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Abstract

In this thesis, we advance biomedical Question Answering (QA). The first part of the thesis
focuses on retrieving abstracts of scientific literature given a natural language question
submitted by a biomedical expert. We propose multiple state-of-the-art deep-learning models
for biomedical document retrieval and snippet extraction. Joint models that simultaneously
retrieve documents and snippets are also proposed, which improve the results even further.
The best deep learning model was made publicly available as a research prototype during the
Coronavirus pandemic to aid researchers around the world. In collaboration with biomedical
experts, we also deployed one of our deep learning models for document retrieval and
developed a literature identification system for systematic reviews.

One major issue in biomedical QA is the scarcity of human-annotated data as annotation
of biomedical literature demands human expertise and time. Therefore in the second part
of the thesis, we develop two new artificial datasets for biomedical cloze-style QA and
make them publicly available. We followed a methodology previously used in news articles
and books and extracted millions of artificial training examples that can be used to train
data-demanding deep learning models. Through human performance evaluation, we show
that human experts outperform non-experts in the resulting cloze-style QA task, which
supports the claim that human expertise is essential for biomedical QA. We developed and
trained new deep-learning models for reading comprehension using our new datasets. Our
models outperform previously proposed deep learning models for cloze-style QA, as well
as four strong baselines. In experiments conducted on a sample of the dataset, the best
model outperformed all human non-experts and achieved competitive results compared to
biomedical experts.

In the third part of the thesis, we train deep learning models for factoid QA in two
well-established biomedical datasets. Given a snippet of text and a question, a span of the
snippet is selected as an answer. We examine six techniques for offline data augmentation
(data augmentation applied before training). We show that in biomedical factoid QA, all data
augmentation techniques improve performance, even when fine-tuning very large pre-trained
language models. We also show that using one of the artificial datasets created in this thesis
acts as a good data augmentation technique.
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Link: https://github.com/dpappas/BIOREAD_code.

• We release the code to replicate experiments on BIOMRC data.
Link: https://github.com/PetrosStav/BioMRC_code.

Other

• We developed and release an HTML template for a leaderboard for comparison of MRC

models. The template is tailored for BioRead and can be modified for the BIOMRC

dataset.
Link: https://dvpappas89.wixsite.com/bioread2.
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Relevant to Chapter 6

Code

• We release the code for data augmentation and the code to replicate the experiments
mentioned in Pappas et al. [142].
Link: https://github.com/dpappas/Data-Augmentation-for-Biomedical-Factoi
d-Question-Answering.

Relevant to Appendix B (Dense retrieval)

• We release the code for our dense retrieval models.
Link: https://github.com/dpappas/adhoc_retrieval.

Page 5 of 172

https://github.com/dpappas/Data-Augmentation-for-Biomedical-Factoid-Question-Answering
https://github.com/dpappas/Data-Augmentation-for-Biomedical-Factoid-Question-Answering
https://github.com/dpappas/adhoc_retrieval




Disclaimer

This thesis explores the use of deep learning models for question-answering and text retrieval
in the medical domain. It is important to note that while the models have the potential to
improve the efficiency and accuracy of biomedical research, they may also raise ethical
concerns. Specifically, there is a risk that relying solely on machine-generated answers could
lead to errors or biases in the decision-making process.

The author acknowledges the importance of using the models to supplement the expertise
of biomedical experts and not replace it. While the models have been trained on scientific
publications they are still fallible and should always be used with caution.

It is crucial that any results generated by the models are cross-checked by human experts
to ensure their accuracy and reliability. Additionally, the ethical implications of relying on
machine-generated answers should be carefully considered and weighed against the potential
benefits.

The author recognizes the potential limitations of the models and is committed to ensuring
that they are used ethically and responsibly in the pursuit of advancing biomedical research.
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Chapter 1

Overview of the thesis

1.1 Question Answering

Question answering (QA) is a sub-field of natural language processing (NLP) focused on
developing algorithms that can automatically answer questions posed in natural language. QA

has a long history in NLP [173] and it has become increasingly important as the amount of
digital information is constantly increasing. With the advancements in deep learning models,
Question Answering systems have become more sophisticated and accurate in understanding
the intent of a question and providing the most relevant answer [1, 126, 220]. QA systems
are designed to automatically process the abundance of data and answer questions posed in
natural language. As advancements are made in NLP research, question answering has been
found to be beneficial in a range of tasks such as information retrieval, machine translation,
and dialog systems.

