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Abstract

In this thesis, we experiment with medical image tagging and text generation tasks, with

the ultimate goal of helping physicians who need to generate reports from medical images.

First, we address the task of medical image tagging, which aims to identify medical terms

(tags) describing an image. Towards this end, we develop models employing deep learning

and retrieval-based methods and apply them to two datasets that consist of X-ray exams.

Second, we implement image captioning models in order to produce text that describes

the findings present in an image and the final diagnosis. We also examine current datasets

and methods and present results of our models evaluated with widely used measures.
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1 Introduction

Medical professionals examine a great amount of medical images daily, e.g., PET/CT scans

or radiology images, to conclude to a diagnosis and write their findings as medical reports.

This process is time-consuming and in many cases there are not enough experienced

clinicians to deal with its difficulties. In order to help the diagnostic process, Natural

Language Processing (NLP) and Computer Vision techniques, combined with recent

advances in deep learning, can greatly assist the interpretation of biomedical images and

generation of reports. Automatic methods can reduce medical errors (e.g., suggesting

findings to inexperienced physicians) and benefit medical departments by reducing the

cost per exam (Bates et al., 2001; Lee et al., 2017).

There are many tasks applied to medical images that can assist clinicians during medical

examinations, like classification (e.g, normal or abnormal), lesion detection, segmentation

of affected organs etc. (Litjens et al., 2017). Two tasks that can assist the diagnostic

process of describing the findings of an image are medical image tagging and medical

image captioning. In medical image tagging the task is to assign medical terms (tags) to

an image (Figure 2.1), assisting physicians to focus on interesting image regions (Shin

et al., 2016). In medical image captioning, the task is to generate from each medical image

a text, which can be a single sentence or paragraphs like the full-text reports written by

radiologists (Figure 3.3) describing the findings (Jing et al., 2018). Despite the importance

of these two tasks, related resources are not always easily accessible and the methods

applied are currently limited.

1.1 Contribution

Recently, there is a growing interest in the automatic analysis of medical images and the

generation of diagnostic medical reports from the images (Jing et al., 2018; Liu et al., 2019).

However, because of the challenging nature of the biomedical domain, there are many

difficulties that need to be addressed, especially regarding the datasets (Oakden-Rayner,

2019) and the evaluation measures of medical image captioning (Kilickaya et al., 2016). We

study the datasets available for medical image tagging and captioning and their challenges.



2 1.2 Outline

Also, we implement and evaluate models for both tasks and examine their results to draw

useful conclusions.

1.2 Outline

The rest of the thesis is organized as follows:

• Chapter 2 describes the medical image tagging task, the datasets, the models we

applied and their results.

• In Chapter 3, we examine the task of medical image captioning. We present the

models we implemented and analyse their results.

• In Chapter 4, we examine the task of jointly tagging medical images and generating

captions from the images and their tags. Again, we discuss the models we

implemented and their performance.

• Chapter 5 concludes and proposes directions for future work.
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2 Medical image diagnostic tagging

2.1 Task Description

The first step towards the interpretation of medical images is to identify the visualized

abnormalities. This is a tagging task, where given images of medical examinations such as

X-rays, PET/CT scans etc., we identify tags that describe the findings and assign them

to the corresponding image (Figure 2.1). These tags represent keywords from a large

and continuously growing list that accurately describes the images. In effect, this is a

multi-label classification task, where the labels (classes) are the available terms. In this

chapter, we address the medical image tagging problem with multi-label classification

methods and retrieval methods in order to decide the presence of each diagnostic tag in

each image. This was the aim of the ImageCLEFmed 2019 Caption task (Pelka et al.,

2019), in which we participated with four systems, achieving the best results and being

ranked 1st, 2nd, 3rd, and 5th, among 60 systems submitted from 10 teams (Kougia et al.,

2019b). We describe these systems below and present their results on one more dataset,

which we also use later for text generation.

2.2 Datasets

There are many datasets covering a wide range of medical examination images (X-rays,

MRIs, PET/CT scans etc.) and body parts (chest, brain, abdomen etc.), which can

be used for several tasks like classification (e.g., classify an examination into normal or

abnormal), object or lesion detection and segmentation (Litjens et al., 2017). Here, we will

briefly describe the most popular and recent datasets annotated either with a number of

classes that can be used for standard classification tasks or with a large number of terms

representing keywords that describe the images, as shown in Table 2.1. Also, two of the 8

datasets shown in Table 2.1 were released along with a competition (MURA by Rajpurkar

et al. (2017a) and CheXpert by Irvin et al. (2019)) and the three ImageCLEF datasets

were created for the ImageCLEFmed Caption tasks (Eickhoff et al., 2017; de Herrera

et al., 2018; Ionescu et al., 2019). These competitions encourage the implementation of

new systems in order to develop an automatic method and assist the diagnostic process
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Figure 2.1: Images from the ImageCLEFmed 2019 dataset (left) and the IU X-ray
dataset (right) and their assigned tags.

followed by clinicians.

ChestXray14

X-rays is the most commonly performed examination and often radiologists are called to

examine a large number of them daily (Wang et al., 2017; Irvin et al., 2019; Jing et al.,

2018). Chest X-rays in particular, are important for the detection of pneumonia and

other thoracic diseases. ChestX-ray14 (Wang et al., 2017) was the first publicly available

dataset of the size of hundreds of thousands and is until today a popular dataset used

in many publications (Rajpurkar et al., 2017b, 2018; Wang et al., 2018).1 It consists of

112,120 chest X-rays, each one classified into one or more of 14 disease classes. These

labels were extracted from the diagnostic reports using term extraction tools (merged

1ChestX-ray14 was initially called ChestX-ray8 and contained 8 disease classes.
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results from the DNorm (Leaman et al., 2015) and Metamap (Aronson and Lang, 2010)

tools).

However, ChestX-ray14 suffers from a main problem that is encountered when using

automatic ways to extract tags or classes (silver annotations) in order to create an

annotated medical dataset. Term extraction methods are not 100% accurate and can

result to false or ambiguous labels, so it is necessary to have a radiologist check the

tags (ground truth) of the dataset (Oakden-Rayner, 2019), either by visual review of

the images or by reading the original reports. Another good practice that helps to face

this problem is to provide a test set that is manually labeled by clinical experts (gold

annotations). This way, models trained on the inaccurate data with the silver annotations

will show their weaknesses when tested on the test set with the gold annotations. The

authors of ChestX-ray14 only evaluated their extraction method on a different set of

images, which were manually tagged, collected from Open Access Biomedical Image Search

Engine (OpenI).2 So, they did not actually evaluated the silver annotations of their own

dataset, which as later reviews show (Oakden-Rayner, 2019; Rajpurkar et al., 2017b) were

inaccurate. Also, they did not provide their own manually labeled test set.

MURA, CheXpert and MIMIC-CXR

The following datasets were manually evaluated by radiologists in order to assess the

accuracy of their labels. All the datasets, even MURA, which is manually labeled have a

test set with additional labels from certified radiologists.3 The MURA dataset (Rajpurkar

et al., 2017a) was released by a team of the Stanford Machine Learning Group and

consists of 14,863 studies from 7 different locations: elbow, finger, forearm, hand, humerus,

shoulder, and wrist. Each study contains one or more radiographic images and is classified

by a radiologist as normal or abnormal. CheXpert (Irvin et al., 2019) and MIMIC-CXR

(Johnson et al., 2019) are the most recently released datasets with a large amount of

chest X-rays. Both were labeled by applying the custom rule-based labeler created by

the authors of CheXpert (Irvin et al., 2019), called CheXpert labeler, to the diagnostic

2https://openi.nlm.nih.gov/
3However, the manually labeled test sets are not publicly available. In some cases, results on the

hidden test set can be obtained after submitting executable code to the dataset competition.
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reports with 14 classes (13 abnormalities and a "No Finding" tag).4 For each label the

decision can be blank for unmentioned, 0 for negative, -1 for uncertain, and 1 for positive.

