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Abstract

In recent years, the evolution of social media platforms has introduced the need for systems
that detect the toxic behavior of users. A Toxicity Detection system tries to detect user
posts that are offensive and abusive. Abusive content can take many forms, including
threatening, harassment, intimidation, or discrimination over a person or a group. Bias
against users based on race, color, national origin, sex, sexual orientation, religion or other
characteristics frequently occurs online. The field of Natural Language Processing (NLP)
contributes to detecting this hateful content by automating it with classification models
that categorize user posts as offensive or not offensive. In addition, classifiers can label
abusive content according to the nature of the insult (e.g., racist, sexist etc.). As annotating

thousands of examples for training (NLP) models is expensive and time-consuming, it is

a significant challenge to train a model effectively with the least amount of labeled data.

Although there is a lack of fully annotated datasets for many different tasks, usually, there
is a much larger pool of task-specific unlabeled instances that could be used to improve a

system’s performance. In this thesis, we will focus on: toxicity detection in Greek tweets

and sexism detection in English posts crawled from platforms such as Reddit and Gab.

For instance, a system that tries to detect hate speech could benefit from the abundant
online unlabeled data as there is a much smaller number of labeled instances in toxicity

datasets.

There are many methods explored in literature for few-shot learning scenarios. Self-training
is a semi-supervised method where a Teacher model is initially trained on the few available
labeled instances. Subsequently, it generates silver labels for the bigger pool of task-specific
unlabeled data. In each round, it samples a number of silver-labeled examples, in most cases,
based on the model’s confidence. These examples and their silver labels act as additional
supervision to train a stronger Student model iteratively. In a large pool of unlabeled
instances, not all are equally useful for learning a specific task. Active Learning tries to
maximize the system’s performance gain by identifying the most informative examples to
be labeled by a human annotator or, in our case, to be selected among those silver-labeled
by the Teacher. In this thesis, we focus on applying the Teacher-Student approach to detect
toxic and sexist content when the initial training examples are limited. We experiment

with different machine-learning models and apply various sampling techniques to augment
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our initial dataset. We also employ Active Learning criteria in the Self-training algorithm

to examine if they could further benefit our system.



[Teptindn

Ta televtaio xpovia, 1) eEEMEN TV TAATPOPUOY KOVOVIKNS dTOwoTG €XeL SnHLovpYT-
OEL TNV avayun DITaPENG CLGTNUATOVY TTOL AVLYVEDOLVY TNV TOELKT GURTTEPLPOPA X PTOTOV
TV v Aoy TAateoppov. ‘Eva ovotnpa Evroniopod To€uwdtntag npoomadel v evromi-
oel TpooPANTUEG nou VP pLoTKéG dnpoctedoelg xpnotev. To online mepieydpevo Fewpei-
o To€wd dtaw TepLéxeL amelAéG, enPoPLopod, oxOAL TOL EXOULV GTOXO TNV TOPEVOYANOT
N 0tov avamopiyel otepedTnTa *oL droupicelg elg Papog evog atdpoL 1) piog opadog
atopwv. H mporatddnyn pe P&on tn @uAr, To xpop, TV edvindtnta, 10 OAO, TOV oet-
OVLOAKO TTPOGAVATOMGHO, TN Fprjoueio KoL GAAX XOXPAKTNPLOTIKE TOPATNPELTAL GUYVA
otig dnpooteg avaptrioels. O topéog tng Enetepyaciog dvowng Mwcooag (EQT) ovp-
BdAer otV aviyvevon xOHOTOLNTIHOD TEPLEXOHEVOU, RVTOPATOTOLOVTAS T dtadinacio
He HOVTEAQ TOELVOUNOTG TTOL KT YOPLOTOLOVY TLG CLVAPTHOELS TWV XPNOTOV GE TPOC-
PAntwéc 1 pn mpooPAntués. EmutAéov, oi ta€vopuntéc pHmopolv va emMGHAVOUY TO
TEPLEXOHEVO PLAG TOEMNG avapTnong pe Pdor tn o tng tpocsPorig (patoiotinr, oek-
wotwer] ®.AT.). Kadog 1) emonpeiowotn XIAGdwv Topadetypdtowy yioe TNV exstoidevon twv
(EQT) povtédwv eival po axpiPn xot ypovoPopa dradwmaocia, n amodotiny exmaidevon
TOUG HE TOV EAGXLOTO OPLIPO SeSOPEVMV PE ETIHETAL TTPOUELTAL YLOL PO ONHOVTLXT) TTPOUANOT).
[Mopd v EAAeLYn emoprodVv emonpelwpévov Paoewnv dedopévwv yia ToAAég Siopope-
TéG epyaoiec, cLVHYWG, LIL&PYEL Eva TOAD peyaADTEPO 6OVOAO dedopévav xwpig eTinéTa
mov oxetifovtan pe tnv xdde epyasio. Ta ev Aoyw dedopéva do propodoav va xpnot-
pomowndotv yia tr PeAtioon g amddoong evog cLGTHHATOS TAELVOUNOTG. € QUTH TH)
dutdwpating da emnevtpodovpe oe d0o epyacieg: Tov evromiopd tofwodtntag oe EAAR-
vind tweets xot TOv eVTOTLONO GeELOTINTG CUIITTEPLPOPAG GE AVaPTHOELS 0T AyYALd TTOL
gxovv cLAAex el atd TAaTPOppeg OTws To Reddit ko to Gab. EvSeuctind, éva cdotnpo
OV pocTodel var aviyveboel eplexOHeVo oL TepLéxel pritopinr] piocovg da prtopovoe
vo emw@eAndetl oad ta dpdova dedopéva xwplg eTiéta ov eival Stoudéoipa online, xo-
Jdg évag oML ppdtepog aptdpog dedopévov pe etiéta eivon Stadéopog yuo ) ouy-

HEUPLHEVT) epyOTiaL.

[ToAAég pédodol éxouvv diepevvndel otn oxetnn PipAloypagia yiox cevapia padnong pe
neproplopéva dedopéva exmaidevong. H Avtd-enmaidevon eivar pio pédodog npi-emiPAemdpevng

podnong xatd v omola éva povtédo Kadnyntng exmadedeton apyind ota Alyo Si-
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odéopo dedopéva pe eTwéta. 2Tn ouvéyela, Smpovpyel Pevdo-eTueéteg ylar éva TOAD
peyaAbTEPO oVUVOAO N emionpelwpévey dedopévev amd Tov idlo Topéa e To EMLOTpEL-
wpéva dedopéva. Xe ubde yopo emdéyeton Evag apldpdg dedopévwv pe Pevdo-eTnéta,
OTIG TEPLOCOTEPEG TMEPUTTMOGELG PE HpLTNpLo T mdavotnta mov divel to povtédo Ko-
Inyntng va eivon cwoth 1 TpoPAeyn) Tov, yio va xprioipomotndoiv wg emmpdcodeTn emif-
Aeym oty exmaidevon evdg toyvpdTepov povtédov Madntr. Ze éva tepdotio chvoro
TOPadeLYHATOV Xwpig eTwéTa, Sev elvar OAa e€ioov ypropa vote va padel pio epyocio
o ta€wopntng. H Awdpaocting Madnon mpoomadel va peyiotomotjoel tnv arddoot)
€VOG GUOTNHATOG TTPOGILOPILOVTAG TO PN-ETLOTHELWHEVO OeSOpEVXL TTOL TTEPLEXOLV TNV
L0 XPHOLUN TANPOYOpia Yo TV expddnon tng cuyrexpipévng epyosiog. To dedopéva
LT cLVHYWG eMLoNpHAivOVTOL OO Evay AVIPWITO HEGOAAPNTH 1), OTNV TEPITTWOOT] TNG
dung pog perétng, emAéyovron avipeca oto dedopéva yio Tar omoia €xet SnpLovpyToEL
Pevdo-etnéteg To povtéro Kadnyntig. e avth tnv epyocic, E0TIAGAE OTNV EQOPUOYT
g mpocéyyiong Kadnynti-Madnt yioe tnv aviyvevon to€xot ot ce€lotinot mepieyo-
pevou otav to mapoadeiypato exmaidevong eival meplopiopéva. T tar melpdpatd pog
XPNCYOTOLOOHE SLAPOPETIHA HOVTEAQ UMYX AVIKTG HATNONG KoL EPapHOCapE dLopope-
TéG TeXVWEG detypatoAnyiog yio tnv enadénon tov apykod cuvorov exmaidevong.
Axdpa epappooope wprrnplo epmvevopéva omd v Atedpootin M&dnon otov alyopt-
Jpo Avtd-exmaidevong yio va e€etoovple av Ptopovv va av€ncouvy v amddoot) Tov

GULOTARATOG HOG.
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Introduction

1.1 Toxicity Detection

In recent years, as social media platforms are evolving rapidly with billions of users
worldwide, offensive posts and comments are increasingly common in online discussions.
Social media content can be perceived as toxic when it contains insults, threats, intimidation,
identity attacks and, in general, aims to abuse individuals or groups of people. Hate speech
and xenophobia are increasingly prevalent despite living in the age of globalization. Users
that feel superior to others because of specific characteristics such as color, race, gender,
religion and sexual orientation often target and harass other users with the power of online

anonymity.

A specific category of hate speech is sexist behavior. It concerns prejudice and discrimina-
tion that targets mostly women but also homosexual, transgender or non-binary individuals.
As mentioned in Combating Sexist Hate Speech, a report of the Council of Europe, "the
aim of sexist hate speech is to humiliate or objectify women, to undervalue their skills
and opinions, to destroy their reputation, to make them feel vulnerable and fearful, and to

control and punish them for not following a certain behavior" [Chi+20].

Toxicity Detection systems aim to automate the process of offensive content detection to
facilitate human moderators to ban this content and to ensure healthy online conversations.
Using Natural Language Processing (NLP), a sub-field of Artificial Intelligence, to build
efficient detection systems has very promising results. Hateful content is a complex
concept that is hard to define and can take various forms. Attacks and threats can be
made directly or indirectly, and the meaning of specific words can change when placed
in a different context. Hence it is difficult to specify handcrafted rules and conditions for
rule-based systems to identify such offensive content. For instance, a rule that classifies
user comments as toxic if they contain specific words or patterns generally considered
insulting can be misleading if the comment’s context is not considered. On the contrary,
online content can be abusive without consisting of affronting words. Thus it is often

necessary to develop and train more complex models to detect such cases.
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1.2 Few-shot learning and pretrained models

Deep learning models can learn different concepts for several NLP and computer vision
tasks, including text or image classification, intent recognition, sequence generation
and information extraction. Such remarkable performance is usually the result of high-
quality supervision as models are trained with thousands of examples available for a
specific task. As deep learning methods rely on large annotated datasets, a challenge
encountered in many implementations is the absence of labeled data. The cost of labeling
an efficient amount of instances is very high: it takes a great deal of human effort, is
time-consuming or even requires some scientific expertise. For example, in the digital
pathology domain, exhaustively annotating large image datasets to train a histology image
classifier is challenging when medical specialists are a scarce resource [Sha+20]. Hence,
few-shot learning, the ability to learn a task with the least amount of labeled task-specific
data, is increasingly important and valuable for many practical applications in low-resource

scenarios.

A lot of research has been conducted by NLP scientists to train models with compatible
performance to those with fully supervised learning when training examples are limited.
In recent years pre-trained language models (LMs) have been widely used in few-shot
learning scenarios as studies have proved that they are efficient few-shot or zero-shot
learners [Bro+20]. In the NLP field, the task-agnostic knowledge that is acquired through
pretraining over a large general corpus seems to help state-of-the-art LMs to achieve high
few-shot performance. Intuitively, it provides a strong baseline that significantly improves
all the tasks. The most common approach when training examples for end-tasks are limited
is to use pre-trained transformers [Dev+19], possibly pre-trained on a domain-specific
corpus [Lee+19], and further train them on the limited examples of the end-tasks with a

low learning rate (fine-tuning).