There are several types of question-answering systems, each with its own unique charac-
teristics and capabilities. Rule-based systems rely on a set of predefined patterns or rules that
match the question to the appropriate answer in a text. They are typically based on simple
algorithms and are limited in their ability to understand the underlying meaning of a question.
Rule-based systems fail to understand questions that are not in the predefined patterns or
rules, and they may not be able to handle synonyms or paraphrasing.

Retrieval-based QA systems [89, 225] use information retrieval techniques to retrieve a
set of relevant documents in response to a question and then extract the answer from those
documents. A retrieval-based QA system typically employs information retrieval techniques
such as keyword search or semantic search. Once the system has found a set of documents
that are relevant to the question, it then needs to rank them in order to find the most likely
answer. This can be done using a variety of methods such as TF-IDF or BM25 ranking
algorithms.
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10 Overview of the thesis

Snippet extraction is typically used in information retrieval-based question answering
systems, where the system retrieves relevant text passages from a large text corpus, and then
uses the retrieved text passages to answer the question. The goal of snippet extraction is to
retrieve the most relevant text spans, also known as snippets, that can be used to answer the
question.

Interactive Question Answering (IQA) systems are typically used in information retrieval
and search systems. They allow users to interactively refine their queries and receive feedback
on the quality of their query results using various tools such as query suggestion, query
expansion, and query reformulation.

QA systems for structured data [90, 111, 72] are a type of QA system that utilize pre-
organized and well-defined data, usually stored in a relational database or a knowledge graph,
to answer questions. These systems use structured data, such as tables or knowledge graphs,
to extract the relevant information to the question and provide the answer.

Conversational agents [216] are designed to interact with users in a natural and human-
like way. They use NLP techniques to understand the user’s questions and provide appropriate
answers. They can engage in a back-and-forth dialogue with the user and can keep track of
the conversation context to provide more accurate answers.

Generative question answering [97] is a type of QA system that generates answers to
questions, rather than extracting them from a pre-existing text or database. These systems use
generative models, such as neural networks, to generate the answer to a question. They are
able to understand the underlying meaning of a question, generate a coherent and informative
answer, and sometimes even generate an answer for questions that have no answer in the
text. They can also generate answers to follow-up questions, providing a more natural
conversation-like experience.

Advances in all these types of QA systems have led to the development of many different
applications for question-answering systems such as information retrieval systems, chatbots,
digital assistants, or even for educational purposes such as quiz generators. QA systems
can be integrated as a component in larger chatbot systems to handle natural language
understanding and answer generation tasks. This is especially useful in cases where the
chatbot is designed to handle a specific domain or task, such as customer service [228, 36]
or healthcare[199, 146, 4], where the QA system can be fine-tuned to that domain or task.
However, it’s also possible to have a QA system as a standalone chatbot. In this case, the QA

system would be responsible for handling the entire conversation, including understanding
the user’s question, generating an answer, and handling follow-up questions[38, 22]. This
can also make digital assistants more interactive and user-friendly. Finally, they can be
used as part of educational applications to generate quizzes, test questions, or interactive
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1.1 Question Answering 11

activities[185], by using natural language understanding to interpret the quiz topic and
generate questions that are relevant to the topic.

The purpose of this thesis is to improve already existing deep learning methods for
biomedical question answering, information retrieval and machine reading comprehension in
the scientific literature from the biomedical domain, by exploring various neural architectures
and training techniques. The aim is to achieve a higher accuracy and better generalization
in biomedical QA. Additionally, we will also examine if jointly trained neural networks for
snippet retrieval are better than pipeline approaches. By jointly training, we mean training
the model end-to-end rather than training different components of the QA system separately
and then combining them. This approach has been shown to be beneficial in other NLP tasks
and we want to investigate if it’s also the case for biomedical QA.

