(instead of micro F1-Score). We managed to increase the micro F1-Score and F1-Score of

the majority class (Not Sexist class), compared to the system evaluation when training
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Fig. 4.3: Micro F1-Score per iteration when applying Teacher-Student with the top-k tehcnique

compared to iterative supervised learning with the most con�dent examples from U and

their true labels. On the left: System evaluation for the Toxicity Dataset. On the right:

System evaluation for the Sexism Dataset.

only with L, and to maintain the F1-Score of the minority class (Table 4.5). For instance,

when setting k = 200, our system gains 2.3 percentage units for micro F1-Score and 2.0
units regarding evaluating the majority category. The detection of the sexist instances

did not deteriorate, contrary to applying Teacher-Student for the number of rounds that

maximize micro F1-Score of the validation set (Table 4.4).

Micro F1-Score F1 Sexist F1 Not Sexist Sexist% Round Samples

Initial L only 0.779 0.577 0.850 24% 1 2000

k = 50 0.812 0.568 .879 33% 30 3450

k = 100 0.810 0.569 0.878 32% 17 3600

k = 200 0.802 0.578 0.870 28% 14 4600

Tab. 4.5: Self-training with con�dence sampling (EDOSD Dataset). Monitor F1-Score of Sexist

Class to determine the number of Teacher-Student rounds.

We observe that class balance has an impact on our experimental results. Hence as

mentioned in section 3.2.1, we performed a second experiment to add batches of the most

con�dent silver-labeled examples by preserving the class balance of the training set (24%
Sexist, 76% Not Sexist). We also tried to augment the initial labeled set by adding the most

con�dent examples of di�erent class ratios (25%, 26%, 27% and 28% sexist instances and

75%, 74%, 73%, 72% not sexist instances). Preserving the class balance (adding 24% Sexist

and 76% Not Sexist silver-labeled examples at each round) improved few-shot learning

results. However, when setting each batch class ratio as 28% Sexist and 72% Not Sexist, our

system reached even better results after the Teacher-Student application. Micro F1-Score

increased by 2 percentage units, the F1-Score of the Not Sexist class gained 1.9 percentage

units, and the F1-Score of the Sexist class gained 0.4 percentage units (Table 4.6).

Tables 4.7, 4.8 show the results of Self-training with con�dence sampling when we add

iteratively all samples with a con�dence score above a certain threshold t. We present the

results of this method for di�erent values of t.
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Micro F1-Score F1 Sexist F1 Not Sexist Round Samples

Initial L (24% Sexist) 0.779 0.577 0.850 1 2000

24% Sexist 0.785 0.582 0.855 9 2800

25% Sexist 0.785 0.582 0.855 9 2800

26% Sexist 0.790 0.579 0.860 14 3300

27% Sexist 0.797 0.582 0.866 14 3300

28% Sexist 0.800 0.581 0.869 15 3400

Tab. 4.6: Self-training with con�dence sampling (EDOSD Dataset). Adding k most con�dent

samples with �xed class ratio.

Micro F1-Score F1 O�/ve F1 Not O�/ve O�/ve% Round Samples

Initial L only 0.831 0.644 0.889 26% 1 2000

t = 0.84 0.855 0.659 0.908 38% 8 3060

t = 0.87 0.859 0.668 0.910 38% 2 2381

t = 0.90 0.859 0.665 0.910 37% 3 2340

t = 0.93 0.855 0.657 0.908 35% 5 2272

t = 0.96 0.846 0.651 0.901 32% 4 2166

t = 0.99 0.838 0.646 0.895 28% 2 2055

Tab. 4.7: Self-training with con�dence sampling over a threshold (OGTD Dataset).

For the toxicity dataset, con�dence sampling above a certain threshold signi�cantly im-

proved our system’s performance compared to training with the labeled dataset only, as

shown in table 4.7. In addition, intermediate values of thresholds were the best for our

system (t = 0.87, t = 0.90). When setting t = 0.87, our system gained 2.8 micro F1-Score

percentage units, 2.4 units at the evaluation of the O�ensive category and 2.1 units re-

garding the F1-Score of the Not O�ensive class. Although the results are comparable to

the top-k technique, there is a slight improvement. In addition, these results were reported

after only 1 round of Self-training, and only 381 unlabeled samples were required. Hence,

this technique is also more resource e�cient (compared to the top-k approach, where 14

TS rounds and 1,400 unlabeled examples were required when setting k = 100).