Related research has been conducted on prompting LMs by reformulating tasks as natural
language “prompts” and conditioning on those prompts. By transforming a classifica-
tion task as a language modeling problem, LMs can accomplish great results after being
fine-tuned on a few annotated examples or even without any training process [Che+21].
Specifically, [Bro+20] show that this method achieves remarkable performance in large-
scale LMs (GPT-3, 175B parameters) on many NLP datasets without any gradient updates
by incorporating task-specific prompts [Log+22; Bro+20; Che+21]. However, it is hard to
use large-scale LMs in many real-world applications where computational resources are
limited. Corresponding methods have been proposed by NLP researchers to use smaller
LMs like BERT and ROBERTa that are resource efficient for few-shot learning. They can
achieve consistent performance to GPT-3 by conditioning on task-specific prompts after
being fine-tuned on a few annotated samples [Che+21]. But even though using smaller

LMs is more efficient, manually-written prompts require exhaustive tuning using large

Chapter 1 Introduction



validation sets, as model accuracy depends on prompts engineering and is influenced by

simple prompt modifications [Log+22].

Another common approach for learning low-resource tasks is to create artificial examples
by transforming the original training dataset. Data augmentation (DA) techniques are
widely used to increase training examples’ diversity and to prevent the model from over-
fitting without collecting new data [PMA22]. In NLP, many DA methods are applied to
enhance the system’s robustness even when models with high capacity, such as large-scale
pre-trained LMs, are used. Most common DA techniques are based on word replacement.
Specifically, the augmented examples are created by replacing some tokens from the
original sequences with related words crawled from a thesaurus or with tokens that have
similar embeddings. Despite the benefits of such methods, [KCC20] note that researchers
should be cautious about preserving class labels when replacing words that could change

the meaning of an instance.

1.3 Proposed Approach

Labeled data that can be used for supervised learning is not always available in practice, but
there is usually a much larger pool of task-specific unlabeled data. Intuitively, unlabeled
in-domain instances also carry valuable information about the task that the model could
benefit from. Hence, it could be beneficial to apply a learning method that utilizes this
large set of available data to improve the system’s performance [Che+21]. For instance,
a toxicity detection system trained on a few annotated examples from toxicity datasets
could significantly profit from thousands of user posts that are available online and can be

crawled from social network platforms.

Semi-supervised learning techniques are adapted to settings where few labeled instances
are available [Mi+21]. In this thesis, we implement Teacher-Student, a common semi-
supervised approach that exploits the large pool of unlabeled data for few-resource tasks.
It employs a Teacher model originally trained on a few annotated data, which creates silver
labels for the unlabeled dataset [Mi+21]. A portion of the silver-labeled data augments
the training set to further train a more robust Student model. This process is repeated
iteratively, and at the end of each round, the Student becomes the Teacher. This process is

executed for a fixed number of iterations or until the system reaches convergence.

In the related bibliography, Active Learning is often reviewed to deal with few-resource
challenges [Aro07]. Active Learning is the process of querying a human annotator to
create labels for a portion of unlabeled examples that carry the richest information about

the task. These instances are extracted from the unlabeled data pool according to different

1.3 Proposed Approach
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criteria. Subsequently, the sampled instances, along with their true labels (created by a

human specialist), are added to the training set to improve the model.

The purpose of this thesis is to explore the benefits of Self-training for few-shot learning.
We simulate few-resource scenarios by only considering a few samples per class for the
two tasks we focus on: Offensive/Not Offensive and Sexist/Not Sexist. We consider the
remaining data as unlabeled for the purpose of the experiment. We employ Self-training
in a machine learning model (a Logistic Regression classifier) and test different sampling
techniques to expand our training data. These techniques are based on methods applied to
Self-training in related work by NLP researchers and on Active Learning criteria found in
the related bibliography. We present these methods in a detailed manner in Chapters 2 and
3. Finally, we test the best sampling techniques on a deep learning model, specifically a
BERT-based model, to explore whether our methods can be beneficial when high-capacity

models are used.

1.4 Main Findings

The experiments we conducted in this thesis proved that the Teacher-Student approach
could improve the performance of both a Logistic Regression classifier and a state-of-
the-art BERT-based classifier when the models are trained with limited labeled examples.
The pseudo-labeled instance confidence score (Section 3.2) is the most important factor
when sampling the silver-labeled instances that will augment the initial labeled set in each
round of the Teacher-Student process. The sampling techniques that did not consider the
instance confidence score failed to improve the system’s robustness or even degraded its
performance (compared to the few-shot learning scenario without the Teacher-Student

application).

When confidence sampling is applied, the probability over a threshold is a more efficient
sampling technique than the top-k technique as it achieves equal or higher scores with

fewer resources.

Augmenting the training set with the kK most confident examples in imbalanced datasets
may improve only the evaluation of the majority class. In these cases, it is important to
experiment with the class ratio of the most confident examples to be added to the labeled
set. Alternatively, tuning the number of Teacher-Student rounds based on the score of the
minority category or on macro-averaged scores is crucial to ensure that the evaluation of

both classes is improved.

Active Learning criteria could benefit the silver-labeled instance sampling when combined

with the confidence sampling technique (Section 3.6). Although this method was not as

Chapter 1 Introduction



beneficial as confidence sampling in the case of the Logistic Regression Teacher-Student
framework, for the BERT Teacher-Student framework, it was the most resource-efficient
sampling technique. In the case of the Sexism detection task, it reached the highest results

of all the sampling methods.

Finally, compared to full-supervision (where true labels for a bigger number of examples are
available), the Teacher-Student approach obtained higher scores in some of the evaluation
metrics we used in the case of the Logistic Regression classifier. On the contrary, a
BERT classifier trained under full supervision outperformed the BERT Teacher-Student
framework. However, Teacher-Student obtained promising results with the least amount

of training examples.

1.5 Thesis Structure

Chapter 2

Provides background information about models and methods used and presents previous

work related to the topic of this thesis.

Chapter 3
Analyzes the proposed methods.

Chapter 4

Provides statistics regarding the dataset, the evaluation measures and the experimental

results.

Chapter 5

Contains the conclusions and possible future work.

1.5 Thesis Structure






Background and Related Work

In this chapter, we provide background information regarding the models we used for our
experiments: a Logistic Regression classifier and a pre-trained BERT Model. We concentrate
on previous related work along four dimensions. First, we examine previous approaches
for the task of abusive content/sexism detection. Second, we focus on Teacher-Student
approaches and sampling techniques. Third, we present DA techniques combined with

Self-training for few-shot scenarios. Finally, we describe Active Learning approaches.

2.1 Logistic Regression

In this thesis, we implemented a toxicity detection system that tries to predict for every
user post if it belongs to the Offensive/Sexist class. Otherwise, it classifies the instance
as Not Offensive/Not Sexist. We can interpret this task as a binary classification problem
where we want to calculate the value of a variable Y that corresponds to the class label
given an input text X. We will use the convention that the binary variable Y [{D, 1},

where 1 corresponds to the Offensive/Sexist class.

The first classifier we employed in our experiments is a Logistic Regression classifier.
It is a well-known supervised linear classifier that takes as input a feature vector X _F
(X1, X2, ..., Xk) of k dimensions. Text features can be represented by boolean vectors, term
frequency (TF) vectors etc. At the training phase, the algorithm uses stochastic gradient
ascent to update the coefficients (0) of the linear function to maximize the (conditional)
log-likelihood of the training examples. The model uses the sigmoid function to calculate
each input vector’s probability of belonging to each class. The classifier assigns a label to

the input based on the predicted probability of each class.

1
Pr(1|xi)= m@‘ (2.1)

Pr(Opd)E 1 — Pr(+1|gi) = % (2.2)

More information about the Logistic Regression classifier can be found in [Jan05].
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2.2 Pre-trained Language Models (LMs)

In recent years the role of LMs has evolved from generating or evaluating the fluency of
natural text to being a powerful tool for text understanding [Jia+21]. The shortage of large
datasets with sufficient supervised data has been a significant challenge for many NLP
tasks. This challenge led to the emergence of pre-trained LMs. They are deep learning
models pre-trained on tasks that do not require human supervision (manual annotations),
typically predicting masked words based on the surrounding context. As these tasks do not
require human effort, LMs are usually trained on huge general corpora, such as documents

from Wikipedia pages.

The objective of pretraining is to learn universal language representations that can benefit
specific downstream tasks. Typically these models consist of millions or even billions
of parameters learned while pretraining on abundant unsupervised data. The concept
of transfer learning is applied, where the task-agnostic knowledge that the model has
acquired is used as a starting point for a second specific task, and there is no need to train
models from scratch. The most common approach using LMs is fine-tuning. A task-specific
head, a fully connected layer or a Multi-layer Perceptron (MLP), is attached on top of the
LM, and the model is fine-tuned (further trained), usually with a low learning rate. During
this process, typically, the weights of the LM and of the task-specific head are updated. In

other approaches, the LM layers are kept frozen, or only some of its top layers unfreeze.

Transformers are LMs that use an encoder-decoder architecture. As explained in [Vas+17],
the encoder maps an input sequence X = (X1, X2, ..., Xn) to a hidden representation
z = (21,22, ..., Zn). Given z, the decoder generates an output sequencey = (Y1, Y2, ..., Ym)-
Both the encoder and decoder are stacks of layers. Every encoder layer is composed of
two sub-layers, a multi-head self-attention mechanism and a fully-connected feed-forward
network. Residual connection and Layer normalization are applied after each of these
sub-layers. This means that the output of each sub-layer is equal to LayerNorm(X + F (X))
where F (X) is the function of the sub-layer [Vas+17]. In addition to the two sub-layers of
the encoder layer, the decoder has an extra sub-layer that performs multi-head attention
over the output of the encoder. Encoder-decoder transformers are widely used in NLP
tasks related to sequence generation, such as text summarization, machine translation and

question answering.

We will use a BERT model pre-trained on a general corpus in our experiments. BERT stood
for Bidirectional Encoder Representations from Transformers [Dev+19] and was introduced
by the Google Al team. BERT follows a transformer architecture by implementing an
Encoder stack. BERT Base has 12 layers in the Encoder stack, while BERT Large has 24

layers in the Encoder stack. Due to its architecture, BERT can be fine-tuned and be used

Chapter 2 Background and Related Work
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Fig. 2.1: Tranformer model architecture. Figure is taken from [Vas+17]

in any downstream task simply by adding just one additional output layer on top of the

encoder stack, resulting in state-of-the-art performance.

2.3 Abusive Content Detection

Identifying toxic language on social media platforms is difficult, as offensive content
can take many forms. Users can experience hate-speech attacks for their race, gender,
religion or political beliefs. In some cases, discrimination or harassment over specific
groups of people can take place without insults or profane phrases. Counter to that, online
comments could contain irony or sarcasm for entertainment reasons (e.g., in the case of
stand-up comedians’ posts), so the perceived meaning of the words can change based on
their context. Social media are trying to restrict harmful content but mostly rely on tools
that detect frequent patterns and phrases that, in many cases, could be misleading in the

classification of online posts [PMA17].

Researchers have experimented with different approaches for the task of Abusive context
Detection. Initially, machine learning methods with lexical or syntactic features were
adapted. [Dav+17] have applied machine learning models such as Logistic Regression and
Naive Bayes with the use of morpho-syntactic features (Part-Of-Speech tags). [KW13]
trained a Naive Bayes hate-speech classifier with a bag-of-word approach that employed

unigrams to construct the vocabulary of the training set. In the first case, although the

2.3 Abusive Content Detection
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model reached high micro-averaged precision (0.90), recall (0.90) and f1-score (0.91), it did
not perform equally well for the hateful class as it misclassified most of the hate tweets
(0.44 precision). In the second case, the model tended to over-classify tweets as hateful in
cases where they contained words that, when placed out-of-context, could be perceived as

hateful.

In recent approaches, deep learning techniques with word embeddings were employed for
detecting toxic content. [PF17] trained three Convolutional Neural Networks (CNN) with
multiple filter sizes, large feature map sizes, and a max-pooling layer after the convolution
to capture the feature with the most powerful signal. They focused on a single-label
multi-class classification problem with three class labels: {Sexist, Racist, None}. Their deep
learning models had similar overall results as the Logistic Regression baseline classifier
but outperformed it at the offensive categories evaluation, where the baseline had a low
recall score. [PMA17] developed a Recurrent Neural Network (RNN) operating on word
embeddings that outperformed Detox, the previous state-of-the-art comment moderation
system. Detox used Logistic Regression or an MLP classifier that operated on n-grams
[WTD17]. They experimented with two different deep learning models (RNN, CNN) and
reproduced Wulczyn et al’s system [WTD17] as a comparison measure. They reported
Area Under Curve (AUC) score as their evaluation metric. Their RNN model, especially
when a self-attention mechanism was added (Figure 2.2) to compute the weighted sum of

all the hidden states, outrun the Detox system.
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Fig. 2.2: Illustration of RNN with an attention mechanism. Figure is taken from [PMA17]

2.4 Self-training

Semi-supervised learning benefits from unsupervised data that are available for a specific
task (Section 1.3). A common implementation of semi-supervised learning is Self-training.
It is an iterative method that employs a Teacher model initially trained on the labeled
instances to create silver labels for the unlabeled dataset [Yar95; BM00]. A subset of the

silver-labeled instances, along with the pseudo-labels, is sampled and added to the labeled
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dataset. The Student, usually a model with the same architecture as the Teacher, is then
trained on the augmented labeled dataset. Subsequently, the Student model becomes the
new Teacher to sample and silver-label additional instances for the next round [Li+21;
Mi+21]. These steps can be repeated in cycles for a fixed number of iterations or until the

evaluation metric starts to drop or it reaches convergence.