Furthermore, a significant part of this thesis is devoted to creating new large-scale biomed-
ical machine reading comprehension (MRC) datasets. Machine Reading Comprehension
(MRC) is a form of question answering that aims to develop algorithms and models that
can understand and answer questions about text data in a way that mimics human reading
comprehension. MRC systems take an input text and a question, and they try to identify
the answer to the question within the text. The task is to identify the exact span of the text
which contains the answer. By creating new biomedical MRC datasets, we aim to increase the
availability of data for training and evaluating biomedical MRC models, which will ultimately
lead to more accurate and robust QA systems. We hope to encourage further research in the
field of biomedical QA and machine reading comprehension.

There are a few key reasons why the biomedical domain is much different than generic
domains. The biomedical domain contains a vast amount of specialized terminology (jargon),
vocabularies, and ontologies that can be difficult for non-experts to understand. The domain
is constantly evolving as new discoveries are made and new treatments are developed, which
can make it difficult to keep up with the latest advances.

As an example one could consider the term ‘radiation therapy’ which is used to describe
both high-energy radiation for ttherapy and low-energy radiation for diagnostic purposes.
High-energy radiation, also known as ionizing radiation, has enough energy to remove
tightly bound electrons from atoms, which can damage or destroy living cells. Examples of
high-energy radiation include X-rays and gamma rays. These types of radiation are used in
diagnostic imaging such as X-rays, CT scans, and PET scans, as well as in radiation therapy
for cancer treatment. On the other hand, low-energy radiation, also known as non-ionizing
radiation, does not have enough energy to remove electrons from atoms. Examples of low-
energy radiation include radio waves, microwaves, and infrared radiation. These types of
radiation are used in various diagnostic procedures such as MRI and ultrasound imaging.
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12 Overview of the thesis

They do not have the same potential to damage living cells as high-energy radiation, but
prolonged exposure may still pose health risks. By utilizing their background knowledge and
analyzing the surrounding context, a biomedical expert is able to understand the meaning
and implications of the phrase ‘radiation therapy’ when encountered in a biomedical text.

When applying biomedical NLP experts are needed because they can provide domain-
specific knowledge and understanding that is essential for accurately processing and interpret-
ing the biomedical text data. Biomedical NLP tasks often involve complex medical concepts,
terminologies, and relations that may not be well understood by non-experts.

For example, biomedical experts can help identify and resolve ambiguities in the text
data, such as different meanings of the same medical term, synonyms, and acronyms. They
can also help to design and evaluate biomedical NLP models by providing feedback on
the performance of the models in terms of their ability to understand and extract relevant
information from the text data.

Additionally, biomedical experts can assist in the annotation and curation of the data,
which is an important step in the development of biomedical NLP systems. They can help
to identify the relevant entities and relations in the text, and provide expert knowledge to
guide the annotation process. They can also help to ensure the quality and consistency of the
annotation.

1.2 Question Answering in the Biomedical Domain

Question Answering is yet an unsolved problem of Natural Language Processing. The
open-access repositories of biomedical documents have millions of entries and are yearly
increasing in size adding more documents to their databases. The vocabulary of biomedical
documents is constantly increasing as new biomedical terms are introduced. The biomedical
ontologies (like Mesh1 or the disease ontology2) are as well increasing in size adding more
and more biomedical named entities. The most important differences of the biomedical NLP

domain compared to generic domain NLP are the following:

Need of Human Expertise

Annotating biomedical texts is a crucial task that requires a high level of expertise, as it
involves identifying and labeling various elements in a text such as named entities, relations,
and events. The process of annotation is done manually by experts in the biomedical field,
who are able to understand the context and meaning of the text, as well as identify the

1https://www.nlm.nih.gov/mesh/
2http://disease-ontology.org/
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1.2 Question Answering in the Biomedical Domain 13

relevant information. The importance of accurate annotation is paramount as it serves as the
foundation for many biomedical NLP tasks such as information retrieval, question answering,
and summarization.