Micro F1-Score F1 Sexist F1 Not Sexist Sexist% Round Samples

Initial L only 0.779 0.577 0.850 24% 1 2000

t = 0.84 0.760 0.580 0.832 25% 7 8554

t = 0.87 0.788 0.574 0.859 28% 28 5206

t = 0.90 0.810 0.556 0.879 34% 24 3321

t = 0.93 0.818 0.541 0.884 37% 3 2523

t = 0.96 0.810 0.557 0.879 32% 2 2240

t = 0.99 0.797 0.575 0.867 27% 2 2094

Tab. 4.8: Self-training with con�dence sampling over a threshold (EDOSD Dataset).

About the sexism dataset, we observe that when setting a low threshold (t = 0.84) F1-score

of the Sexist class is preserved; however micro F1-score and F1-Score of the majority class

decrease. When setting higher thresholds (t = 0.87, t = 0.90, t = 0.93, t = 0.96), the

4.5 Experimental Results 41



results are the opposite. The most e�ective threshold for our experiment was t = 0.99,

where the system marked an insigni�cant decrease at the Sexist class evaluation but

micro F1-Score and the Not Sexist class F1-Score increased by 1.8 and 1.7 percentage units,

respectively. In addition, for the sexism dataset too, this technique is more resource e�cient

than the top-k technique as only 1 Teacher-Student round and 94 unlabeled examples are

required to reach these scores.

Tables 4.9, 4.10 show the results of con�dence sampling when an adaptive number k of

samples is added to the training set. Speci�cally, we experimented by increasing the value

of k in each iteration. In the �rst case, k increases by 20, while in the second case, k doubles

at the end of each round. In the third experiment, when Student micro F1-Score decreases

or stays stable at the end of a round based on the validation set, k is maintained the same

and when micro F1-Score increases, k doubles.

Micro F1 F1 O�/ve F1 Not O�/ve O�/ve% Round Samples

Initial L only 0.831 0.644 0.889 26% 1 2000

k = k + 20 0.853 0.654 0.906 37% 12 3320

k = k ∗ 2 0.856 0.658 0.908 36% 5 2300

k = k/k = k ∗ 2 0.857 0.658 0.909 39% 7 2660

Tab. 4.9: Self-training with con�dence sampling with adaptive k (OGTD Dataset).

Micro F1 F1 Sexist F1 Not Sexist Sexist% Round Samples

Initial L only 0.779 0.577 0.850 24% 1 2000

k = k + 20 0.797 0.569 0.867 30% 15 4100

k = k ∗ 2 0.794 0.582 0.863 26% 3 2060

k = k/k = k ∗ 2 0.789 0.576 0.859 26% 11 5820

Tab. 4.10: Self-training with con�dence sampling with adaptive k (EDOSD Dataset).

This method did not result in a better evaluation score of our system than when adding a

�xed number of instances or instances with a con�dence score above a certain threshold.

However, increasing the number of samples in each iteration seems to reach a very good

performance in a few rounds. For the �rst dataset, doubling k in each iteration reaches

good scores in only 4 rounds of Teacher-Student compared to 7 rounds when k was stable

(k = 200). Only 2 rounds and 60 unlabeled instances were required for the sexism dataset.

In conclusion, increasing k in each iteration is more resource e�cient than keeping k

stable (top-k technique).

Tables 4.11, 4.12 illustrate our system evaluation when the Self-training with the select-all

technique is applied. In each iteration, the entire unlabeled dataset and the pseudo-labels

generated by the Teacher are added to the training set.

The select-all technique performed poorly in our system, resulting in a lower micro F1-

Score on the test set compared to training only with the initial labeled set. For the toxicity
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Micro F1-Score F1-Score O�/ve F1-Score Not O�/ve Round

Initial L only 0.831 0.644 0.889 1

Select-all 0.819 0.632 0.880 2

Tab. 4.11: Self-training with select-all technique (OGTD Dataset).

Micro F1-Score F1-Score Sexist F1-Score Not Sexist Round

Initial L only 0.769 0.578 0.841 1

Select-all 0.765 0.581 0.837 2

Tab. 4.12: Self-training with select-all technique (EDOSD Dataset).

dataset, the best results were reported at the �rst round of Teacher-Student training, and

as the iterative process continued, micro F1-Score kept decreasing until round 10. For the

next 20 rounds, micro F1-Score practically stayed stable, as shown in Figure 4.4 (the left

sub-�gure represents micro F1-Score per iteration curves for the toxicity dataset). The

diagram contains the curve of Student micro F1-Score per iteration when the select-all

technique is applied compared to Student micro F1-Score per iteration when the top-k

technique is used. The results suggest that our initial Teacher model is not robust enough

to label a signi�cant portion of U correctly, and the Student is sensitive to wrong Teacher

predictions. We reached that conclusion given that the Student’s performance drops

when the entire silver-labeled U is added to the training set. On the contrary, Student’s

performance improves when L is augmented with con�dent silver-labeled instances.