Dataset Images Cases Classes Tags
ChestX-ray14 112,120 X-rays - 14 -

MURA 40,561 X-rays 14,863 Binary -
IU X-Ray 7,470 X-rays 3,955 - MTI & Manual

ICLEF2017 184,614 Medical Images - - 20,463 UMLS CUIs
ICLEF2018 232,305 Medical Images - - 111,155 UMLS CUIs
ICLEF2019 80,786 Radiology Images - - 5,528 UMLS CUIs

MIMIC-CXR 371,920 X-rays 227,943 14 -5

CheXpert 224,316 X-rays 65,240 14 -

Table 2.1: Datasets containing medical images (X-rays, pathology images etc.) and
classes or tags. A case represents a medical exam that contains one or more images and
one overall diagnosis.

ImageCLEF Concept Detection datasets

The ImageCLEF 2017, 2018 and 2019 datasets were the datasets of the corresponding

ImageCLEF concept detection tasks (Eickhoff et al., 2017; de Herrera et al., 2018; Pelka

et al., 2019). In ImageCLEFmed Caption 2017 (Eickhoff et al., 2017) and 2018 (de Herrera

et al., 2018), the datasets were noisy. They included generic and compound images,

covering a wide diversity of medical images; there was also a large total number of

concepts (111,155) and some of them were too generic and did not appropriately describe

the images (Zhang et al., 2018). They also included captions, which we will describe later

in Chapter 3.

The ImageCLEFmed Caption 2019 dataset is a subset of the Radiology Objects in COntext

(ROCO) dataset (Pelka et al., 2018). It consists of medical images extracted from open

access biomedical journal articles of PubMed Central,6 with compound and non-radiology

images filtered out using a Convolutional Neural Network (CNN) model. The CNN model

was trained using the noisy ImageCLEF datasets of 2017 and 2018. Also, the total number

of Unified Medical Language System (UMLS) concepts was reduced to 5,528, with 6

concepts assigned to each training image on average. Each image was extracted along

with its caption. The caption was processed using QuickUMLS (Soldaini and Goharian,

4https://github.com/stanfordmlgroup/chexpert-labeler
5There are tags present in the reports, but we are not aware of the statistics.
6https://www.ncbi.nlm.nih.gov/pmc/
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2016) to produce the gold UMLS concept unique identifiers (CUIs). An image can be

associated with multiple CUIs and each CUI is accompanied by its corresponding UMLS

term (Figure 2.1).

IU X-ray

The first dataset with publicly available reports was IU X-ray (Demner-Fushman et al.,

2015) with access provided through the OpenI Search Engine.7 The dataset contains 3,955

radiology reports, which correspond to 7,470 frontal and lateral chest X-rays. Each report

consists of four sections (indication, comparison, findings and impression, which we will

describe in Chapter 3) and two types of tags (Figure 2.1). First, there are manual tags that

were assigned by two trained coders and comprise Medical Subject Heading (MeSH)8 and

RadLex9 terms. Second, the Medical Text Indexer (MTI) was used to extract automated

tags from the ‘findings’ and ‘impression’ sections of the reports, which represent only

MeSH terms.10 The MTI labeler does not handle negation, so the authors used MetaMap

(Aronson and Lang, 2010) to detect tags that showed negation and discarded them.

Discussion

The major difference of the medical image tagging datasets from the general image datasets,

such as ImageNet (Deng et al., 2009) and MSCOCO (Lin et al., 2014), is the presence of

cases, which can comprise more than one image, but only one medical report (Table 2.1).

Since the images of a case do not have an independent output, the actual size of these

datasets is the number of different cases which is much smaller than the number of the

existing images. Using each image of the same case as a different instance (image-based

approach) would be wrong because the diagnosis was conducted by the radiologist by

looking at all the case’s images (Shin et al., 2016; Jing et al., 2018). Hence, we cannot

assume findings of the report are present in every image. To address this challenge a

simplistic approach is to first obtain the probability distributions over the tags from the

classifier for each image of the case separately and then decide the labels for the case

7https://openi.nlm.nih.gov/
8https://goo.gl/iDvwj2
9http://www.radlex.org/

10https://ii.nlm.nih.gov/MTI/
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by averaging the obtained probabilities (Rajpurkar et al., 2017a). This method has the

disadvantage that a tag detected in only one image may not be chosen. In a more recent

approach, Irvin et al. (2019) propose to choose the tags with the largest probabilities per

image. Another solution would be to extract one embedding for every image of the case

and then add or average them to obtain one embedding that will represent the whole case

and will be fed to the classifier. This approach was used by Li et al. (2018) for medical

image captioning, which we will examine in the next chapter. We chose to train our

models using the image-based approach for the training and validation sets, because of its

simplicity, despite its limitations. For the tuning of thresholds during inference and the

final prediction of the tags on the test set we use an image-based as well as a case-based

approach and compare both. We describe our approach in more detail in Section 2.5.

2.3 Related Work

Deep learning methods are widely used for classification tasks in the medical domain.

Usually CNNs pre-trained on ImageNet (Deng et al., 2009) are used as image encoders

followed by a Feed Forward Neural Network (FFNN) that serves as a classifier (Esteva

et al., 2017; Rajpurkar et al., 2017b, 2018). However, ImageNet contains images that

are photographs of various scenes and are very different from medical images, so the

CNN models are fine-tuned to achieve better results. Esteva et al. (2017) fine-tuned the

Inception V3 CNN model to classify skin lesions into malignant or benign, achieving

results close to the ones predicted by dermatologists. This showed that CNNs pre-trained

on ImageNet can be used in medical imaging tasks when fine-tuned and perform well,

despite the differences between general and medical images.

CheXNet (Rajpurkar et al., 2017b) also follows a deep learning approach to classify

X-rays of the ChestX-ray 14 dataset (Wang et al., 2017) to 14 labels of thoracic diseases.

Rajpurkar et al. (2017b) uses DenseNet-121 (Huang et al., 2017) to encode images, adding

a FFNN to assign one or more of the 14 classes to each image. The authors evaluated the

predicted results with the F1 metric and reported state of the art results. In a subsequent

work, Rajpurkar et al. (2018) presented CheXNeXt which consisted of an ensemble of

10 networks with the same architecture as CheXNet. First, an ensemble from multiple

CheXNet networks is used to relabel the ChestX-ray dataset in to order to correct its false
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labels. Then, the networks are trained again, now on the relabeled data and an ensemble

of the 10 best is used for the final predictions.

Retrieval methods have also been used for the medical image tagging task. The ImageCLEF

Concept Detection tasks aim to detect abnormalities in medical images. The systems

that participated in the competition in 2017, 2018 and 2019 (de Herrera et al., 2018;

Pelka et al., 2019) employed deep learning as well as retrieval methods. In 2017, the

top 10 systems belonged to the same team (Valavanis and Stathopoulos, 2017) and used

retrieval methods that outperformed all the other deep learning systems. Valavanis and

Stathopoulos (2017) experimented with several ways to represent the images (localized

compact features, bag of visual words (BoVW) and bag of colors (BoC)) and used k-NN

to retrieve the most similar training images for each test image. Then, they gave a score

to each of the concepts of the k images based on their frequency in the k images or by

using the Random Walk with Restart (RWR) algorithm (Wang et al., 2006). Finally,

they assigned the concepts with highest scores to the test image. In 2018, the first

ranked team (Pinho and Costa, 2018) used an adversarial auto-encoder for unsupervised

feature learning, while the second ranked team (Zhang et al., 2018) used a multi-label

classification method with the Inception V3 CNN as the encoder. Both teams also used

retrieval methods, but they achieved lower results with the retrieval methods. In 2019, we

submitted four systems to the Concept Detection subtask (Kougia et al., 2019b). The first

ranked system we submitted followed a deep learning approach. We were the only team

that used a retrieval method, which outperformed all other teams and was only slightly

worse than our winning deep learning system.