Complex Technical Vocabulary and Abbreviations

There are multiple entities often abbreviated3 and traditional language models trained on
generic domain data often fail in the biomedical domain without further fine-tuning. This
is further discussed in the paper of Tinn et al. [181] where they present the limitations of
traditional language models trained on generic domain data in the biomedical domain, and it
highlights the importance of fine-tuning these models on biomedical data to improve their
performance on biomedical NLP tasks.

Universal Annotation of Biomedical Entities

Many different biomedical Named Entity Recognition (NER) corpora contain varying an-
notations due to their diverse nature and the different types of entities and relations they
aim to capture. These variations in annotations can be attributed to factors such as domain
specificity, annotation quality, and data diversity. This issue is pinpointed by Neves et al.
[131] where they report an extended set of tools for biomedical annotation, a list of corpora
with biomedical entities, and the types of annotations present in these corpora.

As shown in Huang et al. [66] annotations on different corpora may differ depending on
the task tackled by each corpus. Across all corpora, the entity types include genes, proteins,
mutations, diseases, disorders, drugs, chemicals, anatomy, cell types, pathways and process,
signs and symptoms, diagnostic tests and measurements, procedures, and treatments. For QA

models that take into account entities [198, 182] when computing an answer or QA models
that depend on biomedical relational databases this can be an issue since there is no universal
schema for biomedical entities and relations [130, 65, 175].

Use of long sentences

In biomedical abstracts, long sentences can be found that include long complex sentences.
The average character length of an abstract sentence in PUBMED is 151 characters4 and the
maximum number of characters is 2187 characters. The longest sentences contain mainly

3For example ‘MELAS’ is the abbreviated form of the longer sequence ‘mitochondrial encephalomyopathy,
lactic acidosis, and stroke-like episodes’ which describes using one word the state of a patient.

4Statistics were computed in a sample of 1.06M sentences from 100K abstracts published on 2021 and
contain both a title and an abstract.
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14 Overview of the thesis

extended lists with enumerated items or errors of the sentence tokenizer but even by removing
them the average length in characters remains high (143 characters on average).

Examples of long sentences in biomedical abstracts are the following:

• ‘Impaired social interaction, restrictive and narrow interests, anxiety, depression;
aggressive, repetitive, rigid and self-injurious behavior, lack of consistency, short
attention span, fear, shyness and phobias, hypersensitivity and rapid mood alterations,
high level of food and toy selectivity; inability to establish friendships or follow the
instructions; fascination by round spinning objects and eating non-food materials are
common psychological characteristics of autism.’

• ‘The procedures described here address a range of challenges in MarkVCID’s design,
notably: (1) acquiring all data under informed consent and enrollment procedures that
allow unlimited sharing and open-ended analyses without compromising participant
privacy rights; (2) acquiring the data in a sufficiently wide range of study participants to
allow assessment of candidate biomarkers across the various patient groups who might
ultimately be targeted in VCID clinical trials; (3) defining a common dataset of clinical
and cognitive elements that contains all the key outcome markers and covariates for
VCID studies and is realistically obtainable during a practical study visit; (4) instituting
best fluid-handling practices for minimizing avoidable sources of variability; and (5)
establishing rigorous procedures for testing the reliability of candidate fluid-based
biomarkers across replicates, assay runs, sites, and time intervals (collectively defined
as the biomarker’s instrumental validity).’

Multi-modality

Multi-modality in biomedical question answering (QA) [229, 109, 80, 101, 123, 59]refers to
the use of multiple modalities such as text, images, and tables in order to provide an answer
to a question. The use of multiple modalities in biomedical QA makes it more difficult
than generic domain multi-modal QA for several reasons. Images and tables often contain
different types of information than text and may require different types of processing. For
example, images may contain visual information about the location and size of a tumor, while
tables may contain quantitative data about the patient’s vital signs. Experiments have also
been applied to radiology [83] and x-ray [122] data, using deep learning models to process
biomedical images. Integrating this information from multiple modalities can be challenging
and can lead to the increased complexity of the QA system.
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Limitations of Generative Models in Biomedical QA

Generative language models, such as the GPT-3 [25] and T5 [152] models, have received
significant attention in recent years due to their impressive ability to generate high-quality,
coherent, and grammatical text. These models can be trained on large datasets of text,
allowing them to capture the underlying patterns and structures of natural language, and
generate new text that is highly convincing and often indistinguishable from human-written
text.