For the sexism dataset, the best results of the Teacher-Student approach with the select-all

technique were also obtained in the �rst round, where the F1-Score of the Sexist category

gained 0.3 percentage points (Table 4.12). However, the other two metrics dropped. Figure

4.4 shows the micro F1-Score per iteration when the select-all technique is applied compared

to the top-k approach for comparison reasons (the right sub-�gure represents micro F1-

Score per iteration curves for the sexism dataset).

Fig. 4.4: Micro F1-Score per Teacher-Student iteration when applying the top-k and select-all

technique. Evaluation of the validation set. On the left: System evaluation for the Toxicity

Dataset. On the right: System evaluation for the Sexism Dataset.
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Tables 4.13, 4.14 summarize experimental results when Active Learning criteria are applied

for the sample selection in each round. In the �rst case, the Selector function samples the

k most representative instances of the unlabeled dataset. In the second case, it samples the

k most diverse examples compared to those already in the training data pool. We tested

these techniques with di�erent values of k and set it equal to 100 as it had the highest

score at the validation set. We also present the results of the top-k technique (con�dence

sampling) when setting k = 100 for comparison reasons. For the second dataset, the 100

most con�dent examples follow the class distribution that had the best results on our

system (28% Sexist, 72% Not Sexist).

Micro F1-Score F1 O�/ve F1 Not O�/ve O�/ve% Round Samples

Initial L only 0.831 0.644 0.889 26% 1 2000

Top-k 0.858 0.663 0.910 38% 15 3400

Representativeness 0.825 0.632 0.885 27% 2 2100

Diversity 0.821 0.633 0.881 25% 2 2100

Tab. 4.13: Self-training with Active Learning Criteria (OGTD Dataset).

Micro F1-Score F1 Sexist F1 Not Sexist Sexist% Round Samples

Initial L only 0.779 0.577 0.850 24% 1 2000

Top-k 0.800 0.581 0.869 28% 15 3400

Representativeness 0.778 0.585 0.848 25% 3 2200

Diversity 0.766 0.584 0.837 23% 13 3200

Tab. 4.14: Self-training with Active Learning Criteria (EDOSD Dataset).

Active Learning queries the most informative instances to be labeled, usually by a human

annotator. This method turns the initial classi�er into a more robust model with the

least training examples. However, applying the Teacher-Student approach with Active

Learning criteria for sampling instances from U does not seem to perform well. The

representativeness criterion had better results than diversity for both datasets. Still, micro

F1-Score decreased after applying Self-training based on diversity and representativeness

sampling compared to the few-shot learning. In addition, almost all evaluation metrics

are lower than Teacher-Student with con�dence sampling. The bad performance of our

approach with Active Learning criteria as a sampling technique may be due to the noisy

predictions of the original Teacher model. The Student’s performance seems to be a�ected

by the initial wrong pseudo-labels created by the Teacher.

We present the diagram of the Student’s micro F1-Score per Teacher-Student iteration

when Active Learning criteria are applied compared to micro F1-Score per iteration when

we use con�dence sampling to augment L iteratively for the toxicity dataset (Figure 4.5).

In addition, the diagram contains the curve of micro F1-Score per iteration when we

apply random sampling (we randomly select k silver-labeled examples from U in each

Teacher-Student round) for comparison reasons.
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Fig. 4.5: Micro F1-Score per iteration when applying Teacher-Student with top-k, Active Learning

criteria and random-k as sampling techniques. Evaluation on the validation set (OGTD

Dataset).

Tables 4.15, 4.16 demonstrate the system evaluation when con�dence sampling is combined

with Active Learning criteria. As explained in Section 3.6, we applied a linear combination

of con�dence and representativeness scores to sample instances from the unlabeled data

pool. We reproduced the same experiment using a linear combination of con�dence score

and diversity from the instances already in the labeled data pool. We weighted the model’s

con�dence score by λ = 0.9 and the instance representativeness of U/diversity from L

score by 1− λ = 0.1 (after manually tuning the weight of each factor, Section 3.6).