2.4 Models implemented in this thesis

2.4.1 DenseNet-121 Encoder + 1-NN Image Retrieval

This system is based on a retrieval approach, which we have also used in our previous

work on medical image captioning (Kougia et al., 2019a). Given a test image, the 1-NN

returns the caption of the most similar training image, using a CNN encoder to map each

image to a dense vector. Here, it returns the tags of the most similar training image.
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To encode the images we use the DenseNet-121 (Huang et al., 2017), a CNN with 121

layers, where all layers are directly connected to each other improving information flow

and avoiding vanishing gradients. We start with DenseNet-121 pre-trained on ImageNet

(Deng et al., 2009) and fine-tune it on our medical dataset to achieve better results.11 The

fine-tuning process was performed as when training DenseNet-121 in our CheXNet-based

system described in Section 2.4.3, including data augmentation. The images are rescaled

to 224×224 and normalized with the mean and standard deviation of ImageNet to match

the requirements of DenseNet-121 and how it was pre-trained on ImageNet. We extract

the image embeddings from the last average pooling layer, which is the last layer before

the classifier.

First, we obtain the image embeddings of all training images. Then, given a test image we

compare its image embedding with the ones of the training images, using cosine similarity.

We retrieve the most similar training image and assign its tags to the test image.

2.4.2 DenseNet-121 Encoder + k-NN Image Retrieval

We now extend the previous 1-NN baseline to retrieve the k-most similar training images

and use their concepts, as follows. The encoder is the same DenseNet-121 CNN that

was described in Section 2.4.1. The same encoding process is used to obtain the image

embeddings, but with a different tag assignment method. Given a test image (Fig. 2.2),

we again use the fine-tuned DenseNet-121 to obtain the image’s embedding. We then

retrieve the k training images with the highest cosine similarity (computed on image

embeddings) to the test image, and return the r concepts that are most frequent among

the concepts of the k images. We set r to the average number of concepts per image of

the particular k retrieved images. In particular cases where the dataset contains images

with no abnormalities, if more than half of the retrieved images are normal, then the test

image is classified as normal as well. We tune the value of k in the range from 1 to 200

using the validation set.

11We used the implementation of https://keras.io/applications/#densenet.
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Figure 2.2: Illustration of how our DenseNet-121 encoder and k-NN image retrieval
system works at test time.

2.4.3 CheXNet-based, DenseNet-121 Encoder + FFNN

This system, which is based on CheXNet (Rajpurkar et al., 2017b), achieved the best

results in ImageCLEFmed Caption 2019. We re-implemented CheXNet in Keras12 using

the DenseNet-121 CNN encoder and adding an FFNN to assign one or more of the tags

of a particular dataset to each image.

All images are again rescaled to 224×224 and normalized using the mean and standard

deviation values of ImageNet. Also, during training, the images are augmented by applying

random horizontal flip. After fine-tuning DenseNet-121 on our dataset, image embeddings

are again extracted from the last average pooling layer. In this system, however, the

image embeddings are then passed through a dense layer with one output for each tag and

sigmoid activations to produce a probability per tag. We trained the model by minimizing

the binary cross entropy loss. We used Adam (Kingma and Ba, 2014) with its default

hyper-parameters, early stopping on the validation set, and patience of 3 epochs. We also

decayed the learning rate by a factor of 10 when the validation loss stopped improving.

At test time, we predict the tags for each test image using their probabilities, as estimated

by the trained model. For each tag, we assign it to the test image if the corresponding

predicted probability exceeds a threshold t. We use the same t value for all the tags,

which resulted from tuning on the validation set.

12https://keras.io/
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2.4.4 Based on Jing et al., VGG-19 Encoder + FFNN

This system is based on the work of Jing et al. (2018). They presented an encoder-decoder

model to generate tags and medical reports from medical images. We fully describe the

model of Jing et al. (2018) in Chapter 3. It uses a VGG-19 (Simonyan and Zisserman,

2014) image encoder, a multi-label classifier to produce tags from the images, and a

hierarchical Long Short-Term Memory (LSTM) network that generates texts by attending

on both image and tag embeddings. Here, we describe a simplified version of the first

part of Jing et al.’s model, the part that performs multi-label image classification that we

implemented in Keras.

Again, we rescale the images to 224×224 and normalize them using the mean and standard

deviation of ImageNet. We feed the resulting images to the VGG-19 CNN, which has 19

layers and uses small kernels of size 3× 3. We used VGG-19 pre-trained on ImageNet.13

The output of the last fully connected layer of VGG-19 is then given as input to a dense

layer with a softmax activation to obtain a probability distribution over the tags. The

model is trained using categorical cross entropy, which is calculated as:

E = −
|C|∑
i=1

ytrue,i log2(ypred,i) (2.1)

where C is the number of tags, ytrue is the ground truth binary vector of a training image,

and ypred is the predicted softmax probability distribution over the tags C for the training

image. Categorical cross entropy sums loss terms only for the gold concepts of the image,

which have a value of 1 in ytrue. When using softmax and categorical cross-entropy, usually

ytrue is a one-hot vector and the classes are mutually exclusive (single-label classification).

To use softmax with categorical cross entropy for multi-label classification, where ytrue is

binary but not necessarily one-hot, the loss is divided by the number of gold labels (true

concepts) (Gong et al., 2014; Mahajan et al., 2018). Jing et al. (2018) achieve this by

dividing the ground truth binary vector ytrue by its L1 norm, which equals the number of

13https://keras.io/applications/#vgg19
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gold labels. Hence, the categorical cross-entropy loss is computed as follows:

E = −
|C|∑
i=1

ytrue,i
‖ ytrue ‖1

log2(ypred,i) = −
1

M

M∑
j=1

log2(ypred,j) (2.2)

where M is the number of gold labels (true tags) of the training image, which is different

per training image. In this model, the loss of Eq. 2.2 achieved better results on the

development set, compared to binary cross entropy with a sigmoid activation per tag.

We used the Adam optimizer with initial learning rate 1e-5 and early stopping on the

validation set with patience 3 epochs. We compute the average number of gold tags per

training image and assign this number of tags to each given test image, selecting the ones

with the highest probability scores.

2.5 Experimental Results

For the classification task we experimented with the models described above (DenseNet +

1-NN, DenseNet + k-NN, DenseNet + FFNN and VGG-19 + FFNN) on the IU X-ray

and ImageCLEFmed 2019 datasets. The evaluation of the systems was conducted by

computing the F1 scores on each test image (in effect comparing the binary ground truth

vector ytrue to the binary predicted tags vector ypred) and then averaging over all test

images (Figure 2.3). In cases where a test image has no gold tags and no predicted tags

assigned, we set the F1 score to 1. That is, because if an image has no tags we assume

that there is no abnormality present, so the correct choice for a model would be to not

assign any abnormality tag. If the model succeeds then the maximum F1 score is assigned.

Instead, if the model falsely assigns a tag then the F1 score is set to zero.

Figure 2.3: Example showing how the F1 evaluation works.
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ImageCLEFmed Caption 2019

The provided training set of the ImageCLEFmed Caption 2019 contains 56,629 images,

the validation set 14,157 and the remaining 10,000 images were used for testing. The gold

concepts of the test set were not available so we randomly selected 20% of the training

images (11,326 images along with their gold concepts) to serve as a development set, on

which we evaluate our models during development. The models we used to produce the

submitted results were trained on the entire training set. The validation set was used for

hyper-parameter tuning and early stopping.

In the ImageCLEF2019 dataset all images are assigned at least one tag. In this dataset

the concept of cases is not present as in other medical datasets (Table 2.1), since the

images are randomly extracted from biomedical articles. Also, there is a large number

of tags, many of which are non-informative e.g., ‘improved’, ‘start’, ‘travel’, so there are

no tags that clearly state abnormalities or the absence of them as in IU X-ray. Table 2.2

reports the evaluation results of each system on the development set we created, since the

ground truths of the test set are not available. The results on the hidden test set of the

competition are also included.

IU X-ray

Since IU X-ray contains full diagnostic reports along with tags, we use it for our experiments

in classification and text generation. During pre-processing we found that 104 reports

contained no image and 25 reports were missing both the ‘findings’ and ‘impression’

sections, thus they could not be used for text generation. We discarded these reports,

which led us to 3,826 reports with 7,430 images. We also observed that 1,726 reports

did not contain MTI tags. From these, 1,354 were manually tagged as normal, which

means that the MTI system failed to assign the abnormalities present in the remaining

372 reports. We performed experiments both with MTI and manual tags to compare the

results and the quality of the two types of tags. There are 571 unique MTI tags and 1,679

manual tags (including the ‘normal’ tag). We used 80% of the dataset for training, 10%

for validation and 10% for testing, splitting with respect to cases.