However, one growing concern with these models is the potential for them to produce
hallucinations, or false and misleading information that is presented as if it were true. These
hallucinations can occur even when the training data is entirely correct and unbiased. The
root cause lies in the model’s ability to combine expressions and information during text
generation, which statistically align with each other and the given question but result in
statements that lack coherence or validity.

This is a particularly concerning issue in the medical domain, where the use of inaccurate
or misleading information could have serious consequences for patient health and safety.
Generative language models trained on medical records or other health-related data could
potentially generate false diagnoses or recommend inappropriate treatments, which could put
patients at risk.

Contradictory claims

Additionally, as the field of biomedical research continues to advance, it is not uncommon
for scientific claims and findings to be later disproven or revised based on follow-up research.
While a scientific article may present information that is believed to be true at the time of
publication, further research may reveal that the initial findings were incorrect, incomplete,
or based on flawed assumptions [7].

For example, if a biomedical question is asked that refers to a claim or hypothesis made
in a scientific article from several years ago, it is important to consider whether there has
been any follow-up research conducted that either supports or refutes that claim. Without this
consideration, it is possible that the answer provided by a question-answering system could
be inaccurate or out-of-date. Similarly, if a question is asked about a topic that is currently
being actively researched, it is important to take into account the current state of knowledge
and any ongoing studies that may provide new information. This can ensure that the answer
provided by a question-answering system is as accurate and up-to-date as possible.

Therefore, when developing question-answering systems for the biomedical domain, it is
important to take into account the temporal aspect of both the questions and the answers. This
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16 Overview of the thesis

can be achieved by incorporating up-to-date research findings and considering the potential
for follow-up research that may refute or support previously accepted claims or hypotheses.
Ultimately, this will lead to more accurate and reliable information being provided to medical
professionals and patients alike.

In summary, biomedical NLP is a complex task due to the technical vocabulary, high level
of abstraction, multi-modality, multilingualism, and privacy and ethical concerns. These
characteristics make it different from the generic NLP domain and require specialized NLP

models and techniques to accurately process and extract information from biomedical texts.

1.3 Outline of the thesis

In this thesis, we focus on improving existing deep-learning models and methods for infor-
mation retrieval and question-answering in the biomedical domain.

Chapter two provides background information on NLP and machine learning methods
that we use. We briefly describe some deep learning building blocks such as CNNs and
Transformers that we later use throughout all chapters of the thesis. We also describe a strong
traditional scoring function (BM25) that we use for document and snippet retrieval.

In chapter three we present details about all datasets available and already used to train
QA and MRC models. We discuss any notable features of the datasets and how they have been
used in previous research in the field. Overall, the aim of this chapter is to give a detailed
and thorough understanding of the datasets available for training QA and MRC models, and
how they have been used in the past.

In chapter four we present new deep-learning methods for biomedical document and
snippet retrieval. We propose new deep-learning models that jointly retrieve snippets and
documents and compare them with models that retrieve documents and snippets in a pipeline
setting. The proposed models surpassed the state of the art and achieved first place in the
BIOASQ challenge for the tasks of document and snippet retrieval in the sixth, seventh and
eighth years of the competition and second place in the ninth year of the competition. Finally,
we discuss the implementation of a retrieval system developed to aid biomedical experts in
two real-life cases.

In chapter five biomedical machine reading comprehension (MRC) is discussed. We
created two large biomedical MRC datasets using unsupervised methods previously used in
generic domain data and make them available to the public. Strong deep-learning baselines
have been proposed and a leaderboard has been created for the most recent of the two
new datasets. Human evaluation conducted with the help of biomedical experts as well as
non-experts shows the necessity of human expertise in order to answer biomedical questions.
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1.3 Outline of the thesis 17

It also shows that the proposed deep learning models yield great results and compete with
human evaluators.