Micro F1-Score F1 O�/ve F1 Not O�/ve O�/ve% Round Samples

Initial L only 0.831 0.644 0.889 26% 1 2000

Con�dence 0.858 0.663 0.910 38% 15 3400

Conf/ce+Repr/ness 0.855 0.659 0.908 38% 13 3200

Conf/ce+Div/ty 0.858 0.666 0.909 38% 14 3300

Tab. 4.15: Self-training with Con�dence and Active Learning Criteria (OGTD Dataset).

Micro F1-Score F1 Sexist F1 Not Sexist Sexist% Round Samples

Initial L only 0.779 0.577 0.850 24% 1 2000

Con�dence 0.800 0.581 0.869 28% 15 3400

Conf/ce+Repr/ness 0.800 0.574 0.869 30% 20 3900

Conf/ce+Div/ty 0.790 0.575 0.861 27% 36 5500

Tab. 4.16: Self-training with Con�dence and Active Learning Criteria (EDOSD Dataset).

The combination of con�dence and Active Learning criteria did not improve our system’s

performance. For both datasets, the evaluation metrics had almost the same values with

con�dence sampling. That result could be explained by having assigned higher importance

to the instance’s con�dence score. The only di�erence we observe is that the same scores

4.5 Experimental Results 45



were obtained in fewer iterations when Active Learning criteria were applied (13 and

14 iterations compared to 15 when con�dence is applied) for the toxicity detection task.

However, in the case of the sexism detection, more Teacher-Student rounds were required

compared to con�dence sampling.

4.5.2 Comparison to Full Supervision

In this Section, we compare our experimental results after applying the best Teacher-

Student sampling techniques of Section 4.5.1 to fully supervised learning. In the case of full

supervision, we use the entire training set (not only the limited initial labeled set L) with

the ground-truth labels to train our initial classi�er without applying Teacher-Student.

Micro F1-Score F1 O�/ve F1 Not O�/ve O�/ve% Round Samples

Initial L only 0.831 0.644 0.889 26% 1 2000

Conf. t = 0.87 0.859 0.668 0.910 38% 2 2381
Full Supervision 0.856 0.712 0.904 27% 1 9258

Tab. 4.17: Comparison to Full Supervision (ODTD Dataset).

Micro F1-Score F1 Sexist F1 Not Sexist Sexist% Round Samples

Initial L only 0.769 0.578 0.841 24% 1 2000

Conf. k = 100 (28% sexist) 0.800 0.581 0.869 28% 15 3400

Full Supervision 0.777 0.602 0.845 24% 1 11340

Tab. 4.18: Comparison to Full Supervision (EDOSD Dataset).

As shown in Tables 4.17, 4.18, our system bene�ts from the Teacher-Student approach

in the few-shot learning scenario. Regarding our best technique for the toxicity dataset

(con�dence sampling over a threshold), we observe that all evaluation metrics signi�cantly

increased compared to training with limited training data. Compared to full supervision,

where true labels are available for the entire dataset, Self-training performs worse as far as

the minority category (O�ensive class) is concerned. Speci�cally, with full supervision, Of-

fensive Class F1-Score is 4.6 percentage units higher than the Teacher-Student framework.

However, the other two metrics obtain higher scores than full supervision. In addition,

only 2,000 labeled examples, 381 unlabeled examples and 1 round of the Teacher-Student

application were needed to reach this performance, opposite to full supervision where

9,258 labeled samples were required.

Teacher-Student has proved to be an e�ective approach compared to training with limited

data n for the task of Sexism detection too. Compared to full supervision, both micro

F1-Score and Not O�ensive class F1-Score reach higher values (+2.3 and +2.4 percentage

units compared to full supervision scores). Again full supervision is more e�ective in the

detection of sexist cases. However, the most competent technique of Self-Training for this

dataset, adding top-k instances with �xed class ratio (28% Sexist and 72% Not Sexist) in
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each iteration, has satisfying results with only 2,000 labeled examples and 1,400 unlabeled

examples.