To deal with the fact that IU X-ray consists of cases that contain multiple images and
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only one report (see Section 2.2), we follow two approaches: an image-based, where each

image of a case is an independent instance with the correct labels of the case replicated

to all the images of the case and a case-based, where each instance is an entire case (all of

its images) with the correct labels of the case. During training we follow the image-based

approach, while for the evaluation we use both. In the image-based evaluation each image

of a case is a separate test instance that is evaluated independently. The ytrue binary

vector of each image is the one of the case it belongs to and is compared to the ypred binary

vector predicted from a model in order to compute the F1 score (Figure 2.3). In the

case-based evaluation, first the model predicts the tags for each image separately. Then,

we take the union of the abnormality tags the model assigned and use them to produce

the ypred that is compared with the ytrue of the case. In systems where we perform tuning

(DenseNet + FFNN and DenseNet + k-NN) we also used case-based evaluation during

tuning.

We perform classification on both types of tags present: MTI and manual (Table 2.2). Also,

for the cases of the IU X-ray that are normal and have no assigned tags, the corresponding

images have a ytrue binary vector that contains only zeros (Figure 2.3).

Results

Table 2.2 shows the F1 scores achieved by our models on both datasets. In the

ImageCLEFmed Caption 2019 dataset the DenseNet + FFNN (CheXNet-based) system

outperforms all the other models on both the development and the test set.14 However,

the simple image retrieval system (DenseNet + k-NN) achieves very competitive results.15

In IU X-ray, DenseNet + FFNN system once again outperforms all the other systems

on both types of tags and both types of evaluations. The main difference from the

ImageCLEF 2019 results is that all the systems have now much higher results, but the

DenseNet + k-NN system is not very close to the best CheXNet-based one as before. The

much higher overall results are probably due to the reduced number of tags; 571 MTI

tags and 1,679 manual tags of IU X-ray against the 5,528 tags of ImageCLEF2019. Also,

the VGG-19 + FFNN system has very low results on this dataset due to the fact that

14The tuned value of the probability threshold for the DenseNet + FFNN system was 0.16.
15After tuning the resulted value of k was 199.
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System
ICLEF2019 IU X-ray

Dev Test Image-based Case-based
MTI Manual MTI Manual

S1 0.138 - 0.244 0.190 0.166 0.140
S2 0.257 0.274 0.421 0.319 0.387 0.272
S3 0.260 0.282 0.487 0.370 0.491 0.365
S4 0.248 0.264 0.091 0.055 0.101 0.056

Table 2.2: Results of our systems DenseNet + 1-NN (S1), DenseNet + k-NN (S2),
DenseNet + FFNN (S3) and VGG-19 + FFNN (S4) on the ImageCLEFmed Caption
2019 and IU X-ray datasets. We trained the S3 and S4 models three times and report the
average F1 score of the results of these three models. We do not have the results of the
DenseNet + 1-NN baseline on the test set, since it was not submitted in the competition.
For IU X-ray we perform image-based and case-based evaluation on both types of tags
(MTI and manually extracted tags).

there are normal images with a ground truth vector of all zeros. This system is trained

using categorical cross entropy loss, so when the ytrue binary vector contains only zeros

then the loss will be zero (Section 2.4.4), causing the system not to be properly trained.

Hence, systems that use this method for multi-label classification do not work correctly

for datasets that contain images with no gold assigned tags.

Generally the classification using the manual tags has lower results than when using the

MTI tags. This may be due to the fact that the manual tags are much more specific.

Each manual tag consists of many findings, where the first one is the main abnormality

and the rest describe this abnormality (e.g., its position, severity etc.). This way, a

system may correctly identify the abnormality but assign a tag that fails to describe its

position correctly. This will have a zero F1 score, even though the abnormality was correct.

However, the MTI tags cannot be trusted because they were produced in an automatic

way, which was not evaluated by humans.

For the image-based and case-based evaluation we observe that the latter leads to lower

results for the image retrieval systems (DenseNet + 1-NN and DenseNet + k-NN), while

the deep learning systems are not significantly affected.
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3 Medical image diagnostic text generation

3.1 Task Description

The next step, after having identified abnormalities in medical images, is to produce a

medical report describing these abnormalities and concluding to a diagnosis. This process

is similar to the image captioning task that has been applied to general images (Vinyals

et al., 2015, 2016; Xu et al., 2015; Krause et al., 2017). Image captioning is the task of

generating captions that describe the objects of an image and the relationships between

them, as shown in Figure 3.1. This task has attracted a lot of interest and many methods

have been suggested and successfully applied, achieving state of the art results (Anderson

et al., 2018; Liu et al., 2018).

Figure 3.1: Example of general
image captioning produced by the
Show and Tell model (Vinyals et al.,
2016).

Figure 3.2: Example of medical image
captioning produced by the model of Jing
et al. (2018).

Recently, image captioning technology has been applied to medical images in order to

produce a report: a diagnosis that describes the condition of the patient (Figure 3.2). The

publications addressing this task, which we define as medical image captioning (Kougia

et al., 2019a) are currently limited, but there is a growing interest since it can be helpful

to medical experts.
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3.2 Datasets

While there are many labeled medical datasets publicly available as mentioned in Chapter

2, the medical reports of their images are, in most cases, not available. There are only

4 datasets that provide reports, as shown in Table 3.1, which can be single sentences

describing a diagnosis based on the images or longer structured medical reports (Figure

3.3). We do not include in Table 3.1 datasets that were used in publications of medical

image captioning but were not publicly available, like the BCIDR dataset used by Zhang

et al. (2017a,b).

ImageCLEF Caption Dataset

The ImageCLEF caption dataset was released in 2017 for the Image Concept Detection

and Caption Prediction task (Eickhoff et al., 2017; de Herrera et al., 2018). The dataset

consists of 184,614 medical images and their captions, extracted from biomedical articles

of PubMed Central (PMC).16 The organizers used an automatic method, based on a

medical image type hierarchy (Müller et al., 2012), to classify the 5.8M extracted images

as clinical or not and also discard compound ones (e.g., images consisting of multiple

X-rays), but their estimation was that the overall noise in the dataset would be as high as

10% or 20% (Eickhoff et al., 2017). In 2018, the ImageCLEF caption organizers employed

a Convolutional Neural Network (CNN) to classify the same 5.8M images based on their

type and to extract the non-compound clinical ones, leading to 232,305 images along with

their respective captions (de Herrera et al., 2018). Although they reported that compound

images were reduced, they noted that noise still exists, with non-clinical images present

(e.g., images of maps). Additionally, a wide diversity between the types of the images has

been reported (Liang et al., 2017). The length of the captions varies from 1 to 816 words

(Su et al., 2018; Liang et al., 2017). Only 1.4% of the captions are duplicates (associated

with more than one image), probably due to the wide image type diversity. The average

caption length is 21 words and the vocabulary size is 157,256. However, in 2019 the

Caption Prediction task was not included in the ImageCLEFmed Caption challenge and

the captions of the images were not public (see details about the ImageCLEFmed Caption

16https://www.ncbi.nlm.nih.gov/pmc/
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2019 dataset in Section 2.2).

PEIR Gross

The PEIR Gross dataset consists of images from the Pathology Education Informational

Resource (PEIR) digital library, which is a public access image database for use in medical

education.17 Jing et al. (2018), who were the first to use images from this database,

employed 7,442 teaching images of gross lesions (i.e., visible to the naked eye) from 21

PEIR pathology sub-categories, along with their associated captions.18 In this dataset,

each image is associated with one descriptive sentence. However, PEIR Gross seems less

related to the task, since its images are photographs of medical incidents rather than

images of an examination.

