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Outline

1. Aspect term extraction

2. Multi -granular aspect aggregation

3. Message -level sentiment estimation

4. Aspect term sentiment estimation
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Aspect term extraction Previous datasets vs.
our datasets

Datasets Inter - Annotator : Gold Aspect
# Domains
Agreement Te__rms
@ 1

Hu & Liu 2004

Ganu et al.

2009 1
Blitzer et al.

2007 4
Pavlopoulos &

Androutsopoul 3

os 2014




Aspect term extraction

Our new datasets

/

- # sentences with n aspect term occurrences

Domain n=0 n>0 n>1  total Inter - Annotator Agreement:
Restaurants 1.590 2 120 872 3710 Dice: ~70% in all domains
Hotels 1,622 1,978 652 3,600

Laptops 1,760 1,325 416 3,085

# distinct aspect terms with  n occurrences

battery life o . 150 N1
Domain multi -word single-word multi-word  single-word
Restaurants 593 452 67 195
Hotels 199 262 24 120

Laptops 350 289 67 137
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Aspect term extraction

Multi -word vs. single-word
distinct aspect terms per domain
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~—= Restaurants 2004) & laptops reviews
#+ Hotels contain more multi -
+—* Laptops word distinct aspect
terms
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Aspect term extraction

Precision, Recall, F -measure

Gold: odesigno (94), oserviceo (3

Computed ontypes (distinct aspect terms) Computed ontokens (aspect term occurrences .
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Frequent distinct aspect term are treated as rare ones Over sensitive to high -frequent aspect terms
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Aspect term extraction

Precision, Recall, F -measure

O The users care only about the top O (e.g., 10 -20) most frequently
discussed distinct aspect terms

O The value of & depends on screen size , available time etc.

Inding or missing a truly more frequent distinct aspect term should
be rewarded or penalized more

O Placing a truly high -frequency distinct aspect term  towards the
beginning of the returned list should be rewarded more



Aspect term extraction

How we propose to measure

Gold: odesigno (94), oservicebo

| the correct distinct aspect terms by human
annotation frequency ( "Olist).

- Eath method returns a list of distinct aspect terms, . Oscree
ofdered by predicted frequency ( ~ list). DS

- Given an a value, use the first & elements of the 0 list (0 ).
Compare "Oand o for different & values.
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Aspect term extraction

Weighted precision and recall

n 'k . S =0.73
Lo ; oser vi
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-/Byvarying O, we obtain = || sr945 curves.
Also, average weighted precision at 11 weighted recall levels.
- w0 issimilarto ¢ 'O6 "O3 lbut no counter -part for @'Y .



Aspect term extraction

Methods

Freq baseline

O Considered effective & popular unsupervised baseline (Liu, 2012)

O Returns the most frequent nouns and noun phrases , ordered by
decreasing sentence frequency

H&L (Hu & Liu 2004)

O Also unsupervised , finds frequent nouns and noun phrases pl use

O Discards candidate aspect terms  that are subparts of other
candidate aspect terms

O Finds adjectives that modify candidate aspect terms , uses them
to detect additional candidate aspect term S

O Details previously unclear, full pseudo -code published




Aspect term extraction

Our pruning step

e use word vectors ( Mikolov , 2013) computed using Word2Vec
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Aspect term extraction ResU |tS'

13/70 average weighted precision
Freq 43.40 30.11 9.09
Freg+w2v pruning 45.17 30.54 7.18
Hu&Liu 52.23 49.73 34.34
H&L+w2v pruning 66.80 53.37 38.93

ances are statistically significant (p<0.01 )



Aspect term extraction

Results:
average weighted precision
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Aspect term extraction

Results:
average weighted precision
10 — Hotels
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Aspect term extraction

Results:
average weighted precision
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Aspect term extraction See our paper for more details

(Pavlopoulos and Androutsopoulos, 2014a)

Summary & contribution of this section

C Introduced 3 new aspect term extraction datasets
C Laptops/Restaurants/Hotels
C Domain variety is important

C New evaluation measures
ighted precision, weighted recall, average weighted precision

C Improved the popular unsupervised method of Hu & Liu
Additional pruning step based on continuous space word vectors (using Word2Vec)

he OAspect term extr aédmbEwmn2014 & 20b5twass k
ased on the work of this section
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1. Aspect term extraction

2. Multi-granular aspect aggregation

3. Message -level sentiment estimation

4. Aspect term sentiment estimation




Multi -granular aspect aggregation

Task description
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Multi -granular aspect aggregation Aspect aggregation
20170 with multiple granularities

Top Aspect Terms

1. Food
2. Wine food
3. Beers

4. Service

wine

beers

service