We conclude that, for imbalanced datasets, the minority class seems to bene�t from a larger

amount of examples for which the ground-truth labels are available because it is harder

for the classi�er to detect the category that occurs more rarely. However, Teacher-Student

framework with con�dence sampling signi�cantly improves the performance of a Logistic

Regression classi�er when the initial labeled set is limited.
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4.5.3 Teacher-Student with BERT

This subsection presents the Self-Training results when the Teacher and Student are pre-

trained transformer models. Speci�cally, we employed the Teacher-Student approach to

training a BERT base model. We tested the Logistic Regression Teacher-Student frame-

work’s three most e�cient sampling methods (based on the criteria of con�dence and

con�dence+representativeness). For the con�dence criterion, we set k = 200 when the

top-k technique is applied and t = 0.90, t = 0.93 to reproduce the con�dence over a

threshold technique for the toxicity and sexism dataset, respectively. For the combination

of con�dence and representativeness, we set k = 200 and the weights of the two factors

as λ = 0.8 and 1− λ = 0.2, respectively. The performance on the validation set (micro

F1-Score) de�ned the number of iterations for each technique. Table 4.19 and 4.20 show

the results of our experiments.

Micro F1-Score F1 O�/ve F1 Not O�/ve O�/ve% Round Samples

Initial L only 0.863 0.703 0.911 26% 1 2000

Top-k (k = 200) 0.877 0.758 0.917 53% 7 3200

Con�dence (p > 0.90) 0.867 0.723 0.913 51% 3 3015

Conf/ce + Repr/ness 0.875 0.729 0.919 33% 2 2200

Tab. 4.19: BERT - Self-training with di�erent sampling techniques (OGTD Dataset).

Micro F1-Score F1 Sexist F1 Not Sexist Sexist% Round Samples

Initial L only 0.806 0.581 0.874 24% 1 2000

Top-k (k = 200) 0.814 0.619 0.877 42% 4 2600

Con�dence (p > 0.93) 0.812 0.622 0.875 47% 3 2889

Conf/ce + Repr/ness 0.817 0.625 0.879 38% 3 2400

Tab. 4.20: BERT - Self-training with di�erent sampling techniques (EDOSD Dataset).

First, we observe that the Self-training boosted the performance of our system when

compared to the initial few-shot training scenario for both datasets. All the sampling

techniques that performed well on the Logistic Regression Teacher-Student framework also

improved our system evaluation scores when Teacher-Student with BERT was applied.

Speci�cally for the toxicity dataset, when Teacher-Student with the top-k technique was

applied, micro F1-score gained 1.4 percentage units. The system performed signi�cantly

better in detecting the minority category (+5.8 percentage units), while the results for

the majority category were similar to the few-shot learning scenario (+0.06 percentage

units). In addition, Self-training based on con�dence over a threshold and con�dence +

representativeness performed pretty well. Although the F1-Score of the O�ensive category

had a smaller increase (+2.0 units and +2.6 units, respectively), it reached promising results

in only 2 and 1 Teacher-Student iteration, respectively. Based on the evaluation of the

validation set, these criteria reached higher micro F1-Score during the �rst 3 rounds than

the top-k technique, as shown in �gure 4.6. In a low-resource scenario, these criteria could
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be preferred as training iteratively a LM of millions of parameters requires signi�cant

computing resources.

Results after applying Teacher-Student on top of few-shot learning were similar for the

sexism dataset. Con�dence sampling with both techniques increased the micro F1-score

and F1-Score of the sexist class. However, the best sampling technique for this dataset was

the combination of con�dence and representativeness as sampling factors. It obtained the

highest scores (1.1 and 4.4 percentage units rise of the micro F1-Score and the F1-Score of

the Sexist class, respectively). In addition, it was the most resource-e�cient technique as

it required only 2 rounds of Teacher-Student application and 400 unlabeled examples.

In both scenarios, the Teacher-Student application had the most signi�cant impact on

minority class detection, unlike our experiments with Logistic Regression models. The

Teacher-Student approach was more bene�cial for detecting cases of the majority class

when applied on top of a Logistic Regression classi�er. In addition, similar to the Logistic

Regression framework, con�dence over a threshold was more resource e�cient than the

top-k technique, but in the case of BERT models, the top-k approach reached higher scores

for most evaluation metrics for both datasets.

Fig. 4.6: Micro F1-Score per iteration when applying Teacher-Student with di�erent sampling

techniques on BERT. Evaluation on the validation dataset.

Finally, we compare the best sampling techniques when Teacher-Student with BERT models

is applied to fully supervised learning (Tables 4.21, 4.22). In the case of full supervision, we

train the BERT base classi�er with the entire training dataset and the ground truth labels

for comparison reasons.