IU X-ray

The IU X-Ray collection (Demner-Fushman et al., 2015) provided by the Open Access

Biomedical Image Search Engine (OpenI) contains frontal and lateral chest X-rays and

reports that consist of the following sections: Comparison (previous information about

the patient), Indication (symptoms, reasons of examination), Findings (the radiology

observations), Impression (the final diagnosis) and tags (Figures 3.3 and 2.1). A system

would ideally generate the ‘findings’ and ‘impression’ sections, possibly concatenated (Jing

et al., 2018). We also follow this approach concatenating these sections.

As mentioned in Chapter 2, IU X-ray contains 3,955 radiology reports associated with

7,470 X-rays. After removing the 104 reports that contained no image and the 25 reports

that were missing both ‘findings’ and ‘impression’ sections, the remaining reports are 3,826

with 7,430 images. We also used the same split, with respect to cases, using 80% of the

dataset for training, 10% for validation and 10% for testing. During text pre-processing

we removed punctuation and numbers, which resulted to 1820 unique words. To create

the vocabulary for out text generation models we kept only words with frequencies higher

than 3 in the training set, corresponding to 1,268 words. The maximum length of captions

in the training set is 226 and the average length is 30. We split each report to sentences

17http://peir.path.uab.edu/library/
18PEIR pathology contains 23 sub-categories, but only 22 contain a gross sub-collection (7,443 images

in total). We observe that one image was not included by Jing et al. (2018).
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Figure 3.3: Example of a case from the IU X-ray dataset. It consists of a frontal and
lateral chest X-ray and a report with four sections: Comparison, Indication, Findings and
Impression.

using the sentence splitter of NLTK.19 We observe that the average number of sentences

per report is 5, while each sentence consists of 6 words on average.

MIMIC-CXR

Recently, the full text reports of the original image-tags pairs of the MIMIC-CXR dataset

(Johnson et al., 2019) were made available. When the original MIMIC-CXR paper was

published the reports were not available, so the paper does not mention details and

statistics about the reports. Liu et al. (2019) are the first that used this dataset for

medical image captioning and they report that there are 206,563 cases, each associated

with a report that has the same structure as the IU X-ray reports (Comparison, Indication,

Findings and Impression). This is the first dataset with hundreds of thousands of images,

whose full-text reports have been made available and can be used for diagnostic text
19https://www.nltk.org/api/nltk.tokenize.html
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generation.

Dataset Images Tags Texts
MIMIC-CXR 473,057 X-rays - 206,563 reports
ICLEF Caption 232,305 medical images UMLS concepts 232,305 sentences
IU X-ray 7,470 X-rays Manual & MTI tags 3,955 reports
PEIR Gross 7,443 teaching images top TF-IDF caption words 7,443 sentences

Table 3.1: Medical datasets suitable for captioning.

Discussion

We observe that datasets of medical image captioning suffer from a major shortcoming,

which is the large imbalance of classes. Most of the images report no findings. Even when

there are findings (e.g., a disease), the wide range of possible diseases makes some of them

appear rarely in the training data. For example, in the IU X-ray dataset the majority of

cases are normal reporting ‘No acute cardiopulmonary abnormality’, which makes these

words appear very often and others rather rarely. This could lead to reduced generalization

power of the models trained over such datasets. The very specific vocabulary and limited

diversity in the sentences causes the same captions to be generated frequently.

In medical image captioning the challenge of having medical cases with multiple images

but only one overall diagnosis, has not been addressed in most of the existing approaches.

The most common method is to use each image separately replicating the output diagnosis

(Shin et al., 2016; Wang et al., 2018; Jing et al., 2018) (the image-based approach we

also described in Chapter 2). As mentioned in Chapter 2, this is not correct because the

findings described in the diagnosis may not be present in every image. Li et al. (2018)

were the only ones who addressed this issue by feeding two images from every case of

the IU X-ray dataset to a CNN encoder to extract two image embeddings. Then, they

averaged these two embeddings and used the resulted embedding for the text generation.

There are cases in IU X-ray with one or more than two images, but the authors do not

mention these, so we assume they have been excluded. The approach we followed for

case-based classification in Chapter 2, where we first predict the tags for each image and

then concatenate and assign them to the case, cannot be applied here, since the output

must now be a fluent text. This issue needs to be further researched, so for this thesis we

adopt the image-based approach for training and evaluation of caption generation.
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3.3 Related Work

Initial Approaches

A first attempt towards medical image captioning was made by Varges et al. (2012), who

employed Natural Language Generation to assist medical professionals turn cardiological

findings (e.g., from diagnostic imaging procedures) into fluent and readable textual

descriptions. From a different perspective, Schlegl et al. (2015) used both the image

and the textual report as input to a CNN, trained to classify images with the help of

automatically extracted semantic concepts from the textual report. Kisilev et al. (2015a,b)

employed a radiologist to mark an image lesion, and a semi-automatic segmentation

approach to define the boundaries of that lesion. Then, they used structured Support

Vector Machines (Tsochantaridis et al., 2004) to generate semantic tags, originating from

a radiology lexicon, for each lesion. In a later work, Kisilev et al. (2016) used a CNN to

detect Regions of Interest (ROIs) in the image and then fully connected layers to assign

to each ROI predefined features describing abnormalities. Then, the assigned features

were integrated to template sentences to form a caption.

Since 2016, inspired by deep learning methods and in particular the encoder-decoder

architecture, which was successfully applied to general image captioning, a few publications

have introduced models that generate diagnostic reports for medical images (Table 3.2).

Shin et al. (2016) were the first that implemented the encoder-decoder architecture for

medical images, to create a model that generates reports in the form of annotations. They

used the IU X-ray dataset and a Network in Network (Lin et al., 2013) or GoogLeNet

(Szegedy et al., 2015) as the encoder of the images, obtaining better results with GoogLeNet.

The encoder was pre-trained to predict (from the images) 17 classes, corresponding to

MeSH terms that were frequent in the reports and did not co-occur frequently with

other MeSH terms. An LSTM or Gated Recurrent Unit (GRU) (Cho et al., 2014) was

used as the Recurrent Neural Network (RNN) decoder to generate image descriptions

from the image encodings. In a second training phase, the mean of the RNN’s state

vectors (obtained while describing each image) was used as an improved representation of

each training image. The original 17 classes that had been used to pre-train the CNN

were replaced by 57 finer classes, by applying k-means clustering to the improved vector
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representations of the training images. The CNN was then retrained to predict the 57

new classes and this led to improved BLEU (Papineni et al., 2002) scores for the overall

CNN-RNN system. The generated descriptions, however, were not evaluated by humans.

Furthermore, the generated descriptions were up to 5 words long and looked more like

bags of terms (e.g., ‘aorta thoracic, tortuous, mild’), rather than fluent coherent reports.

Attention-based Approaches

Subsequent work pointed out the importance of highlighting the findings described in the

report on the image to make the diagnosis easily interpretable (Zhang et al., 2017b; Jing

et al., 2018; Wang et al., 2018). To achieve that, attention mechanisms were incorporated

to their proposed models. Zhang et al. (2017b) were the first to employ an attention

mechanism in medical image to text generation, with the MDNet model.20 They used

a dataset with pathological bladder cancer images to generate their reports, which have

the form of a small paragraph explaining the findings (BCIDR Dataset). MDNet used

ResNet (He et al., 2016) for image encoding, but extending its skip connections to address

vanishing gradients. The image representation acts as the starting hidden state of a

decoder LSTM, enhanced with an attention mechanism over the image. (During training,

this attention mechanism is also employed to detect diagnostic labels.) The decoder is

cloned to generate a fixed number of sentences, as many as the symptom descriptions

in the diagnostic paragraph, by taking as input the type of symptom description of the

corresponding sentence. This model performed slightly better than a state of the art

generic image captioning model (Karpathy and Fei-Fei, 2015) in most evaluation measures.