In chapter six we examine data augmentation (DA) techniques that can be used for
biomedical factoid question answering. We compare seven data DA techniques that use
pre-trained language models, machine translation, text generation, and MRC data including a
dataset created in chapter four. All data augmentation techniques improve results in factoid
QA using biomedical data. An extensive ablation study and further experiments show that
the best method to augment data is to increase the context of the given text with surrounding
sentences or alternatively using pre-trained language models to replace parts of the text.

In Appendix A extensive additional experiments and ablation tests are presented for
retrieval models and data augmentation models. In Appendix B we present a preliminary
but unpublished study for document retrieval using dense vector representations conducted
during this thesis. We examine ways to create vector representations of snippets and questions
and then use the vectors of the questions to retrieve relevant snippets using only proximity
measures in the trained vector space. Preliminary results show that our approach surpassed at
the time other deep learning models for both biomedical and general domain snippet retrieval.
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Chapter 2

Background

The field of natural language processing (NLP) has seen a significant advancement in the
development of deep learning models for various NLP tasks. In this chapter, we will fo-
cus on Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and
Transformer models, which have been proven to be highly effective for a wide range of NLP

tasks and we use throughout this thesis. We will provide a detailed overview of each model,
including their architecture, key features, and main variations. Additionally, we will present
in detail the BM25 algorithm which is used in all of our retrieval models.

2.1 BM25

Given a pool of documents and a natural language query, a scoring function must be applied
to rank all documents according to their relevance to the query. There is a plethora of scoring
functions that can be used as scoring mechanisms in search engines such as Divergence From
Randomness (DFR) [60], Divergence From Independence (DFI) [45], Information Based
Model (IB) [100], LM Dirichlet [219], LM Jelinek Mercer [218], Relaxed Word Mover’s
Distance (RWMD) [86] and BM25 [157]. See Mitra and Craswell [120] for an overview of
the methods. BM25 is widely adopted as a default scoring mechanism for many retrieval
engines such as ElasticSearch1, Solr2 or Galago3 and other search engines build on top of

1See https://www.elastic.co/guide/en/elasticsearch/reference/current/index-
modules-similarity.html for more information on using BM25 with ElasticSearch.

2See https://solr.apache.org/guide/7_0/learning-to-rank.html for more information
on using BM25 with Solr.

3See https://lucene.apache.org/core/7_0_1/core/org/apache/lucene/search/sim
ilarities/BM25Similarity.html for more information about using BM25 on Galago.

Page 19 of 172

https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-similarity.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-similarity.html
https://solr.apache.org/guide/7_0/learning-to-rank.html
https://lucene.apache.org/core/7_0_1/core/org/apache/lucene/search/similarities/BM25Similarity.html
https://lucene.apache.org/core/7_0_1/core/org/apache/lucene/search/similarities/BM25Similarity.html
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Apache Lucene4. In most retrieval models that we built, we focus on re-ranking a list of
potentially relevant document obtained using BM25, therefore we explain the key parts of
the BM25 function.

The BM25 score between a query Q and a document D is defined as:

BM25(Q,D) =
N

∑
i

IDF(qi)∗
tf(qi,D)∗ (k1 +1)

tf(qi,D)+ k1 ∗ (1−b+b∗ f ieldLen
avgFieldLen)

(2.1)

where

IDF(qi) = ln(1+
docCount −df(qi)+0.5

df(qi)+0.5
) (2.2)

BM25 takes as an input a query Q (a set of tokens found in the user’s question) and a
candidate document D (a set of tokens found in a text of the corpus) and computes a relevant
score. In our experiments we use BM25 to score any document found in our corpus with
respect to a user’s question.