Contrary to the Logistic Regression framework, Teacher-Student did not reach the results

of full supervision when BERT models were used. Training BERT with the entire labeled
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F1-Score F1 O�/ve F1 Not O�/ve O�/ve% Round Samples

Initial L only 0.863 0.703 0.911 26% 1 2000

Top-k (k = 200) 0.877 0.758 0.917 53% 7 3200

Full Supervision 0.894 0.779 0.930 27% 1 9258

Tab. 4.21: BERT - Few-shot learning compared to Self-training and full supervision (OGTD

Dataset).

F1-Score F1 Sexist F1 Not Sexist Sexist% Round Samples

Initial L only 0.806 0.581 0.874 24% 1 2000

Conf/ce + Repr/ness 0.817 0.625 0.879 38% 3 2400

Full Supervision 0.845 0.658 0.900 24% 1 11340

Tab. 4.22: BERT - Few-shot learning compared to Self-training and full supervision (EDOSD

Dataset).

dataset (9,258 labeled instances for the toxicity detection and 11,340 labeled instances for

the sexism detection task) obtained the highest scores in all the evaluation metrics (Tables

4.21, 4.22). However, applying Teacher-Student with the best sampling techniques had

satisfying results, with only 2,000 labeled examples available for both datasets.
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5Conclusions And Future Work

In this thesis, we examined the bene�ts of the Teacher-Student framework in a few-resource

scenario. We applied di�erent Self-training techniques to improve the performance of two

initial classi�ers trained with limited labeled examples for Toxicity and Sexism detection

tasks. We studied the e�ects of Teacher-Student with Logistic Regression and a BERT

model of higher capacity to explore whether these methods can improve the performance

of even a state-of-the-art NLP model.

Teacher-Student with con�dence sampling signi�cantly improved the classi�er’s per-

formance compared to training with the initial labeled set only. The con�dence over a

threshold technique was more e�cient than the top-k technique. It reached similar or

better scores concerning our evaluation metrics with fewer resources required compared

to the top-k sampling technique.

In imbalanced datasets, Self-training on a Logistic Regression classi�er may improve the

majority class evaluation while the minority class evaluation deteriorates. In this case,

tuning the class ratio of the most con�dent silver-labeled examples that are added to

the labeled set in each round could improve the minority class detection. Alternatively,

we could con�gure the Teacher-Student framework based on macro-averaged scores.

On the contrary, for the BERT model, the most signi�cant improvement after applying

Self-training concerned the evaluation of the minority category for both datasets.

Select-all technique and Active Learning criteria (representativeness and diversity) did

not perform as well as con�dence sampling. The evaluation metrics decreased even

when compared to few-shot learning results. When the instance’s con�dence score is not

considered when sampling the silver-labeled examples, the Student model is harmed by

the Teacher’s wrong predictions. Augmenting the training set without considering the

instance con�dence score can add more noise to the Student training.

When con�dence is combined with Active Learning criteria as a sampling technique,

the greatest importance should be given to the instance’s con�dence score rather than

its informativeness score (representativeness/diversity). For the BERT Teacher-Student

framework, sampling based on the instance’s con�dence and representativeness score was

more resource e�cient than the top-k technique or even obtained higher scores (in the

case of Sexism detection). The method’s e�ciency is important when large pre-trained

transformers are used, as training them iteratively could be challenging. On the contrary,
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when a Logistic Regression classi�er was used, the combination of con�dence and Active

Learning criteria did not reach the performance of con�dence sampling.

Finally, Teacher-Student approach showed promising results compared to fully supervised

learning. In the case of Logistic Regression, Teacher-Student obtained even higher scores

than full supervision in some of the evaluation metrics used. For the BERT classi�er, fully

supervised learning outperformed all Teacher-Student techniques. However, in the case of

Self-training, we only used the 22% and 18% of the labeled examples used in supervised

learning for the tasks of Toxicity and Sexism detection, respectively.

In future work, we would like to apply a linear combination of all factors examined in this

thesis when sampling the silver-labeled instances. Speci�cally, we would like to compute

each instance’s con�dence + representativeness + diversity score to examine if combining

these factors could bene�t our system when using this score as a sampling criterion.

In addition, we would like to test the abilities of the Teacher-Student when the initial

model is trained under full supervision (the initial task-speci�c labeled examples are not

limited). We want to examine whether Self-training could improve the performance of an

initial classi�er that is trained with su�cient samples andalready performs signi�cantly

well.

Finally, in cases with an abundant set of unlabeled examples, a method often applied in the

corresponding bibliography is further pretraining LMs with task-speci�c unannotated data.

It would be interesting to examine Teacher-Student abilities on top of a task-speci�c pre-

trained transformer model to determine if these two techniques could be complementary

and produce better results.
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