Jing et al. (2018) implemented an encoder-decoder architecture with attention. Their

encoder (VGG-19 (Simonyan and Zisserman, 2014)), which we described in Section 2.4.4

is used to encode and extract equally sized patches from each image, where each patch is a

‘visual’ feature vector. A Multi-Layer Perceptron (MLP) is then fed with the visual feature

vectors of each image (representing its patches) and predicts terms from a pre-determined

term vocabulary. The word embeddings of the predicted terms of each image are treated as

‘semantic’ feature vectors representing the image. The decoder, which produces the text,

20Zhang et al. had introduced earlier TandemNet (Zhang et al., 2017a), which also used attention, but
for medical image classification. TandemNet could perform captioning, but the authors considered this
task as future work, that was addressed with MDNet.
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is a hierarchical RNN, consisting of a sentence-level LSTM and a word-level LSTM. The

sentence-level LSTM produces a sequence of embeddings, each specifying the information

to be expressed by a sentence of the image description (acting as a topic). For each

sentence embedding, the word-level LSTM then produces the words of the corresponding

sentence, word by word. More precisely, at each one of its time-steps, the sentence-level

LSTM of Jing et al. examines both the visual and the semantic feature vectors of the image.

Following previous work on image captioning, that added attention to encoder-decoder

approaches (Xu et al., 2015; You et al., 2016; Zhang et al., 2017b), an attention mechanism

(an MLP fed with the current state of the sentence-level LSTM and each one of the visual

feature vectors of the image) assigns attention scores to the visual feature vectors, and the

weighted sum of the visual feature vectors (weighted by their attention scores) becomes

a visual ‘context’ vector, specifying which patches of the image to express by the next

sentence. Another attention mechanism (another MLP) assigns attention scores to the

semantic feature vectors (that represent the terms of the image), and the weighted sum

of the semantic feature vectors (weighted by attention) becomes the semantic context

vector, specifying which terms of the image to express by the next sentence. At each

time-step, the sentence-level LSTM considers the visual and semantic context vectors,

produces a sentence embedding and updates its state, until a stop control instructs it to

stop. Given the sentence embedding, the word-level LSTM produces the words of the

corresponding sentence, again until a special ‘stop’ token is generated. Jing et al. showed

that their model outperforms models created for general image captioning with visual

attention (Vinyals et al., 2015; Donahue et al., 2015; Xu et al., 2015; You et al., 2016).

Wang et al. (2018) adopted an approach similar to that of Jing et al. (2018), using a ResNet-

based CNN to encode the images and an LSTM decoder to produce image descriptions,

but their LSTM is flat, as opposed to the hierarchical LSTM of Jing et al. (2018). Wang

et al. also demonstrated that it is possible to extract additional image features from the

states of the LSTM, much as Jing et al. (2018), but using a more elaborate attention-

based mechanism, combining textual and visual information. Wang et al. experimented

with the same OpenI dataset that Shin et al. and Jing et al. used. However, they did

not provide evaluation results on OpenI and, hence, no direct comparison can be made

against the results of Shin et al. and Jing et al. Nevertheless, focusing on experiments

that generated paragraph-sized image descriptions, the results of Wang et al. on the (not
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publicly available) ChestX-ray14 dataset (e.g., BLEU-1 0.2860, BLEU-2 0.1597) are much

worse than the OpenI results of Jing et al. (e.g., BLEU-1 0.517, BLEU-2 0.386), possibly

because of the flat (not hierarchical) LSTM decoder of Wang et al.

Recent Approaches

Gale et al. (2018) argued that existing medical image captioning systems fail to produce

a satisfactory medical diagnostic report from an image, and to provide evidence for

a medical decision. They focused on classifying hip fractures in pelvic X-rays, and

argued that the diagnostic report of such narrow medical tasks could be simplified to

two sentence templates; one for positive cases, including 5 placeholders to be filled by

descriptive terms, and a fixed negative one. They used DenseNet (Huang et al., 2017) to

get image embeddings and a two-layer LSTM, with attention over the image, to generate

the constrained textual report. Their results, shown in Table 3.2, are very high, but

this is expected due to the extremely simplified and standardized ground truth reports.

(Gale et al. report an improvement of more than 50 BLEU points when employing this

assumption.) The reader is also warned that the results of Table 3.2 are not directly

comparable, since they are obtained from very different datasets.

Li et al. (2018) developed a hybrid model that combines text generation and retrieval.

First, the image embeddings are fed to a sentence decoder of stacked RNN layers that

produces an embedding for each sentence of the report. For each of these embeddings

that represent sentences, an agent, which is trained using reinforecement learning decides

for each sentence if it will be generated or retrieved from a database of template sentences.

Li et al. (2018) are the first to use one embedding for both images of each medical case by

averaging the embeddings of each image. However, they do not mention cases that have

one or more than two images.

ImageCLEF Caption Prediction Tasks

In addition to the above publications, the ImageCLEF Caption Prediction subtask ran

successfully for two consecutive years (Eickhoff et al., 2017; de Herrera et al., 2018) but

was not included in 2019. Participating systems (see Table 3.3) used image similarity
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Method Dataset B1 B2 B3 B4 MET ROU
Shin et al. (2016) IU X-ray 78.5 14.4 4.7 0.0 - -
Zhang et al. (2017b) BCIDR 91.2 82.9 75.0 67.7 39.6 70.1

Wang et al. (2018) Chest X-ray 14 28.6 15.9 10.3 7.3 10.7 22.63
IU X-ray - - - - - -

Jing et al. (2018) IU X-ray 51.7 38.6 30.6 24.7 21.7 44.7
PEIR Gross 30.0 21.8 16.5 11.3 14.9 27.9

Zhang et al. (2017a) BCIDR - - - - - -
Gale et al. (2018) Frontal Pelvic X-rays 91.9 83.8 76.1 67.7 - -
Han et al. (2018) Lumbar MRIs - - - - - -

Table 3.2: Medical image captioning methods, the datasets they use and the most
common evaluation measures: BLEU-1/-2/-3/-4 (B1, B2, B3, B4), METEOR (MET) and
ROUGE (ROU). Zhang et al. (2017b) and Wang et al. (2018) used the Rouge-L version.
Zhang et al. (2017a) and Han et al. (2018) did not provide any evaluation results of the
generated reports. Wang et al. (2018) provided evaluation results only on Chest X-ray
14. While, as mentioned before, the ChestX-ray 14 dataset cannot be used for captioning
because its reports are not publicly available, it seems that Wang et al. (2018) had access
to the reports since they created the dataset.

to retrieve images similar to the one to be described, then aggregating the captions of

the retrieved images; or they employed an encoder-decoder architecture; or they simply

classified each image based on UMLS concepts and then aggregated the respective UMLS

‘semantic groups’21 to form a caption. Liang et al. (2017) used a pre-trained VGG CNN

encoder and an LSTM decoder, similarly to Karpathy and Fei-Fei (2015). They trained

three such models on different caption lengths and used an SVM classifier to choose the

most suitable decoder for the given image. Furthermore, they used a 1-Nearest Neighbor

method to retrieve the caption of the most similar image and aggregated it with the

generated caption. Zhang et al. (2018), who achieved the best results in 2018, used the

Lucene Image Retrieval software (LIRE) to retrieve images from the training set and then

simply concatenated the captions of the top three retrieved images to obtain the new

caption. Abacha et al. (2017) used GoogLeNet to detect UMLS concepts and returned

the aggregation of their respective UMLS semantic groups as a caption. Su et al. (2018)

and Rahman (2018) also employed different encoder-decoder architectures.

21https://goo.gl/GFbx1d
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Team Year Approach BLEU
Liang et al. 2017 ED+IR 26.00
Zhang et al. 2018 IR 25.01
Abacha et al. 2017 CLS 22.47
Su et al. 2018 ED 17.99
Rahman 2018 ED 17.25

Table 3.3: Top-5 participating systems at the ImageCLEF Caption Prediction
competition, ranked based on average BLEU (%), the official evaluation measure. Systems
used an encoder-decoder (ED), image retrieval (IR), or classified UMLS concepts (CLS).
We exclude 2017 systems employing external resources, which may have seen test data
during training (Eickhoff et al., 2017). 2018 models were limited to use only pre-trained
CNNs.