This approach is called Self-training when the Student model has a similar or higher
capacity than the Teacher, and knowledge distillation [HVD15] when the Student model is
smaller than the Teacher. Self-training utilizes unlabeled data in a task-specific way during
the pseudo-labeling process to train a more robust Student model and has been applied in
a variety of NLP, computer vision and speech recognition tasks. More specifically, recent
research has been conducted on Self-training in tasks such as sentiment analysis [Du+21],
intent-classification and dialog-state tracking [Mi+21], evidence-extraction [Niu+20], natu-
ral language inference [Li+21], toxic span detection [SJ21], text classification and rationale
extraction [BSM21].

2.4.1 Pseudo-label process

Self-training utilizes artificial labels generated by the trained Teacher to act as additional
supervision to the Student [Che+21]. During the pseudo-labeling process, silver labels are
assigned to the unannotated examples by picking up the class with the higher predicted
probability by the Teacher model. The confidence score of the prediction is defined as
the predicted probability score. In binary classification problems, the prediction score is
the probability generated by the model to the predicted label. In multi-label multi-class
classification problems, [Mi+21] use the mean of the prediction scores corresponding to

the predicted labels to acquire a confidence score for each unannotated example.

2.4.2 ST sampling methods

The most common approach for selecting the subset of unlabeled data to augment the
training dataset is based on the model’s confidence score [Yar95; Niu+20]. This method
samples k instances from the unlabeled data pool that produced the highest confidence
scores [Mi+21; Du+21], or all instances with probability (confidence score, Section 2.4.1)
above a certain threshold at the end of each round [Yar95]. This technique is often compared
in literature with random sampling, where random k instances are added to the training set
iteratively or with least-k sampling, where k instances that produced the lowest confidence
scores in the previous round are selected. The Student is then trained on the augmented
dataset. Algorithm 1 describes the Teacher-Student iterative process steps when the top-k
technique is applied.

2.4 Self-training
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[Mi+21] implemented Self-training for four downstream tasks, including intent classi-
fication, dialog state tracking, dialog act prediction, and response selection. They used
large-scale pre-trained LMs with different task-specific heads for each task and experi-
mented with different sampling techniques such as the top-k, the least-k and the random-k
technique. The top-k sampling outperformed all other sampling methods. [Mi+21] sug-
gested that the initial Teacher trained on limited labeled data is not good enough to assign
reliable labels to a large number of unlabeled data, so the instance confidence score should

be considered when sampling the silver-labeled data to be added to the training set.

[Du+21] employed Self-training and knowledge-distillation for Natural Language Under-
standing in dialogue systems using RoBERTa-Large. In the case of knowledge distillation,
they used a Student model that had an order of magnitude fewer parameters than the
RoBERTa Teacher model. They also produced few-shot settings as their third experiment
by considering only a few samples per class. Self-training outperformed the baselines,
which were large pre-trained LMs in all of their experiments. [Du+21] observed that the
most significant improvement was in the few-shot scenario, where the model’s accuracy
increased by 3.5%. [Niu+20] performed experiments on the Teacher-Student approach by
applying both confidence and random sampling. Based on the evaluation of their system
when both these techniques were used, they concluded that the top-k sampling strategy is
more efficient as it tends to prevent the model from learning the wrong knowledge of the

wrong Teacher predictions made in previous rounds.

Algorithm 1 Self-training (ST), K most confident instances

Require: Labeled data: L, Unlabeled data: U
Require: Teacher: Ft, Student: Fs
Require: Number of pseudo-labeled data in an iteration: K
Ensure: A trained Student Fg
Initialize F¢ and train F¢ on L
while Fs not good enough and U B @ do
Initialize Fy, LY Priority_list()
while x [U do
Compute prediction label yx = F¢(X)
Compute confidence score Sy
L%insert(x, yx, Sx)
LY LPtop(k)
L - L CH
U< U\LP
Train Fs on L
Ft « Fs

Another method used to augment the labeled dataset is the select-all technique. [Li+21;
Du+21]. At the end of each round, the Student is trained with the union of the labeled data
and the entire set of unlabeled data, provided with soft labels by the Teacher (Algorithm
2). However, this method may be effective only when a good fraction of the predictions

on the unlabeled samples are correct. Otherwise, early mistakes made by the Teacher can
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reinforce themselves by generating incorrectly pseudo-labeled data. Re-training with this

data will lead to an even worse Student model in the next round [Li+21].

Algorithm 2 Self-training (ST), Select-all instances

Require: Labeled data: L, Unlabeled data: U,
Require: Teacher: Fy, Student: Fs
Ensure: A trained Student Fg
Train Ft on L
while Fs not good enough do
while x U do
Compute prediction label yx = F¢(X)
UC= £(x5, v 3G LU}
LY L o
Train a Student model Fs on LY
Ft « Fs

[Li+21; Du+21] propose task-adaptive pre-training as a complementary semi-supervised
method to deal with this challenge. By pre-training masked LMs with a large number of
unlabeled in-domain training examples and then fine-tuning the Teacher model on labeled
data in a standard supervised way, they achieve a better initialization for the Teacher model.
As the initial model is pre-trained with task-specific data, it performs better at early stages,
can avoid early mistakes and generate more accurate predictions. Algorithm 3 describes
the steps of task adaptive pretraining and Self-training with the select-all technique. In
addition, [BSM21] introduced a weighted pseudo-labeled loss function used during Student
training. A weight is assigned to each training example based on the confidence score of
the Teacher’s prediction. These weights are normalized across each mini-batch during the
training process. Their experiments showed that upweighing most confident examples
and downweighing noisy ones are beneficial for the Student’s training. It prevents the

model from relying on wrong knowledge obtained from previous rounds.

Algorithm 3 Task adaptive pre-training and Self-training, Select-all instances

Require: Labeled data: L, Unlabeled data: U,
Require: Teacher: Fy initialized with pg, Student: Fg
Ensure: A trained Student Fg
Update model pg with Task-adaptive pre-training on U
Train Fy¢ initialized with pg by fine-tuning on L
while Fs not good enough and U 8 @ do
while x [U do
Compute prediction label yx = F¢(X)
U= {(xj,yx)| Bg CU}
Train Fs on L [COF
Ft « Fs

2.4 Self-training
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2.5 Data augmentation (DA)

DA refers to strategies for increasing the diversity of training examples without explicitly
collecting new data [Fen+21]. It is a common technique used in machine learning to
prevent models from overfitting on training data and improve generalization. For few-shot
learning where training examples are hard to obtain, models can significantly benefit from
DA techniques. [PMA22] showed that DA can lead to very significant performance gains,
even when using large pre-trained transformers, by experimenting with seven different

DA techniques for question answering in the biometrical domain.

DA has been commonly used in Computer vision, where techniques like cropping, flipping,
and color jittering are a standard component of model training [Fen+21]. However, in
NLP, where the input includes complex syntactic and semantic structures, the way of
generating effective augmented examples that preserve the class label is less obvious. In
addition, [Fen+21] note that the distribution of the augmented data should be neither too
similar nor too different from the original dataset. In the first case, the risk of overfitting
is not reduced when using the augmented dataset, while in the second case, the model’s
performance could drop further through training on examples not representative of the

given domain.

Two of the most common DA techniques used in several NLP tasks are Back Translation
and Word Substitution. Back Translation [Fen+21] refers to the case where training
examples are machine-translated from a source to a pivot language and back, obtaining
paraphrases of the original example. Word substitution, a DA method widely applied in
NLP, replaces words from the original sentence with synonyms or other relevant words
drawn from a thesaurus or words with similar embeddings [PMA22]. In more recent works,
word substitution is performed using large pre-trained masked LMs, which suggest the
replacement of randomly masked words from the initial training example (Masked LM
Word Substitution).

2.5.1 DA techniques applied with Self-training

An important goal of Self-training is to improve the robustness of the Student model
trained from potentially noisy pseudo-labeled samples. DA techniques are widely used
for that purpose [Mi+21]. DA acts as a form of regularization as the model is encouraged
to generate consistent predictions on original sequences and augmented ones, based on
the assumption that a model that has not learned to memorize the training data should
produce similar predictions for relevant inputs. Some implementations of Self-training

combined with DA methods are presented below.
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Fig. 2.3: Self-Training pipeline when DA is included. The Teacher generates pseudo labels for
data in U. Then, the Selector chooses the most confident samples based on the Teacher’s
predictions and adds them to L. Afterwards, L is augmented by a DA technique to train
the Student. Lastly, the trained Student becomes the Teacher in the next iteration. Figure
is taken from [Mi+21].

[Du+21] have created a sentence encoder that outputs similar hidden representations
for sentences of similar meaning to produce task-specific sentence embeddings. These
embeddings are then used as queries for retrieving in-domain sentences from a large bank
of sentences crawled from the web. [Niu+20; Mi+21] have used Masked LMs to create
label-preserving augmentations. [Niu+20] applied augmentation to the examples with the
highest confidence scores that are more likely to be reliable and performed random masking
(15% of the sequence tokens). They replaced masked tokens with tokens suggested by the
pre-trained LM based on the assumption that the label would be preserved because of the
context-aware representations on top of the LM. Contrary to that assumption, [Mi+21]
suggested that masking and replacing the most crucial tokens for each task might lead
to changing the semantics after the sequence reconstruction. In order to preserve the

label of the initial example, they suggested measuring the importance of each token X; by

accumulating the gradients of all elements in its embedding by differentiating Ft(X) w.r.t.

Xi (Ft(X) is the Teacher prediction score). Based on their intuition, they suggested that

tokens with large gradients are important to the label y.

[Vu+21] have proposed the implementation of "task augmentation” for few-shot learning.

This approach utilizes a BERT model fine-tuned on a dataset with thousands of examples
for an auxiliary task, such as Natural Language Inference (NLI), before the target task. For
the NLI task, they used MNLI, a dataset that contains sentence pairs labeled as {entailment,
contradiction, neutral}. They transformed each training example from its basic form [textA,
textB] -> label to [textA, label] -> textB. They trained the BERT LM with the transformed
examples in order to generate textB. The fine-tuned data generator could then be used to

augment training examples for any downstream task.
Dropout is also used in related research as an additional form of augmentation. [Xie+20] in

the task of image classification suggested that adding model noise to the Student makes it

more powerful. More specifically, when dropout is used as noise, the Teacher behaves like

2.5 Data augmentation (DA)
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an ensemble at inference time, whereas the Student behaves like a single model. In other

words, the Student is forced to "mimic a more powerful ensemble model" [Xie+20].

2.6 Active Learning

As discussed in Sections 1.2 and 1.3, large datasets of supervised data are scarce for many
NLP tasks. Manually annotating thousands of examples takes a great deal of human effort
and is error-prone and expensive. In addition, not all examples are equally useful in
order to learn a specific task. For example, instances very similar to what the model has
already seen do not provide significant new information. Active Learning is the task of
reducing the amount of labeled data required to learn the target concept. By querying the
user to annotate only the most informative instances, the concept is learned with fewer
examples [Aro07]. The success of an active learner is demonstrated by showing that it
needs to be trained with fewer examples than the traditional learner to achieve the desired

performance.

In a typical Active Learning scenario, there is a limited amount of labeled data and a large
pool of unlabeled data available for a specific task. A classifier is initially trained on the
labeled examples. Selective sampling is then used to select a subset from the unannotated
set in order to be labeled by a human annotator. The classifier is subsequently further
trained with the newly manually-labeled instances. This iterative process of training,
selective sampling and annotation is repeated until convergence [Aro07]. Algorithm 4
presents the steps of the Active Learning process. Active Learning has been successfully
applied in a wide range of NLP tasks, including text classification [MN98a], named entity
recognition [She+04], semantic role labeling [RS06] and parsing [Hwa00].