In the above equations, tf(qi,D) is the number of occurrences of the i-th query term qi in
the document (term frequency), df(qi) is the number of documents in the collection which
contain qi (document frequency) and docCount is the total number of documents. To reward
matches that can be found in shorter documents (e.g. a title) the fraction f ieldLen

avgFieldLen is used,
where fieldLen is the length of the document and avgFieldLen is the average length of all
documents in the corpus.

k1 is a parameter that helps to balance the importance of the term frequency in a document.
It limits the amount of weight that a single query term can have on the score of the document.
If k1 is set to a high value, it allows a single term to have more weight on the score of a
document, while if it is set to a low value, it reduces the weight of a single term on the score of
the document. As the frequency of a term in a document increases, the score of the document
will also increase, but at some point, the increase in score will start to saturate, meaning it
will not increase as much for each additional occurrence of the term. The parameter k1 is
used to control this saturation point, by limiting the maximum effect that a single query term
can have on the score of a document. By default, k1 has a value of 1.2 in Elasticsearch5 and
Galago6, the two search engines we have used throughout our research.

b is a parameter that controls the degree of length normalization in the BM25 algorithm.
Length normalization is a technique used to adjust the score of a document based on its

4See https://lucene.apache.org/core/7_0_1/core/org/apache/lucene/search/sim
ilarities/BM25Similarity.html for more information on Apache Lucene and its implementation of
BM25

5Visit https://www.elastic.co/ for more details
6Visit https://sourceforge.net/projects/lemur/ for more details
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2.2 Recurrent neural networks (RNN) 21

length. The idea behind this is that, in general, longer documents will contain more relevant
information than shorter documents, but it also might contain more irrelevant information.
Therefore, the length of a document should be taken into account when determining its
relevance. b usually ranges between 0 and 1. When b is set to 0, the length normalization is
not applied, and the scores are only based on term frequency and relevance. When b is set to
1, the length normalization is applied to the fullest and the scores are heavily influenced by
the length of the candidate document. By default, b is equal to 0.75 for both Elasticsearch
and Galago implementations.

2.2 Recurrent neural networks (RNN)

In this section, we describe the two types of RNN neural networks used during this thesis.
We assume that the reader is familiar with linear layers and multi-layer perceptrons (MLP).
Readers who are not familiar with neural network basics may wish to consider Russel et al.
[160] or Goldberg et al. [54] first.

Recurrent Neural Networks (RNNs) are different from Multi-Layer Perceptrons (MLPs)
in that (RNNs have a ‘memory’ component, allowing them to process sequential data. This
memory component is implemented through the use of recurrent connections, which allow
previous states of the network to be passed on to the current state. MLPs, on the other hand,
are feedforward networks that do not have any memory component and process input data
independently of previous inputs. This makes RNNs more suitable for tasks that involve
processing sequential data such as time series, speech recognition, and natural language
processing, while MLPs are better suited for tasks where the input data is independent of
previous inputs such as image classification, and regression problems.

2.2.1 Long Short-Term Memory (LSTM)

An LSTM is one of the most used RNNs in deep learning. The core concepts of the LSTM are
the cell state and its various gates. An LSTM can process a sequence input and it can store
information in its cell state and update, forget or extract information using its corresponding
‘gates’ (Equations 2.3).

In an LSTM, the update, forget, and input gates control the flow of information through
the network. The input gate (it in Equation 2.3) controls how much new information is added
to the current memory state. The update gate (C′

t in Equation 2.3) controls how much of
the previous memory state is passed on to the current state. The forget gate ( ft in Equation
2.3) controls how much of the previous memory state is forgotten. The output gate (Ot in

Page 21 of 172



22 Background

Fig. 2.1 The LSTM architecture. The outputs of the previous steps Ct−1 and ht−1 are
used as input to the LSTM. Equations 2.3 and 2.4 are used to compute the output of the
current timestep Ot to be used for the downstream task and the Ct and ht results are forward
propagated to be used in timestep t + 1. Since Ct and ht are used at the next timestep the
trainable parameters Wt , Wf , WC′ , Wo, Ut , U f , UC′ , Uo, bt , b f and bC′ will be updated with
back-propagated loss from all Ot , Ct and ht .