3.4 Models implemented in this thesis

3.4.1 Nearest Neighbor

This is a baseline we implemented for medical image captioning (Kougia et al., 2019a)

and also used for medical image tagging (see Section 2.4.1) modified to retrieve tags. This

method is based on the intuition that similar biomedical images have similar diagnostic

captions; this would also explain why image retrieval systems perform well in biomedical

image captioning (Table 3.3). We use ResNet-1822 to encode images, and cosine similarity

to retrieve similar training images. The caption of the most similar retrieved image is

returned as the generated caption of a new image. This baseline can be improved by

employing an image encoder trained on biomedical images, such as X-rays (Rajpurkar

et al., 2017b).

3.4.2 BlindRNN

Our first model is a baseline that we call BlindRNN. It is a flat RNN generating text as a

language model that accepts a sequence of words and produces the next word (decoder

part of Figure 3.4, without the image embedding). It consists of an LSTM layer with 512

units and a dense layer on top that outputs a probability distribution over the words of

the vocabulary. We keep in the vocabulary words that occur more than three times in

the training set and set the maximum caption length to 50 words. We insert a special
22https://goo.gl/28K1y2
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start and end token in the start and the end of each caption respectively and pad each

caption up to the maximum length. During training, BlindRNN takes as input only the

gold caption, which serves as the ground truth. We use pre-trained biomedical word2vec

embeddings that are frozen during training.23 The model is trained using categorical cross

entropy loss computed on the output probabilities of the dense layer and the ground truth

binary vector representing the true next word. We use the Adam optimizer and set the

initial learning rate to 0.0001. Early stopping is also used with a patience of three epochs.

During inference, for each test instance we start by feeding the start token to the LSTM

and obtain the probabilities for the next word. We employ two ways to choose among

these probabilities. First, we experiment with a greedy method in which we choose the

word with the highest probability, and second we use a sampling method in which a

word is sampled from the probability distribution. The sampled word is also given as

input to the LSTM in order to produce the next word. This process continues until the

end-of-caption token is produced or the maximum caption length is reached.

3.4.3 Encoder-Decoder

In this model we extend the previous BlindRNN to a full encoder-decoder architecture

based on the Show and Tell model of Vinyals et al. (2015) (Figure 3.4).24 The BlindRNN

now serves as a decoder of the image embedding extracted from the encoder. For the

encoder we use the DenseNet + FFNN (CheXNet-based) system we have implemented

for classification (see Section 2.4.3) and has been fine-tuned on the IU X-ray training set.

We extract each image embedding from the last average pooling layer and unlike Show

and Tell, which uses the image only as the initial state of the LSTM, we feed it to the

decoder at each time step, as shown in Figure 3.4 with the unrolled LSTM. The model is

not trained end-to-end; we keep the encoder frozen and train the decoder as described in

the previous section.

We also use the same inference process as in BlindRNN, but now we give as input to the

LSTM the test image embedding along with the corresponding word at each time step.

23https://archive.org/details/pubmed2018_w2v_200D.tar.
24Our implementation of the Encoder-Decoder model is based on this tutorial: https://

machinelearningmastery.com/develop-a-caption-generation-model-in-keras/
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Figure 3.4: Illustration of how our encoder-decoder model works during training, where
the LSTM is shown unrolled into time. This model is based on the Show and Tell model
(Vinyals et al., 2015), with the difference that the image is not only used as the initial
state of the LSTM. The image embedding is extracted from the last average pooling layer
of the encoder and is concatenated at each time step with the word embedding of the
current word.

3.5 Experimental Results

Evaluation Measures

The most common evaluation measures in medical image captioning are BLEU (Papineni

et al., 2002), ROUGE (Lin, 2004) and METEOR (Banerjee and Lavie, 2005), which

originate from machine translation and summarization. The more recent CIDER measure

(Vedantam et al., 2015), which was designed for general image captioning (Kilickaya

et al., 2016), has been used in only two medical image captioning works (Zhang et al.,

2017b; Jing et al., 2018). SPICE (Anderson et al., 2016), which was also designed for

general image captioning (Kilickaya et al., 2016), has not been used in any medical image

captioning work we are aware of.

We report results on BLEU-1, -2, -3, -4, METEOR and ROUGE-L (Table 3.4). BLEU
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is the most common measure (Papineni et al., 2002). It measures word n-gram overlap

between the generated and the ground truth caption. A brevity penalty is added to penalize

short generated captions. BLEU-1 considers unigrams (i.e., words), while BLEU-2, -3, -4

consider bigrams, trigrams, and 4-grams respectively. The average of the four variants

was used as the official measure in the ImageCLEF Caption task. METEOR (Banerjee

and Lavie, 2005) extended BLEU-1 by employing the harmonic mean of precision and

recall (F-score), biased towards recall, and by also employing stemming (Porter stemmer)

and synonymy (WordNet). To take into account longer subsequences, it includes a

penalty of up to 50% when no common n-grams exist between the machine-generated

description and the reference. ROUGE-L (Lin et al., 2013) is the ratio of the length of the

longest common subsequence between the machine-generated description and the reference

human description, to the size of the reference (ROUGE-L recall); or to the generated

description (ROUGE-L precision); or a combination of the two (ROUGE-L F-measure).

We note that several ROUGE variants exist, based on different n-gram lengths, stemming,

stopword removal, etc., but ROUGE-L is the most commonly used variant in medical

image captioning so far.

The main challenge for the text generation models in the medical field is caption diversity.

Medical reports have a limited vocabulary and the same sentences occur many times. We

observe that in the 5,930 training images there are 2,438 distinct captions, while in the

758 images of the test set there are only 354. This causes the text generation models to

overfit and output the same caption for each test image or with only slight changes. To

evaluate the ability of the models to generate different captions we report the diversity in

the produced test captions (Table 3.4).

Results

Table 3.4 shows the results of our systems using the measures mentioned above. The

medical reports we use in our models (concatenated ‘impression’ and ‘findings’ sections)

comprise multiple sentences. So, for the flat RNNs we implemented (BlindRNN and

Encoder-Decoder), we experimented with two approaches; first, we consider the caption

as one unified sentence and second, we insert a special sentence delimiter token that

shows when a new sentence starts within the whole caption. The sentence delimiter
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helps the systems produce more accurate captions and achieve better results, leading

to improvements of at least two points in all the measures (Table 3.4). In the case of

the Encoder-Decoder, the sentence delimiter also improves the diversity of the generated

captions.

Also, we follow two inference approaches: greedy and sampling. In the greedy approach

we choose the word with the highest probability to be generated at each time step. In the

sampling approach the next word is randomly sampled from the probability distribution

over the vocabulary produced by the model. As we see (Table 3.4) the sampling method

yields much lower results than the greedy one in all the captioning measures, but achieves

high caption diversity.

In the greedy inference method, the BlindRNN model produces only one caption, which

is expected since at the inference phase it always takes as input the start token. This

baseline actually produces the most frequent sentences for each test instance and performs

better that the 1-NN baseline. On the other hand, the Encoder-Decoder model has much

higher diversity since it takes information from each image. Overall, the system with the

best results is the Encoder-Decoder, in particular the one that uses a sentence delimiter.

However, the difference with the simple BlindRNN is not large, showing that the use of

images did not help as much as expected.

Model S.D. Inference B1 B2 B3 B4 Met Rou Diversity
1-NN - Greedy 28.2 15.2 9.0 5.6 12.7 21.1 204
BlindRNN - Greedy 33.2 20.6 13.6 9.5 14.1 27.0 1
BlindRNN X Greedy 37.9 22.9 15.5 11.2 16.7 30.9 1
Encoder-Decoder - Greedy 33.6 20.9 13.8 9.7 14.3 27.3 54
Encoder-Decoder X Greedy 37.1 23.5 16.2 11.7 17.2 32.0 103
BlindRNN - Sampling 27.1 14.7 8.4 4.9 11.5 21.0 733
BlindRNN X Sampling 31.7 17.7 10.6 6.6 14.1 24.5 723
Encoder-Decoder - Sampling 28.1 15.8 9.6 6.1 12.5 23.2 697
Encoder-Decoder X Sampling 31.4 18.2 11.2 7.2 14.9 26.9 722

Table 3.4: Results of the text generation systems on IU X-ray using greedy and sampling
inference. We report results on the most common caption evaluation measures: BLEU-1/-
2/-3/-4 (B1, B2, B3, B4), METEOR (MET) and ROUGE (ROU), as well as the diversity,
which shows the number of different captions produced. For the BlindRNN and the
Encoder-Decoder models we follow two approaches: with and without the special sentence
delimiter (S.D.).
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4 Diagnostic tagging for diagnostic captioning

The tasks we described in the previous chapters are similar in that they both aim to detect

abnormalities in medical images and describe them. Medical image tagging achieves this

by assigning keywords to the images, while medical image image captioning by producing

text. In this chapter we examine if these two tasks can help each other to achieve better

performance by incorporating information from one task to another. Towards this end,

we experiment with two systems, which are based on the systems we discussed in the

previous chapters and we fully explain below.