2.6.1 Selective Sampling

Several different techniques for selective sampling have been explored in the literature.
Uncertainty-based sampling selects examples that the model is least certain about and
presents them to the user for correction/verification [Aro07]. Several definitions of uncer-
tainty have been used, but all are based on estimating how likely a classifier trained on
previously labeled data would be to produce the correct class label for a given unlabeled
example. [LG94] use a probabilistic text classifier for uncertainty sampling. Specifically,
the classifier samples a subset in each iteration based on the max-entropy decision rule.
[GG16] apply Monte Carlo Dropout (MC Dropout) to a Neural Network to generate the
prediction and compute the uncertainty of each training example. MC Dropout refers
to the case where Dropout is also applied at the inference time instead of only being
applied during training. By predicting the label of a test instance in many rounds, the same

model will produce different probability scores because each time, different neurons of the
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network would be randomly switched off. The instance’s uncertainty is then computed by

the variance of the model’s predictive probabilities in each round of the inference time.

The query-by-committee sampling method generates a group of predictions and selects
a set of unlabeled examples based on the disagreement among these predictions. In
particular, it selects the examples on which the disagreement within the committee is
the highest [Aro07]. The committee consists of k classifiers acting like an ensemble of
models. Vote Entropy, defined as "the entropy of the class label distribution obtained when
each committee member votes with probability 1/k for its winning class" [Aro07], and
the KL divergence of each committee member’s predictive probability to the mean of all
committee members’ predictive probability [MN98b] are the two metrics often used to

measure disagreement among the committee of classifiers.

In literature, the diversity criterion is often used to measure the training utility of a batch
of examples. Specifically, it is suggested that a batch of examples with high variance may
be pretty informative and useful to the training process. [She+04] propose two methods for
diversity sampling, global and local sampling. For global consideration, they create clusters
of the remaining unlabeled examples (using k-means clustering) based on similarity and
then select examples from different clusters. For local consideration, examples that are
most different from instances already in the training pool of the labeled data are sampled

in each iteration.

Another technique of sampling valuable examples from the unlabeled data pool is repre-
sentativeness sampling. This method is based on the assumption that the most informative
examples are the ones that best cover the dataset. The representativeness of an example can
be calculated as the number of unlabeled examples that are similar to it [Aro07]. Examples
with high representativeness are less likely to be an outlier, and adding them to the training
set will have an effect on a large number of unlabeled examples. If the examples were
clustered together based on similarity, the centroids of the clusters would be the most
representative examples according to [Aro07]. During their experiments, [She+04] used

cosine similarity and Dynamic Time Warping to measure the similarity of examples.

In our experiments, we applied the Active Learning criteria that measure the represen-
tativeness and diversity of the silver-labeled instances described above to augment our
training set in each Teacher-Student round. Instead of using confidence sampling, we
reproduced Self-training by sampling the most representative or diverse instances from the
unlabeled data pool and the generated labels. We performed this experiment to examine
whether the informative score gy of an instance (representativeness/diversity score) could
be a more critical factor than the Teacher’s prediction confidence score Sy when expanding
the training set with artificial labels. In addition, we examined if these two factors (S, Ox)
could be combined when sampling the silver-labeled instances to train a stronger Student

model. More details about our experiments can be found in Chapter 3.

2.6 Active Learning

17



18

Algorithm 4 Active Learning

Require: Inital model f(X;6p), Unlabeled data U, number of iterations T, sampling

algorithm A

D={},t=0

while iterations t < T do
Qt — Apply A on model M(x), data U
Dt « Label queries Q¢
D - D [
U - U\D¢
B¢ « Fine-tune T(X;0p) on D
t=t+1

return F(X;087)

2.6.2 Combining Active Learning with Self-training

In related research, various implementations combine Active Learning with Self-training.
The combination of these two learning techniques aims to reduce annotation costs. The
Self-training method discovers highly reliable instances based on a trained classifier,
while Active Learning queries the most informative instances based on active query
algorithms. [Wu+06] developed a system for spoken language understanding in domain-
specific dialogue systems that consisted of two parts. The first part was a topic classifier
used to reduce the search space of the correct answer by identifying the topic of the slot.
The second classifier (semantic classifier) was trained to extract the corresponding slot-
value pairs using the restriction of the recognized target topic. They employed the strategy
of combining Active Learning and Self-training for training the topic classifier. For Active
Learning, they selected uncertainty-based sampling where the most unconfident examples
were selected for a human to label and then added to the training set. For Self-training, the
examples with classification confidence scores over a certain threshold and their predicted
labels were added to the training set to retrain the classifier. They used the class probability
as the confidence score of the example to apply both methods and repeated this process
iteratively until no unlabeled examples were left in the pool. To evaluate their approach,
they compared it with random sampling as their baseline and with the implementation only
of Active Learning. Their experiments showed that Active Learning significantly reduces
the amount of labeled data needed for the task, as it almost reached the performance of
the baseline classifier using only 1/3 of the labeled examples. The combination of Active
Learning and Self-training further boosted the baseline classifier performance by using
1/3 of the labeled examples.

[GKP11], followed a similar approach for the task of argumentative zoning (i.e., analysis of
the argumentative structure of a scientific paper). In their experiments, they implemented
supervised training with Support Vector Machines as their baseline and compared it with
various weakly supervised techniques, including Active Learning alone and in combination

with Self-training. The sampling method used for Active Learning was uncertainty sam-
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pling, where the unlabeled instances with the lowest posterior probabilities were queried
for the next round of learning. In each round, the model was jointly trained with the
machine-labeled and manually annotated data from the Active Learning sampling. When
using only 10% of the labeled data from the initial training set, their method outperformed
the fully-supervised learning and the weakly-supervised learning that was based only on

Active Learning.

[Tra+17] combined Active Learning and Self-training for the named entity recognition
task from tweet streams. They employed Self-training queries based on both diversity
and uncertainty sampling to select the most informative instances. The probability of
individual token labels was considered while looking for uncertainty instances. They
considered that the model is uncertain about its prediction if it assigns to the instance
at least one label with a probability less than a predefined threshold. The diversity of
instances was examined based on their context and content to select instances that differed
from the current training data. A vector model was used to measure the context similarity
of instances, where each instance was represented as a vector. The vector’s dimensions
represented the POS tags of the sequence tokens. Diversity was then evaluated by counting
the number of tokens with the same POS tag sequence as the instances already in the
training set. For content diversity, they constructed word vectors using the Word2Vec
model and then added the word vectors to compose an instance vector. They evaluated
similarity for two instances using a function based on cosine similarity. In each round, the
instances with similarity scores less than or equal to the predefined similarity threshold
were human labeled. In addition, the most confident instances were machine-labeled and
added to the training data.

2.6 Active Learning
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System Design and
Implementation

As discussed in Section 1.3, in this thesis, we implement a Teacher-Student approach for
the two following tasks: Toxicity detection on Greek tweets and Sexism Detection on
English posts. We interpreted these tasks as binary classification problems where the class
labels for the input user posts are 1 (Offensive/Sexist) and 0 (Not Offensive/Not Sexist).
We implement Self-training by applying different sampling techniques to augment our
initial labeled dataset. First, we examine different techniques using a Logistic Regression
classifier. Second, we apply Self-training with the best sampling techniques tested on the
Logistic Regression Teacher-Student framework to a BERT model pre-trained on a large

general corpus.

To reproduce few-shot settings, we randomly sampled a small number of instances from
the dataset’s training examples as our initial labeled set (L). We detached 10% from the
original training dataset for our validation set (V) and 10% as a test set to evaluate our

final results. The rest of the supervised set was used as our unlabeled Dataset (U).

We will first describe the different sampling techniques applied to the Logistic Regression
Teacher-Student framework. We will then present our experiments on the Teacher-Student

framework based on a pre-trained LM (Section 3.7).

3.1 Teacher-Student with Logistic Regression
classifier

In our approach, both the Teacher Ft and the Student Fg are Logistic Regression classifiers
with the same hyperparameter values. During training, two data pools are maintained,
denoted as U (unlabeled data) and L (labeled data). We have two class labels: 1 for
Offensive/Sexist and 0 for Not Offensive/Not Sexist. Following Algorithm 1, we initially
train the Teacher model on L. Then the Teacher generates predictions for U by assigning
each input sequence Xb the class with the highest probability. In the case of a Logistic

Regression classifier with weights vector W1

Probability for positive class: P (1]X) = mﬂ
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Probability for negative class: P (0|X)}= 1 - P (1|X) %

The predicted class is assigned as the silver label for the input X : yx = F¢(X). The Selector
(the function that is responsible for the sample selection) samples a number of silver-labeled
instances based on different criteria to expand the initial labeled set (L). The Student is
trained on the augmented training set, and at the end of each round, he becomes the new
Teacher. We evaluate the Student’s performance on the validation set at the end of each
round. At the next iteration, the new Teacher predicts the class labels for the remaining
instances on U. These steps are repeated in rounds until the evaluation metric starts to
drop by evaluating our system on the validation dataset. The final model is then evaluated

on the test set.

3.2 Confidence sampling

3.2.1 Top - kinstances

In each round of the Teacher-Student approach, the Teacher generates predictions for the
entire unlabeled set U. The confidence score Sy of each instance in U is the probability
of the classifier’s predicted class. In the top-k technique, the Selector subtracts the k
instances with the highest confidence score from U and inserts them in L. We considered k
a hyperparameter and experimented with different values [20, 50, 100, 200]. For each k we
performed Teacher-Student training iteratively until the round that the system achieved
the max micro F1-score! based on the validation set and reported the results on the test

set.

For the second dataset, although the micro F1-score increased after applying Self-training
with confidence sampling, we observed that the F1-Score of the minority class? (Sexist
instances) decreased after the addition of the silver-labeled examples. Hence we considered
both the micro F1-Score and the F1-Score of the minority class to monitor the number of
Teacher-Student iterations. More specifically, we set the number of rounds equal to the
iteration where the max F1-Score of the minority class is achieved while micro F1-Score
does not drop (compared to the micro F1-score achieved in few-shot learning). Given
the class imbalance of our datasets, an alternative could have been to monitor the macro
F1-Score that assigns equal weight to each class regardless of the number of instances that

belong to each category.

In addition, for the second dataset, we examined if the class ratio of the top-k instances

added in each iteration is responsible for the performance drop in the minority class

'Information about the micro F1-score evaluation metric can be found in Section 4.3.
Information about the F1-score of each class can be found in Section 4.3.
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detection. Instead of adding the top K instances irrespective of their silver labels, we
selected a batch that contains 24% minority class instances and 76% majority class instances

to preserve the class balance of the initial labeled set. We also examined if adding batches

of different fixed class ratios when expanding our training set could have better results.

Hence we performed the same experiment by adding batches of 25%, 26%, 27% and 28%

sexist instances and 75%, 74%, 73%, 72% not sexist instances, respectively.

3.2.2 Instances with confidence above a certain threshold

Another quite common technique when confidence sampling is applied is to sample all
instances with Sy above a certain threshold t. We performed this experiment by assigning
different thresholds in the interval [0.81, 0.99] and repeated Teacher-Student training until
the round in which our system had the best performance on the validation set. Specifically,
for the Toxicity dataset, we set as monitor micro F1-Score, while for the Sexism dataset,
we repeated the iterations monitoring both micro F1-Score and F1-Score of the minority

class.

3.2.3 Adaptive number of top confident instances

The next experiment we performed based on confidence sampling was adding an adaptive
number of top confident examples. The idea was to examine how the Student’s performance
would be affected if we augmented the labeled dataset by a variable rather than a fixed
number of examples in each round. Based on the assumption that the Student becomes
more robust after each iteration and it generates more accurate predictions for the unlabeled

dataset, we examined two approaches that increase K in each round: k + 20,2 [K.

In addition, we tried to adapt K based on the difference in the score of the Student’s micro
F1-Score after each iteration. In each round, if the Student was evaluated with the same or
lower micro F1 score as before, we kept K stable. Instead, if the Student’s micro F1-score
increased by adding k examples in round |, we doubled the examples inserted in the Labeled

dataset in round | + 1.

To tune the Teacher-Student rounds, for the Toxicity dataset, we set as monitor micro
F1-Score, while for the Sexism dataset, we repeated the iterations until the max F1-Score
of the minority class is obtained, and the micro F1-Score does not drop compared to the

few-shot results (based on the validation set).