4.1 Models implemented in this thesis

4.1.1 Encoder-Decoder + frozen Visual Classification (VC)

This model is based on the Encoder-Decoder model described in Section 3.4.3, which

performs medical image captioning. This captioning model consists of the DenseNet-121

CNN and a flat LSTM decoder. Here, in order to incorporate tagging to the captioning

we add the classifier (FFNN layer of DenseNet-121 + FFNN model as described in Section

2.4.3) we already trained on IU X-ray to the captioning model. First, the image is fed

to the DenseNet-121 CNN and we extract its image embedding from the last average

pooling layer. Then, the image embedding is given as input to both the classifier and the

decoder. The classifier assigns tags to the image and the decoder produces one word of

the text at each time step. The decoder is the same as in the Encoder-Decoder model

of Chapter 3, but is now trained with the sum of the captioning and the classification

loss. This means that the decoder is trained with an extra loss value depending on the

tags assigned to each image. The DenseNet-121 encoder stays frozen and also, in this

approach the weights of the FFNN classifier are not updated during training.
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4.1.2 Encoder-Decoder + trainable Visual Classification (VC)

In this approach, we again incorporate tagging in the Encoder-Decoder captioning model.

As described above, the FFNN layer of our CheXNet-based model (Section 2.4.3) is added

to the captioning model in order to assign tags to the images. The difference in this

model is that we perform multitask learning by training both the FFNN classifier and the

decoder. The DenseNet-121 CNN is again frozen and we only use it to extract the image

representation. The classifier, which is already trained for medical image tagging is now

jointly trained with the decoder. The total model loss is the sum of the classification and

captioning losses and is used to train all the model’s components, except for the CNN.

4.2 Results

In this section we present the results of the models described above, in order to conclude

on how the tagging and captioning can assist each other. For the experiments in this

chapter we adopt the sentence delimiter approach, since it yields the best results for our

image captioning models (Table 3.4). To evaluate the results of the models, we use the

same evaluation measures as in the previous chapters (Sections 2.5 and 3.5), while for the

captioning models we experiment with different ways of inference.

Table 4.1 shows the results of our models in the captioning task, which will give us an

insight on how tagging affects medical image captioning. As we see, the simple Encoder-

Decoder using the greedy inference achieves overall the best results in the evaluation

measures. However, the sampling method yields the highest diversity, especially for

the Encoder-Decoder + frozen VC model. Low diversity of the generated captions is

not correct, compared to the diversity of the gold captions, meaning that models just

generate frequent words that may not describe the correct diagnosis and the fact that the

captioning evaluation measures do not capture this, is a weakness. In our experiments

the sampling approach seems to be the only one overcoming this challenge and achieving

high diversity. Observing the results for each inference method separately we observe that

the greedy inference method in our Encoder-Decoder + VC models does not work, since

it leads to only one generated caption with the same results as the BlindRNN. In the

sampling inference approach the Encoder-Decoder + VC models achieves not only higher
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diversity, but also better results in most metrics. Overall, the addition of the tagging

task to captioning seems to yield better results and especially better diversity, depending

on the inference method. The Encoder-Decoder + trainable VC model that operates by

performing multitask learning could be further improved by applying different weights to

the classification and captioning losses (losses were equally weighted in this work).

Model Inference B1 B2 B3 B4 Met Rou Diversity
BlindRNN Greedy 37.9 22.9 15.5 11.2 16.7 30.9 1
E-D Greedy 37.1 23.5 16.2 11.7 17.2 32.0 103
E-D + frozen VC Greedy 37.9 22.9 15.5 11.2 16.7 30.9 1
E-D + trainable VC Greedy 37.9 22.9 15.5 11.2 16.7 30.9 1
BlindRNN Sampling 31.7 17.7 10.6 6.6 14.1 24.5 723
E-D Sampling 31.4 18.2 11.2 7.2 14.9 26.9 722
E-D + frozen VC Sampling 33.9 19.5 12.0 7.6 15.3 26.5 731
E-D + trainable VC Sampling 33.9 19.4 11.9 7.6 15.2 25.8 730

Table 4.1: Results of the medical image captioning models using the sentence approach
for greedy and sampling inference. The best results per inference approach are shown.

In the other direction, of how captioning affects classification, Table 4.2 shows the

classification results of the Encoder-Decoder + trainable VC model along with the results

of our other tagging models (Section 2.5). The DenseNet-121 + FFNN (CheXNet-based)

system achieves the best performance. The Encoder-Decoder + trainable VC model

consists of the CheXNet-based system and a captioning component, but it does not lead to

any improvement over the best tagging method of Section 2.4.3 (DenseNet-121 + FFNN).

That leads us to the conclusion that captioning does not help tagging. Another approach

that we plan to experiment with is to use the captions generated from a captioning model

to extract additional tags from the captions, by applying a medical labeler, e.g., the MTI

labeler.

System F1
DenseNet-121 + FFNN 0.487
E-D + trainable VC 0.482
DenseNet-121 + k-NN 0.421
DenseNet-121 + 1-NN 0.244
VGG-19 + FFNN 0.091

Table 4.2: Results of our tagging systems on IU X-ray using the MTI tags, following the
image-based evaluation approach (see Discussion paragraph of Section 2.2).
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5 Conclusions and future work

5.1 Conclusions

In this thesis we addressed two tasks: medical image tagging and captioning, which aim

to assist the diagnostic process followed by medical experts when they examine medical

images (e.g., X-rays, MRIs, PET/CT scans etc.). Some of the available annotated medical

datasets that can be used for classification were presented. We focused on two datasets

(ImageCLEFmed Caption 2019 and IU X-ray) which are suitable for the tagging task

and performed this task using the four systems we implemented. The systems can be

distinguished into retrieval-based and deep learning-based. The best performing system is

based on deep learning and consists of a DenseNet-121 followed by an FFNN as described

in the work of Rajpurkar et al. (2017b). However, a retrieval-based method achieved

competitive results in one of the datasets as well.

The second task we addressed was the medical image captioning. For this task we examined

the available datasets and their challenges. We presented two baselines: a simple image

retrieval method that returns the caption of the most similar image and a language model

that does not look at the image and, hence, always generates the same caption. Then, we

implemented an Encoder-Decoder model, which consists of the DenseNet-121 CNN that

encodes the image and a flat LSTM decoder that generates the text. We also experimented

with various inference methods in order to achieve the highest diversity of generated

captions. In the last chapter we examined how the two tasks, image tagging and caption

generation, can affect each other by adding a classifier to the Encoder-Decoder model.

The tagging results did not improve when trained along with the captioning model. The

captioning results on the other hand, showed some improvement when the tagging task

was added to captioning.

5.2 Future Work

In future work, we plan to experiment more with models that perform classification

for a large number of tags like the ones extracted from medical reports and create a
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good classification component that can be used to improve captioning. We also plan to

experiment with more complex models for medical image captioning. One important

component to be added to the Encoder-Decoder model is visual attention, which can help

the decoder focus on a specific part of the image when generating each word. Another

improvement is to change the decoder to a hierarchical RNN, which performs better for

generating paragraphs with many sentences, like the medical reports. A different approach

we intend to examine is image retrieval and ways we use it to achieve better results for

both tagging and captioning, based on the hypothesis that similar images will have similar

diagnoses.
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