3.2 Confidence sampling
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3.3 Select - all instances

Following algorithm 2, the Self-training process follows the same steps described in Section
3.1 except for the Selector function. The entire dataset U and the predicted labels are
combined with the L in each round (L™ — L [OF. Then the Student model is trained
on the augmented dataset L"and generates pseudo-labels for U. The number of Teacher-
Student rounds was set equal to the iteration where the micro F1-score started to drop

based on the evaluation of the validation set.

3.4 Active Learning

After experimenting with different Self-training techniques extracted from the related
bibliography, we tried to examine if Active Learning criteria could be useful when selecting
instances from the unlabeled data pool U to augment our training set. As described in
Section 2.6.1, selective sampling tries to locate the most informative instances, i.e., the
instances that have the maximum training utility for the concept that the model is trying to
learn. In most cases, a human annotator is then queried to assign labels to these examples
instead of annotating a huge task-specific dataset. This process can be repeated in rounds

to further boost the performance of the model.

We applied this method iteratively to our framework to study if Active Learning criteria
are helpful when sampling and assigning true labels to the selected unlabeled instances to
augment L. To conduct the Teacher-Student experiments, we removed the ground-truth
labels of the remaining training set to use it as the unlabeled set U. Hence, for the Active
Learning application, we did not need a human annotator to create ground-truth labels for
the examples, as their true labels were already available. We augmented the training set in
each round with top-k instances (based on Active Learning criteria) and their gold labels.

The criteria we employed are described in the following two subsections.

3.4.1 Representativeness sampling

The first Active Learning criterion we implemented is representativeness sampling. Ac-
cording to this criterion, the most informative instances of the Unlabeled dataset U are the
most representative of the dataset. They are less likely to be outliers, and they represent
a significant portion of the unlabeled examples. As the representativeness score of an
instance in U, we define the average distance from its nearest neighbors in U. The metric
for distance was set as cosine similarity. Hence, we implemented the K-NN (K-Nearest
Neighbors) algorithm fitted on the unlabeled dataset to find the ten nearest neighbors of

each instance. Then we calculated the average distance from these neighbors to produce
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the instance score k. Specifically, we assigned the highest ry to the instances in U that
had the lowest average distance from their neighbors in U. In each iteration, we sampled kK
instances that had the highest ry and added them to the labeled set.

3.4.2 Diversity sampling

The diversity criterion suggests that the instances that are most different from the examples
already in the training pool L are the ones with the highest training utility. This technique
is popular in Active Learning based on the assumption that the model could benefit more
from instances different from those it has already seen so it can gain new knowledge
for the task. We calculated the diversity score of an instance in U from the training set
as the average distance of the instance from its nearest neighbors in L. We used our
implementation of k-NN (fitted on the Labeled dataset) search to find the ten nearest
neighbors of each unlabeled instance. Then we calculated the average distance from them
and set it as the instance diversity score dyx. During the iterative process, we selected
k instances with the highest dy along with their true labels and inserted them into the

training data pool.

Figure 3.1 illustrates each sequence’s average distance from its nearest neighbors in L and
the average distance from its nearest neighbors in U, respectively. In the left figure, as
the average distance increases, the samples are more diverse from those already in the
labeled dataset. Correspondingly in the right figure, as the average distance decreases,
the samples are more representative of the examples that have not yet been added to the

training set.
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Fig. 3.1: Toxicity Dataset: Samples Diversity from L and Representativeness of U
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As mentioned in Section 3.4, since the true labels of the instances in U were available,
we used the ground truth labels to simulate a human annotator that would be consulted
during Active Learning. We applied Active Learning to demonstrate whether expanding
the training set with the k most informative instances could lead to a more robust model

with fewer training examples than other sampling techniques. We performed the same

3.4 Active Learning
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experiment by selecting in each round the K most confident samples based on the model’s

predictions and random K examples, along with their true labels, to compare the results.
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Fig. 3.2: Toxicity Dataset: Micro F1-Score per iteration when Active Learning with different
techniques is applied.

As shown in Figure 3.2, when ground-truth labels are available, the representativeness score
of the instance is the most beneficial criterion when expanding the initial few-resource
dataset. The diversity criterion did not work as well as the other three techniques at first,
but after the first 20 iterations, it performed better than confidence sampling. Random
sampling performs better than diversity sampling during the first TS rounds and better
than confidence sampling as the iterations increase. The curve of the micro F1-Score when
representativeness sampling is applied is on top of the other curves in most iterations, and

it is probably a more reliable option.

3.5 Teacher - Student with Active Learning
Criteria

Following algorithm 5, we reproduced Teacher-Student with Active Learning criteria
as sampling techniques for a few-shot learning scenario. Similar to the Teacher-Student
approach, when confidence sampling is applied, two data pools are maintained: L, the initial
annotated dataset and U, the unsupervised data. A Teacher model is originally trained
on L and generates predictions for all instances in U. Then a Selector function samples k
most informative instances based on two different criteria (representativeness/diversity).
These instances and their silver labels are added to the training set. After adding the
queried examples, the Student is initialized and trained on the extended set. These steps

are iteratively repeated until the Student’s micro F1-score starts to drop based on the
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evaluation of the validation set. At the end of this process, the Student is evaluated on the

test dataset.

Algorithm 5 Teacher - Student with Active Learning criteria

Require: Labeled data: L, Unlabeled data: U,
Require: Number of pseudo-labeled data in an iteration: k
Require: Teacher: Ft, Student: Fs
Require: Informativeness criterion: i
Ensure: A trained Student Fg
Train Ft on L
while Fs not good enough and U 8 @ do
Initialize Fy, LY Priority_list()
while x [U do
Compute prediction label yx = F¢(X)
Compute informativeness score gx based on the informativeness criterion i
L%insert(x, yx, gx)
LY L%top(k)
L ~ L ¥
U u\L"
Train Fs on L
Ft « Fs

3.6 Active Learning criteria combined with
confidence sampling

We attempted to combine Self-training and Active Learning criteria to employ a Teacher-
Student method that samples instances based on both these techniques (Algorithm 6). In the
first experiment, we converted the Selector function to extract instances from the unlabeled
data pool U based on a linear combination of confidence (Sx) and representativeness (r')
of the instance. Specifically, we used the equation axy = A-Sx + (1 —A) - rx. We considered
A a hyperparameter and manually tuned it by testing different values in the space [0.1, 0.9].
When A = 0.1, the Selector pays little attention to the confidence score of the instance,
whereas when A = 0.9, the model takes into little account the representativeness score
of the instance. For the case of confidence and diversity of the samples, the Selector

again sampled instances based on the score of the linear combination of these two criteria

Figure 3.3 illustrates micro F1-Score per iteration for different values of A in the interval
[0, 1] for both datasets when evaluating the validation set. The figure on top shows the
results of the Teacher-Student application using the Toxicity dataset, while the figure on
the bottom presents the results of Teacher-Student using the Sexism dataset. As shown
below, as we increase the weight assigned to the confidence score of the instance, the

micro F1-Score increases. The best results in the interval [0.1, 0.9] for both datasets were

3.6 Active Learning criteria combined with confidence sampling
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Algorithm 6 Teacher - Student with confidence sampling and Active Learning criteria

Require: Labeled data: L, Unlabeled data: U,
Require: Number of pseudo-labeled data in an iteration: k
Require: Instance confidence score weight A
Require: Teacher: Fy, Student: Fs
Require: Informativeness criterion: i
Ensure: A trained Student Fg
Train Fr on L
while Fs not good enough and U B @ do
Initialize Fy, LY Priority_list()
while X [U do
Compute prediction label yx = F¢(X)
Compute confidence score Sy
Compute informativeness score gx based on the informativeness criterion i
ax =A-Sx+(1—A)0x
L%insert(x, yx, ax)
LY Ltop(k)
L LV
U u\L®
Train Fs on L
Ft « Fs

obtained when setting A = 0.9 (when the largest weight is attributed to the instance’s
confidence score). We also present the curves of micro F1-Score per iteration when setting
A = 0 (representativeness sampling) and A = 1 (confidence sampling) for comparison

reasomns.

Respectively, figure 3.4 depicts micro F1-Score per iteration for different values of A in
the interval [0, 1] when evaluating the validation dataset. The figure on the top depicts
the results of the Teacher-Student framework for the toxicity detection task, while the
figure on the bottom shows the results of the Teacher-Student framework for the sexism
detection task. For confidence and diversity, the results are comparable to confidence
and representativeness sampling. The highest scores for both datasets when tuning A
in the interval [0.1, 0.9] were obtained when setting A = 0.9, and the largest weight is
assigned to the instance’s confidence score. We also present the curves of micro F1-Score
per iteration when setting A = 0 (diversity sampling) and A = 1 (confidence sampling) for

comparison reasons.

3.7 Self-training with BERT

Our final experiments included Self-training using a pre-trained BERT model trained
on large general corpora. After experimenting with different sampling methods with a

Logistic Regression classifier, we wanted to explore whether Self-training can be effective
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Fig. 3.3: Self-training when the sampling function is a linear combination of the instance confidence
and representativeness score. Different values of confidence weight are applied (A [0, 1]).
On the top: System evaluation for the Toxicity Dataset. On the bottom: System evaluation
for the Sexism Dataset.

even when applied to models with higher capacity, such as the state-of-the-art NLP models,
and further boost their performance. Based on the fact that BERT models are already
pre-trained on unsupervised data, a question that arose was whether Self-training captures
the same information as pretraining or if these semi-supervised learning methods can
be complementary and beneficial to the model when applied together. In addition, we
wanted to examine if the sampling techniques that had the best results for the Teacher-
Student Logistic Regression framework are equally effective in the Teacher-Student BERT

framework application.

In our implementation, Teacher is a classifier that consists of a BERT base LM with a task-
specific head (MLP) to classify the instances into Offensive/Sexist or Not Offensive/Not
Sexist. The Student is a BERT base model with the same architecture as the Teacher.
First, the Teacher is fine-tuned on the initial labeled set L. In each round, the Students
weights are initialized, and the Student is fine-tuned on the union of the labeled and

silver-labeled examples that the Selector sampled. The Student becomes the Teacher to

3.7 Self-training with BERT
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generate predictions for the rest of the unlabeled dataset U at the end of the round as the

Self-training algorithm suggests .

We experimented with the sampling techniques that had the best results on the Logistic
Regression framework. More specifically, we applied confidence sampling by adding the
top-k most confident silver-labeled instances or all instances with a confidence score above
a certain threshold iteratively to train the Student. We also applied combined confidence
and representativeness scores as factors contributing to the selection of the unannotated

instances.
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3.8 Full - Supervision

To evaluate the results of our best Teacher-Student methods, we also employed full super-
vision for comparison reasons. Specifically, we trained both a Logistic Regression classifier
and a BERT model with the same architecture as the Teacher of our previous experiments
with the entire labeled dataset without removing the ground-truth labels of the remaining
training set to be used as unlabeled data. The results of our experiments are presented in

the next section.

3.8 Full - Supervision
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Evaluation

We present the dataset statistics, the configurations of our experiments, the evaluation

measures we used and our experimental results.

4.1 Datasets

4.1.1 OGTD

The Offensive Greek Tweet Dataset (OGTD) is a publicly available dataset for offensive
language identification [PZR20]. Although there are many toxicity datasets in English, it
was the first Greek annotated dataset for the specific task [PZR20]. It contains a total of
10,287 posts from Twitter labeled as Offensive or Not Offensive. The posts were collected
using popular hashtags, mostly from television programs such as reality and entertainment
shows and hashtags concerning political events like European parliament elections. The
researchers note that they focused on these categories as TV and politics usually gather

more disputes and insulting language than other topics.

The dataset contains offensive tweets of different types (racist, sexist, etc.). It consists of a
training subset of 8,743 tweets and a test subset of 1,544 tweets. The dataset is imbalanced
as most tweets are labeled as Not Offensive, as shown in Figure 4.1. The training data
consist of 2,486 offensive tweets and 6,257 not offensive Tweets, with an offensive class
ratio of 28% of the total set. The test dataset is even less balanced as it consists of 242
offensive tweets and 1,544 not offensive tweets with an offensive class ratio of 15% of the
total set. To experiment with datasets with the same class balance, we united the training
and test data and produced a random split for the test set. In addition, the average length

of training and test sequences is 18 words, and the max sequence length is 72 tokens.

4.1.2 Explainable Detection of Online Sexism Dataset

The Explainable Detection of Online Sexism Dataset (EDOSD) was introduced for SemEval
2023 for the task of Sexism Detection. It consists of 20,000 user English posts sampled
from Gab and Reddit. All entries are labeled as Sexist or Not Sexist by human annotators.

The available training data consists of 14,000 entries. The validation and test data will be
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Fig. 4.1: OGTD Class distribution

released at the final phase of the competition, so they cannot be used in this thesis. The
training set is imbalanced as there are 3,398 sexists samples (24% of the entire dataset) as
shown in Figure 4.2. The training samples have an average length of 27 words and a max
length of 84 tokens.
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Fig. 4.2: EDOSD Class distribution

4.2 Few-shot settings

As mentioned in Chapter 3, we reproduced few-shot settings for our experiments. We
randomly sampled 2,000 instances from the training subset as our initial labeled set (L) for
both datasets. We detached 10% of the original training data for our validation set (V) and
10% as the test set (T) to evaluate our final results. The rest of the supervised set was used
as our unlabeled dataset (U) for both datasets. Tables 4.1 and 4.2 summarize the statistics

of our settings.
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Offensive | Not Offensive | Total | % Offensive
Labeled Set (L) 527 1473 2000 26%
Unlabeled Set (U) 1697 4635 6332 27%
Validation Set (V) 240 686 926 26%
Test Set (T) 264 765 1029 26%

Tab. 4.1: OGTD - Few shot settings

Sexist | Not Sexist | Total | % Sexist
Labeled Set (L) 484 1516 2000 24%
Unlabeled Set (U) | 2246 7094 9340 24%
Validation Set (V) | 316 944 1260 25%
Test Set (T) 352 1048 1400 | 25%

Tab. 4.2: EDOSD - Few shot settings

4.3 Evaluation metrics

We evaluated the final Student model after applying Teacher-Student with the techniques
and configurations described in Chapter 3 on its performance on the test set based on the

evaluation metrics described in this Section.

We report the F1-Score of each class to test the success of our methods for detecting both
the minority and the most frequent class. The F1-Score of each class is the harmonic mean

of class precision and recall, respectively, and can be defined by the following equations:

recision; = __TPe (4.1)
P = TP+ FP, '
TP,
recall, = ———— 4.2
©7 TP+ FN, (42)
ision, - [
Fl-score = 2- precision - recall. (4.3)

precisione + recall

TPc¢, FPc, F N refer to the True Positive, False Positive and False Negative predictions

respectively, for each class C.

We also set as evaluation metric micro F1-Score, which computes the global average F1-
score by counting the sum of the True Positives (TP), False Negatives (FN), and False
Positives (FP) of the two classes. We used this metric to evaluate our system because we

wanted to give equal importance to all instances regardless of their class. Our purpose

4.3 Evaluation metrics

35



36

was to train a Student model that would correctly classify the maximum number of test
instances irrespective of their category. Micro-averaged F1-score constitutes the harmonic

mean of micro-precision and micro-recall, which are defined as follows:

. .. > TPe
micro-precision = 4.4
P S TP+ Y, FP, (44)

. > TP
micro-recall = 4.5
Y e TP+ > . FNc (45)
. micro-precision - micro-recall

micro F1-Score = 2 - P (4.6)

micro-precision + micro-recall

We configured the number of Teacher-Student iterations for each technique based on the
micro F1-Score of the Student evaluated on the validation set. However, in some of our
experiments, we observed that although micro F1-Score increased, there was a considerable
decrease in the minority class evaluation. That means that although our classifier labels
more test examples correctly, it cannot effectively predict the Offensive/Sexist instances
that occur more rarely. In these cases, we used both micro F1-Score and F1-Score of
the minority class to monitor the number of Teacher-Student iterations. An alternative
evaluation metric to monitor the configurations of our experiments could have been macro

F1-Score, as it assigns equal weight to both categories regardless of their frequency.

This thesis aimed to examine which sampling method had the best impact on our system by
leading to the highest values of the evaluation metrics. In addition, as in real case scenarios,
the resources we could use for the Teacher-Student iterative process were limited. Hence,
we also considered the number of rounds and the number of unlabeled samples required

for each technique to reach the highest scores to conclude its success.

4.4 Training Details

4.4.1 Text prepossessing

To transform the toxicity dataset into a clean and consistent format, we followed some text
preprocessing steps. Specifically, we removed tweet hashtags (tokens that start with #)
and usernames (tokens that begin with @). In addition, we removed URLs and converted
all sequences to lowercase. Finally, as it is a Greek dataset, we removed Greek accents and

excluded stop words.
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The dataset we used for the task of sexism detection contains user posts in English. We
removed punctuation, numbers and single characters from the posts to preprocess the
text. We converted all tokens to lowercase and used a lemmatizer which converts any
word to its base form (lemma) as a text normalization technique. Finally, we removed stop

words.

4.4.2 Logistic Regression

Considering our few-shot learning scenario, we set the Logistic Regression solver as
"liblinear" as it is the suggested option for small datasets by scikit-learn library'. We
performed tuning using grid search to determine the model’s hyperparameter values. We
specified as hyperparameters the regularization term with candidates L1 and L2 penalty,
the inverse of regularization strength C (defined in the interval [0.1, 1.0]), and the weights
assigned at each class with candidates: "balanced" and "None." With no weights assigned
to each label, all classes are supposed to have equal weights. In contrast, with "balanced"
weights, the algorithm "automatically adjusts weights inversely proportional to class

frequencies in the input data" (based on the scikit-learn documentation). We applied 5-fold

cross-validation on the initial labeled dataset (L) to compute the hyperparameter values.

The evaluation metric was the micro F1-score. For text vectorization, we converted the

sequences into TFIDF feature vectors with unigrams and bigram features.

4.4.3 BERT

For our BERT experiments on the Greek tweets dataset, we used GreekBERT. It a Greek
version of uncased BERT-base introduced by AUEB’s NLP Group [Kou+20]. It is pre-trained
on large Greek corpora, such as the Greek part of Wikipedia. Regarding the (English)
sexism dataset, we used BERT-base uncased, a masked LM introduced by Google [Dev+19],
which was pre-trained on general English corpora. Our final classifier for both tasks
consisted of BERT followed by a task-specific MLP head.

In both cases, we set the top-level embedding of the CLS special token as the output from
the transformer model. We performed a hyperparameter search to determine the values
of the following parameters: the number of layers of the task-specific MLP in the range
of [1, 5], the number of units (neurons) of each layer with distinct candidates, the values:
[64,128, 256,512, 1024] and the activation function of each layer with candidates: relu
and tanh activation functions. We also considered the dropout rate between MLP layers as

a hyperparameter and tuned it in the interval [0, 0.5].

'https://scikit-learn.org/stable/modules/generated/sklearn. linear_
model.LogisticRegression.html

4.4 Training Details
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We first trained only the MLP layers by keeping the transformer layers frozen with a
higher learning rate for 50 epochs and set early stopping with micro F1-Score as the
monitor. Then, we fine-tuned the model with a lower learning rate by keeping frozen
the embeddings layer and the first two encoder blocks. We set the learning rate’s search
space when training the MLP layers in the interval [10™4, 1072]. For the fine-tuning of
the entire network (by keeping only the lowest transformer layers frozen), we tuned the
learning rate in the interval [10™8, 107°]. We used the Adam optimizer [KB14]. We used
one unit (neuron) at the network’s output layer with the sigmoid activation function as it

concerns a binary classification task.

4.5 Experimental Results

4.5.1 Teacher - Student with Logistic Regression

Tables 4.3 and 4.4 depict the performance of our Teacher-Student approach when top-k
is applied. As stated in Section 3.2.1, the Selector function samples K instances with the
highest confidence score Sy to be added to the training set at the end of each round. The
number of iterations for different K values was determined by monitoring performance on
the validation set. We set the number of iterations equal to the round where the micro
F1-Score starts to drop based on the validation set. We present the results of our method
for different values of K, and the evaluation of our system when trained only with the

initial limited labeled data (L) for comparison reasons.

In addition, we report the Offensive/Sexist class ratio of the training data (labeled and
pseudo-labeled that were used in each method), the number of rounds and the number of

total samples required for training.

Micro F1-Score | F1 Off/ve | F1 Not Off/ve | Off/ve% | Round | Samples
Initial L only 0.831 0.644 0.889 26% 1 2000
k=20 0.849 0.640 0.904 37% 50 2980
k =50 0.858 0.662 0.910 39% 26 3250
k =100 0.858 0.663 0.910 38% 15 3400
k = 200 0.854 0.657 0.907 37% 8 3400

Tab. 4.3: Self-training with confidence sampling (OGTD Dataset).

For the toxicity dataset, the Teacher - Student approach with confidence sampling seems to
considerably impact our system’s performance for the few-setting scenario. We observed
that different values of k do not produce a remarkable difference in the evaluation results.
However, when setting K = 50 or k = 100, our system gains 2.7 percentage points for
the micro F1-score and approximately 2 percentage points for each class F1-Score. We

conclude that the best method was adding the top 100 (highest confidence) instances to the
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Micro F1-Score | F1 Sexist | F1 Not Sexist | Sexist% | Round | Samples
Initial L only 0.779 0.577 0.850 24% 1 2000
k=20 0.816 0.524 0.886 38% 37 2740
k =50 0.817 0.527 0.886 38% 16 2750
k =100 0.815 0.525 0.885 38% 8 2700
k =200 0.817 0.532 0.886 37% 4 2600

Tab. 4.4: Self-training with confidence sampling (EDOSD Dataset).

training set in each iteration as it reached the highest scores in fewer rounds than when
setting k = 50.

For both datasets, we observe that as we increase K, the number of rounds needed for
this process drops. If our resources are limited and it is impossible (or too costly) to
apply Teacher-Student for many rounds, we should set a higher K as configuration. In
addition, we observe that the class ratio of the augmented training set changed after self-
training (38% Offensive instances compared to 26% Offensive samples of the labeled set
and 37% Sexist samples compared to 24% initially labeled Sexist examples). The classifier
seems more confident when labeling an instance as Offensive/Sexist, as it assigns a higher

probability to the examples pseudo-labeled as the minority class.

Figure 4.3 presents the curves of the Student’s micro F1-score per Teacher-Student iteration
where the top-k sampling technique is applied (by setting K = 100). To compare the results
of this method, we also present the Student’s micro F1-score per iteration when the same
instances from U are sampled, but their true labels are available. We observe that during
the first twenty iterations concerning the toxicity detection task, the Teacher-Student
framework performs even better than supervised learning. For the sexism detection task,
the Teacher-Student framework performs similarly to training under supervision for more
than ten iterations. However, as the iterations increase, the performance of the Student

model drops when Teacher-Student is applied.

In the case of Teacher-Student for the sexism detection task, we observe that although
micro F1-Score increased for 3.8 percentage points at the best setting (k = 200), the
F1-Score of the Sexist Class decreased considerably (-4.5 percentage points) as shown in
Table 4.4. That means that when our classifier is trained with silver labels, it struggles to

detect sexist cases.

We performed two experiments based on the top-k technique for the second dataset to
improve the evaluation of the minority category (Sexist class) detection, as described in
Section 3.2.1. The first experiment was monitoring the Teacher-Student rounds based
on the F1-Score of the Sexist class when evaluating our approach on the validation set
(instead of micro F1-Score). We managed to increase the micro F1-Score and F1-Score of

the majority class (Not Sexist class), compared to the system evaluation when training

4.5 Experimental Results
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Fig. 4.3: Micro F1-Score per iteration when applying Teacher-Student with the top-k tehcnique
compared to iterative supervised learning with the most confident examples from U and
their true labels. On the left: System evaluation for the Toxicity Dataset. On the right:
System evaluation for the Sexism Dataset.

only with L, and to maintain the F1-Score of the minority class (Table 4.5). For instance,
when setting k = 200, our system gains 2.3 percentage units for micro F1-Score and 2.0
units regarding evaluating the majority category. The detection of the sexist instances
did not deteriorate, contrary to applying Teacher-Student for the number of rounds that

maximize micro F1-Score of the validation set (Table 4.4).

Micro F1-Score | F1 Sexist | F1 Not Sexist | Sexist% | Round | Samples
Initial L Only 0.779 0.577 0.850 24% 1 2000
k =50 0.812 0.568 .879 33% 30 3450
k = 100 0.810 0.569 0.878 32% 17 3600
k = 200 0.802 0.578 0.870 28% 14 4600

Tab. 4.5: Self-training with confidence sampling (EDOSD Dataset). Monitor F1-Score of Sexist
Class to determine the number of Teacher-Student rounds.

We observe that class balance has an impact on our experimental results. Hence as
mentioned in section 3.2.1, we performed a second experiment to add batches of the most
confident silver-labeled examples by preserving the class balance of the training set (24%
Sexist, 76% Not Sexist). We also tried to augment the initial labeled set by adding the most
confident examples of different class ratios (25%, 26%, 27% and 28% sexist instances and
75%, 74%, 73%, 72% not sexist instances). Preserving the class balance (adding 24% Sexist
and 76% Not Sexist silver-labeled examples at each round) improved few-shot learning
results. However, when setting each batch class ratio as 28% Sexist and 72% Not Sexist, our
system reached even better results after the Teacher-Student application. Micro F1-Score
increased by 2 percentage units, the F1-Score of the Not Sexist class gained 1.9 percentage

units, and the F1-Score of the Sexist class gained 0.4 percentage units (Table 4.6).
Tables 4.7, 4.8 show the results of Self-training with confidence sampling when we add

iteratively all samples with a confidence score above a certain threshold t. We present the

results of this method for different values of t.
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Micro F1-Score | F1 Sexist | F1 Not Sexist | Round | Samples
Initial L (24% Sexist) 0.779 0.577 0.850 1 2000
24% Sexist 0.785 0.582 0.855 9 2800
25% Sexist 0.785 0.582 0.855 9 2800
26% Sexist 0.790 0.579 0.860 14 3300
27% Sexist 0.797 0.582 0.866 14 3300
28% Sexist 0.800 0.581 0.869 15 3400

Tab. 4.6: Self-training with confidence sampling (EDOSD Dataset). Adding k most confident
samples with fixed class ratio.

Micro F1-Score | F1 Off/ve | F1 Not Off/ve | Off/ve% | Round | Samples
Initial L only 0.831 0.644 0.889 26% 1 2000
t=10.84 0.855 0.659 0.908 38% 8 3060
t=0.87 0.859 0.668 0.910 38% 2 2381
t=0.90 0.859 0.665 0.910 37% 3 2340
t=0.93 0.855 0.657 0.908 35% 5 2272
t=10.96 0.846 0.651 0.901 32% 4 2166
t=0.99 0.838 0.646 0.895 28% 2 2055

Tab. 4.7: Self-training with confidence sampling over a threshold (OGTD Dataset).

For the toxicity dataset, confidence sampling above a certain threshold significantly im-

proved our system’s performance compared to training with the labeled dataset only, as

shown in table 4.7. In addition, intermediate values of thresholds were the best for our
system (t = 0.87,t = 0.90). When setting t = 0.87, our system gained 2.8 micro F1-Score

percentage units, 2.4 units at the evaluation of the Offensive category and 2.1 units re-

garding the F1-Score of the Not Offensive class. Although the results are comparable to

the top-k technique, there is a slight improvement. In addition, these results were reported

after only 1 round of Self-training, and only 381 unlabeled samples were required. Hence,

this technique is also more resource efficient (compared to the top-k approach, where 14

TS rounds and 1,400 unlabeled examples were required when setting k = 100).

Micro F1-Score | F1 Sexist | F1 Not Sexist | Sexist% | Round | Samples
Initial L only 0.779 0.577 0.850 24% 1 2000
t=0.84 0.760 0.580 0.832 25% 7 8554
t=10.87 0.788 0.574 0.859 28% 28 5206
t=0.90 0.810 0.556 0.879 34% 24 3321
t=10.93 0.818 0.541 0.884 37% 3 2523
t=0.96 0.810 0.557 0.879 32% 2 2240
t=0.99 0.797 0.575 0.867 27% 2 2094

Tab. 4.8: Self-training with confidence sampling over a threshold (EDOSD Dataset

~

About the sexism dataset, we observe that when setting a low threshold (t = 0.84) F1-score

of the Sexist class is preserved; however micro F1-score and F1-Score of the majority class

decrease. When setting higher thresholds (t = 0.87,t = 0.90,t = 0.93,t = 0.96), the
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results are the opposite. The most effective threshold for our experiment was t = 0.99,
where the system marked an insignificant decrease at the Sexist class evaluation but
micro F1-Score and the Not Sexist class F1-Score increased by 1.8 and 1.7 percentage units,
respectively. In addition, for the sexism dataset too, this technique is more resource efficient
than the top-k technique as only 1 Teacher-Student round and 94 unlabeled examples are

required to reach these scores.

Tables 4.9, 4.10 show the results of confidence sampling when an adaptive number K of
samples is added to the training set. Specifically, we experimented by increasing the value
of k in each iteration. In the first case, K increases by 20, while in the second case, k doubles
at the end of each round. In the third experiment, when Student micro F1-Score decreases
or stays stable at the end of a round based on the validation set, K is maintained the same

and when micro F1-Score increases, k doubles.

Micro F1 | F1 Off/ve | F1 Not Off/ve | Off/ve% | Round | Samples
Initial L only 0.831 0.644 0.889 26% 1 2000
k=k+20 0.853 0.654 0.906 37% 12 3320
k=k 0.856 0.658 0.908 36% 5 2300
k=k/k=Kk 0.857 0.658 0.909 39% 7 2660

Tab. 4.9: Self-training with confidence sampling with adaptive k (OGTD Dataset).

Micro F1 | F1 Sexist | F1 Not Sexist | Sexist% | Round | Samples
Initial L Only 0.779 0.577 0.850 24% 1 2000
k=k+20 0.797 0.569 0.867 30% 15 4100
k=k 0.794 0.582 0.863 26% 3 2060
k=k/k =k 0.789 0.576 0.859 26% 11 5820

Tab. 4.10: Self-training with confidence sampling with adaptive k (EDOSD Dataset).

This method did not result in a better evaluation score of our system than when adding a
fixed number of instances or instances with a confidence score above a certain threshold.
However, increasing the number of samples in each iteration seems to reach a very good
performance in a few rounds. For the first dataset, doubling k in each iteration reaches
good scores in only 4 rounds of Teacher-Student compared to 7 rounds when k was stable
(k = 200). Only 2 rounds and 60 unlabeled instances were required for the sexism dataset.
In conclusion, increasing k in each iteration is more resource efficient than keeping k

stable (top-k technique).
Tables 4.11, 4.12 illustrate our system evaluation when the Self-training with the select-all
technique is applied. In each iteration, the entire unlabeled dataset and the pseudo-labels

generated by the Teacher are added to the training set.

The select-all technique performed poorly in our system, resulting in a lower micro F1-

Score on the test set compared to training only with the initial labeled set. For the toxicity
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Micro F1-Score | F1-Score Off/ve | F1-Score Not Off/ve | Round

Initial L Only 0.831 0.644 0.889 1
Select-all 0.819 0.632 0.880 2

Tab. 4.11: Self-training with select-all technique (OGTD Dataset).

Micro F1-Score | F1-Score Sexist | F1-Score Not Sexist | Round

Initial L only 0.769 0.578 0.841 1
Select-all 0.765 0.581 0.837 2

Tab. 4.12: Self-training with select-all technique (EDOSD Dataset).

dataset, the best results were reported at the first round of Teacher-Student training, and
as the iterative process continued, micro F1-Score kept decreasing until round 10. For the
next 20 rounds, micro F1-Score practically stayed stable, as shown in Figure 4.4 (the left
sub-figure represents micro F1-Score per iteration curves for the toxicity dataset). The
diagram contains the curve of Student micro F1-Score per iteration when the select-all
technique is applied compared to Student micro F1-Score per iteration when the top-k
technique is used. The results suggest that our initial Teacher model is not robust enough
to label a significant portion of U correctly, and the Student is sensitive to wrong Teacher
predictions. We reached that conclusion given that the Student’s performance drops
when the entire silver-labeled U is added to the training set. On the contrary, Student’s

performance improves when L is augmented with confident silver-labeled instances.

For the sexism dataset, the best results of the Teacher-Student approach with the select-all
technique were also obtained in the first round, where the F1-Score of the Sexist category
gained 0.3 percentage points (Table 4.12). However, the other two metrics dropped. Figure
4.4 shows the micro F1-Score per iteration when the select-all technique is applied compared
to the top-k approach for comparison reasons (the right sub-figure represents micro F1-

Score per iteration curves for the sexism dataset).
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Fig. 4.4: Micro F1-Score per Teacher-Student iteration when applying the top-k and select-all
technique. Evaluation of the validation set. On the left: System evaluation for the Toxicity
Dataset. On the right: System evaluation for the Sexism Dataset.

4.5 Experimental Results

43




44

Tables 4.13, 4.14 summarize experimental results when Active Learning criteria are applied
for the sample selection in each round. In the first case, the Selector function samples the
k most representative instances of the unlabeled dataset. In the second case, it samples the
k most diverse examples compared to those already in the training data pool. We tested
these techniques with different values of k and set it equal to 100 as it had the highest
score at the validation set. We also present the results of the top-k technique (confidence
sampling) when setting K = 100 for comparison reasons. For the second dataset, the 100
most confident examples follow the class distribution that had the best results on our
system (28% Sexist, 72% Not Sexist).

Micro F1-Score | F1 Off/ve | F1 Not Off/ve | Off/ve% | Round | Samples
Initial L only 0.831 0.644 0.889 26% 1 2000
Top-k 0.858 0.663 0.910 38% 15 3400
Representativeness 0.825 0.632 0.885 27% 2 2100
Diversity 0.821 0.633 0.881 25% 2 2100

Tab. 4.13: Self-training with Active Learning Criteria (OGTD Dataset).

2000
3400
2200
3200

Micro F1-Score | F1 Sexist | F1 Not Sexist | Sexist% | Round | Samples
Initial L Only 0.779 0.577 0.850 24% 1
Top-k 0.800 0.581 0.869 28% 15
Representativeness 0.778 0.585 0.848 25% 3
Diversity 0.766 0.584 0.837 23% 13

Tab. 4.14: Self-training with Active Learning Criteria (EDOSD Dataset).

Active Learning queries the most informative instances to be labeled, usually by a human
annotator. This method turns the initial classifier into a more robust model with the
least training examples. However, applying the Teacher-Student approach with Active
Learning criteria for sampling instances from U does not seem to perform well. The
representativeness criterion had better results than diversity for both datasets. Still, micro
F1-Score decreased after applying Self-training based on diversity and representativeness
sampling compared to the few-shot learning. In addition, almost all evaluation metrics
are lower than Teacher-Student with confidence sampling. The bad performance of our
approach with Active Learning criteria as a sampling technique may be due to the noisy
predictions of the original Teacher model. The Student’s performance seems to be affected

by the initial wrong pseudo-labels created by the Teacher.

We present the diagram of the Student’s micro F1-Score per Teacher-Student iteration

when Active Learning criteria are applied compared to micro F1-Score per iteration when

we use confidence sampling to augment L iteratively for the toxicity dataset (Figure 4.5).

In addition, the diagram contains the curve of micro F1-Score per iteration when we
apply random sampling (we randomly select K silver-labeled examples from U in each

Teacher-Student round) for comparison reasons.
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Fig. 4.5: Micro F1-Score per iteration when applying Teacher-Student with top-k, Active Learning
criteria and random-k as sampling techniques. Evaluation on the validation set (OGTD
Dataset).

Tables 4.15, 4.16 demonstrate the system evaluation when confidence sampling is combined
with Active Learning criteria. As explained in Section 3.6, we applied a linear combination
of confidence and representativeness scores to sample instances from the unlabeled data
pool. We reproduced the same experiment using a linear combination of confidence score
and diversity from the instances already in the labeled data pool. We weighted the model’s
confidence score by A = 0.9 and the instance representativeness of U/diversity from L

score by 1 — A = 0.1 (after manually tuning the weight of each factor, Section 3.6).

Micro F1-Score | F1 Off/ve | F1 Not Off/ve | Off/ve% | Round | Samples
Initial L only 0.831 0.644 0.889 26% 1 2000
Confidence 0.858 0.663 0.910 38% 15 3400
Conf/ce+Repr/ness 0.855 0.659 0.908 38% 13 3200
Conf/ce+Div/ty 0.858 0.666 0.909 38% 14 3300
Tab. 4.15: Self-training with Confidence and Active Learning Criteria (OGTD Dataset).
Micro F1-Score | F1 Sexist | F1 Not Sexist | Sexist% | Round | Samples
Initial L only 0.779 0.577 0.850 24% 1 2000
Confidence 0.800 0.581 0.869 28% 15 3400
Conf/ce+Repr/ness 0.800 0.574 0.869 30% 20 3900
Conf/ce+Div/ty 0.790 0.575 0.861 27% 36 5500

Tab. 4.16: Self-training with Confidence and Active Learning Criteria (EDOSD Dataset).

The combination of confidence and Active Learning criteria did not improve our system’s
performance. For both datasets, the evaluation metrics had almost the same values with
confidence sampling. That result could be explained by having assigned higher importance

to the instance’s confidence score. The only difference we observe is that the same scores
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were obtained in fewer iterations when Active Learning criteria were applied (13 and
14 iterations compared to 15 when confidence is applied) for the toxicity detection task.
However, in the case of the sexism detection, more Teacher-Student rounds were required

compared to confidence sampling.

4.5.2 Comparison to Full Supervision

In this Section, we compare our experimental results after applying the best Teacher-
Student sampling techniques of Section 4.5.1 to fully supervised learning. In the case of full
supervision, we use the entire training set (not only the limited initial labeled set L) with

the ground-truth labels to train our initial classifier without applying Teacher-Student.

Micro F1-Score | F1 Off/ve | F1 Not Off/ve | Off/ve% | Round | Samples
Initial L only 0.831 0.644 0.889 26% 1 2000
Conf. t = 0.87 0.859 0.668 0.910 38% 2 2381
Full Supervision 0.856 0.712 0.904 27% 1 9258
Tab. 4.17: Comparison to Full Supervision (ODTD Dataset).
Micro F1-Score | F1 Sexist | F1 Not Sexist | Sexist% | Round | Samples
Initial L only 0.769 0.578 0.841 24% 1 2000
Conf. k = 100 (28% sexist) 0.800 0.581 0.869 28% 15 3400
Full Supervision 0.777 0.602 0.845 24% 1 11340

Tab. 4.18: Comparison to Full Supervision (EDOSD Dataset).

As shown in Tables 4.17, 4.18, our system benefits from the Teacher-Student approach
in the few-shot learning scenario. Regarding our best technique for the toxicity dataset
(confidence sampling over a threshold), we observe that all evaluation metrics significantly
increased compared to training with limited training data. Compared to full supervision,
where true labels are available for the entire dataset, Self-training performs worse as far as
the minority category (Offensive class) is concerned. Specifically, with full supervision, Of-
fensive Class F1-Score is 4.6 percentage units higher than the Teacher-Student framework.
However, the other two metrics obtain higher scores than full supervision. In addition,
only 2,000 labeled examples, 381 unlabeled examples and 1 round of the Teacher-Student
application were needed to reach this performance, opposite to full supervision where

9,258 labeled samples were required.

Teacher-Student has proved to be an effective approach compared to training with limited
data n for the task of Sexism detection too. Compared to full supervision, both micro
F1-Score and Not Offensive class F1-Score reach higher values (+2.3 and +2.4 percentage
units compared to full supervision scores). Again full supervision is more effective in the
detection of sexist cases. However, the most competent technique of Self-Training for this

dataset, adding top-k instances with fixed class ratio (28% Sexist and 72% Not Sexist) in
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each iteration, has satisfying results with only 2,000 labeled examples and 1,400 unlabeled

examples.

We conclude that, for imbalanced datasets, the minority class seems to benefit from a larger
amount of examples for which the ground-truth labels are available because it is harder
for the classifier to detect the category that occurs more rarely. However, Teacher-Student
framework with confidence sampling significantly improves the performance of a Logistic

Regression classifier when the initial labeled set is limited.
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4.5.3 Teacher-Student with BERT

This subsection presents the Self-Training results when the Teacher and Student are pre-
trained transformer models. Specifically, we employed the Teacher-Student approach to
training a BERT base model. We tested the Logistic Regression Teacher-Student frame-
work’s three most efficient sampling methods (based on the criteria of confidence and
confidence+representativeness). For the confidence criterion, we set kK = 200 when the
top-k technique is applied and t = 0.90,t = 0.93 to reproduce the confidence over a
threshold technique for the toxicity and sexism dataset, respectively. For the combination
of confidence and representativeness, we set K = 200 and the weights of the two factors
as A = 0.8 and 1 — A = 0.2, respectively. The performance on the validation set (micro
F1-Score) defined the number of iterations for each technique. Table 4.19 and 4.20 show

the results of our experiments.

Micro F1-Score | F1 Off/ve | F1 Not Off/ve | Off/ve% | Round | Samples
Initial L only 0.863 0.703 0.911 26% 1 2000
Top-k (k = 200) 0.877 0.758 0.917 53% 7 3200
Confidence (p = 0.90) 0.867 0.723 0.913 51% 3 3015
Conf/ce + Repr/ness 0.875 0.729 0.919 33% 2 2200
Tab. 4.19: BERT - Self-training with different sampling techniques (OGTD Dataset).
Micro F1-Score | F1 Sexist | F1 Not Sexist | Sexist% | Round | Samples
Initial L only 0.806 0.581 0.874 24% 1 2000
Top-k (k = 200) 0.814 0.619 0.877 42% 4 2600
Confidence (p > 0.93) 0.812 0.622 0.875 47% 3 2889
Conf/ce + Repr/ness 0.817 0.625 0.879 38% 3 2400

Tab. 4.20: BERT - Self-training with different sampling techniques (EDOSD Dataset).

First, we observe that the Self-training boosted the performance of our system when
compared to the initial few-shot training scenario for both datasets. All the sampling
techniques that performed well on the Logistic Regression Teacher-Student framework also

improved our system evaluation scores when Teacher-Student with BERT was applied.

Specifically for the toxicity dataset, when Teacher-Student with the top-k technique was
applied, micro F1-score gained 1.4 percentage units. The system performed significantly
better in detecting the minority category (+5.8 percentage units), while the results for
the majority category were similar to the few-shot learning scenario (+0.06 percentage
units). In addition, Self-training based on confidence over a threshold and confidence +
representativeness performed pretty well. Although the F1-Score of the Offensive category
had a smaller increase (+2.0 units and +2.6 units, respectively), it reached promising results
in only 2 and 1 Teacher-Student iteration, respectively. Based on the evaluation of the
validation set, these criteria reached higher micro F1-Score during the first 3 rounds than

the top-k technique, as shown in figure 4.6. In a low-resource scenario, these criteria could
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be preferred as training iteratively a LM of millions of parameters requires significant

computing resources.

Results after applying Teacher-Student on top of few-shot learning were similar for the
sexism dataset. Confidence sampling with both techniques increased the micro F1-score
and F1-Score of the sexist class. However, the best sampling technique for this dataset was
the combination of confidence and representativeness as sampling factors. It obtained the
highest scores (1.1 and 4.4 percentage units rise of the micro F1-Score and the F1-Score of
the Sexist class, respectively). In addition, it was the most resource-efficient technique as

it required only 2 rounds of Teacher-Student application and 400 unlabeled examples.

In both scenarios, the Teacher-Student application had the most significant impact on
minority class detection, unlike our experiments with Logistic Regression models. The
Teacher-Student approach was more beneficial for detecting cases of the majority class
when applied on top of a Logistic Regression classifier. In addition, similar to the Logistic
Regression framework, confidence over a threshold was more resource efficient than the
top-k technique, but in the case of BERT models, the top-k approach reached higher scores

for most evaluation metrics for both datasets.
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Fig. 4.6: Micro F1-Score per iteration when applying Teacher-Student with different sampling
techniques on BERT. Evaluation on the validation dataset.

Finally, we compare the best sampling techniques when Teacher-Student with BERT models
is applied to fully supervised learning (Tables 4.21, 4.22). In the case of full supervision, we
train the BERT base classifier with the entire training dataset and the ground truth labels

for comparison reasons.

Contrary to the Logistic Regression framework, Teacher-Student did not reach the results

of full supervision when BERT models were used. Training BERT with the entire labeled
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F1-Score | F1 Off/ve | F1 Not Off/ve | Off/ve% | Round | Samples
Initial L only 0.863 0.703 0.911 26% 1 2000
Top-k (k = 200) 0.877 0.758 0.917 53% 7 3200
Full Supervision | 0.894 0.779 0.930 27% 1 9258

Tab. 4.21: BERT - Few-shot learning compared to Self-training and full supervision (OGTD

Dataset).

F1-Score | F1 Sexist | F1 Not Sexist | Sexist% | Round | Samples
Initial L only 0.806 0.581 0.874 24% 1 2000
Conf/ce + Repr/ness 0.817 0.625 0.879 38% 3 2400
Full Supervision 0.845 0.658 0.900 24% 1 11340

Tab. 4.22: BERT - Few-shot learning compared to Self-training and full supervision (EDOSD

Dataset).

dataset (9,258 labeled instances for the toxicity detection and 11,340 labeled instances for

the sexism detection task) obtained the highest scores in all the evaluation metrics (Tables

4.21, 4.22). However, applying Teacher-Student with the best sampling techniques had

satisfying results, with only 2,000 labeled examples available for both datasets.
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Conclusions And Future Work

In this thesis, we examined the benefits of the Teacher-Student framework in a few-resource
scenario. We applied different Self-training techniques to improve the performance of two
initial classifiers trained with limited labeled examples for Toxicity and Sexism detection
tasks. We studied the effects of Teacher-Student with Logistic Regression and a BERT
model of higher capacity to explore whether these methods can improve the performance
of even a state-of-the-art NLP model.

Teacher-Student with confidence sampling significantly improved the classifier’s per-
formance compared to training with the initial labeled set only. The confidence over a
threshold technique was more efficient than the top-k technique. It reached similar or
better scores concerning our evaluation metrics with fewer resources required compared

to the top-k sampling technique.

In imbalanced datasets, Self-training on a Logistic Regression classifier may improve the
majority class evaluation while the minority class evaluation deteriorates. In this case,
tuning the class ratio of the most confident silver-labeled examples that are added to
the labeled set in each round could improve the minority class detection. Alternatively,
we could configure the Teacher-Student framework based on macro-averaged scores.
On the contrary, for the BERT model, the most significant improvement after applying

Self-training concerned the evaluation of the minority category for both datasets.

Select-all technique and Active Learning criteria (representativeness and diversity) did
not perform as well as confidence sampling. The evaluation metrics decreased even
when compared to few-shot learning results. When the instance’s confidence score is not
considered when sampling the silver-labeled examples, the Student model is harmed by
the Teacher’s wrong predictions. Augmenting the training set without considering the

instance confidence score can add more noise to the Student training.

When confidence is combined with Active Learning criteria as a sampling technique,
the greatest importance should be given to the instance’s confidence score rather than
its informativeness score (representativeness/diversity). For the BERT Teacher-Student
framework, sampling based on the instance’s confidence and representativeness score was
more resource efficient than the top-k technique or even obtained higher scores (in the
case of Sexism detection). The method’s efficiency is important when large pre-trained

transformers are used, as training them iteratively could be challenging. On the contrary,
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when a Logistic Regression classifier was used, the combination of confidence and Active

Learning criteria did not reach the performance of confidence sampling.

Finally, Teacher-Student approach showed promising results compared to fully supervised
learning. In the case of Logistic Regression, Teacher-Student obtained even higher scores
than full supervision in some of the evaluation metrics used. For the BERT classifier, fully
supervised learning outperformed all Teacher-Student techniques. However, in the case of
Self-training, we only used the 22% and 18% of the labeled examples used in supervised

learning for the tasks of Toxicity and Sexism detection, respectively.

In future work, we would like to apply a linear combination of all factors examined in this
thesis when sampling the silver-labeled instances. Specifically, we would like to compute
each instance’s confidence + representativeness + diversity score to examine if combining

these factors could benefit our system when using this score as a sampling criterion.

In addition, we would like to test the abilities of the Teacher-Student when the initial
model is trained under full supervision (the initial task-specific labeled examples are not
limited). We want to examine whether Self-training could improve the performance of an
initial classifier that is trained with sufficient samples andalready performs significantly

well.

Finally, in cases with an abundant set of unlabeled examples, a method often applied in the
corresponding bibliography is further pretraining LMs with task-specific unannotated data.
It would be interesting to examine Teacher-Student abilities on top of a task-specific pre-
trained transformer model to determine if these two techniques could be complementary

and produce better results.
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