Equation 2.3)controls the output of the LSTM cell. It takes in the current input, the previous
hidden state, and the current cell state and produces a new output, which is then used to
update the hidden state. Together, these gates allow the LSTM to selectively choose which
information to keep, which information to discard, and which new information to incorporate,
enabling the network to maintain a long-term memory of the input sequence.

ft = σ(Wf × xt +U f ×ht−1 +b f )

it = σ(Wi × xt +Ui ×ht−1 +bi)

Ot = σ(Wo × xt +Uo ×ht−1 +bo)

C′
t = tanh(WC′ × xt +UC′ ×ht−1 +bC′)

(2.3)

Equations of the LSTM can be seen in Equation 2.3. The LSTM computes a candidate
memory (C′

t ) and combines it (Equation 2.4) with the memory produced in the previous step
(Ct−1) to form the current state memory (Ct). The output of the LSTM at timestep t is denoted
as Ot (Equation 2.4). Ct along with ht carry information about the already processed part of
the sequence and are provided as input to the next timestep.
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Ct = ft ⊙Ct−1 + it ⊙C′
t

ht = tanh(Ct)⊙Ot
(2.4)

Wt , Wf , WC′ , Wo, Ut , U f , UC′ , Uo are trainable matrices and bt , b f and bC′ are trainable
scalars of the LSTM. At time-step 1, C0, and h0 are randomly initialized or initialized as zero
vectors.

2.2.2 Gated Recurrent Unit (GRU)

Fig. 2.2 The GRU architecture. The output of the previous step ht−1 is used as input to
the GRU unit. The Equations 2.5 and 2.6 are used to compute the output of the current
timestep which is forward propagated to be used in timestep t +1. Since ht is used at the
next timestep the trainable parameters Wr, Wz, Wo, Ur, Uz, Uo, br, bz and bo will be updated
with back-propagated loss from ht .

A simpler RNN structure is the Gated Recurrent Unit (GRU). As seen in Figure 2.2 and
Equation 2.5, the output of a GRU is simply a hidden state at the current step ht . Two gates
(rt and zt in Equation 2.5) decide how much of the past information to forget and how much
information of the input should be kept. The scalars computed by the two gates are used to
weight and sum the output of the previous steps (ht−1) and the current step’s output h′t to
create the final output of the current step ht (Equation 2.6).
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rt = σ(Wr × xt +Ur ×ht−1 +br)

zt = σ(Wz × xt +Uz ×ht−1 +bz)

h′t = tanh(Wo × xt +Uo ×Ct +bo)

(2.5)

ht = zt ⊙ht−1 +(1− zt)⊙h′t (2.6)

Wr, Wz, Wo, Ur, Uz, and Uo are trainable matrices and br, bz and bo are trainable scalars
of the GRU. They are randomly initialized and are updated through back-propagation during
training. At time-step 1, when the first input of the sequence is processed, h0 is randomly
initialized or initialized as a zero vector. GRU has fewer trainable parameters than LSTM

which makes it quicker to train and demands less computational resources when processing
the same sequence.

2.3 Convolutional neural networks (CNNs)

Convolutional neural networks (CNN) are a type of artificial neural network that uses a
mathematical operation called convolution instead of general matrix multiplication used in
MLPs. In a convolution, filters (weight matrices) are used to multiply a part of the input
feature map and compute an output. Convolution were originally used to process images
using manually crafted filters.

Convolutional layers allow for parameter sharing, which means that the same weights
are used for multiple locations in the input. Therefore they have the ability to recognize
patterns regardless of their position in the input. They also reduce the number of trainable
parameters, make the model more efficient, and allow the parallelization of the convolutions.
Convolutional layers also use local connectivity, meaning that each neuron is only connected
to a small region of the input. This allows for more efficient learning and better generalization.

Convolutional layers in natural language processing can help to capture the local depen-
dencies between words in a sentence. This is done by applying a convolutional filter over
the input sentence, which is then used to extract local features from the text. This helps
to identify local patterns and features in the text and can be used, for example, to detect
sentiment, classify topics, and identify entities. Additionally, convolutional layers can help
reduce the number of trainable parameters in a model, as they are able to capture more
complex relationships between words using fewer parameters than recurrent neural networks.
This makes convolutional layers more efficient and better suited for large datasets.

A 3-dimensional convolutional neural network accepts an input matrix X of size Hinput ×
Winput ×Dinput where W , H, and D stand for width, height, and depth respectively. Tradition-
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ally, K randomly initialized filters of size FH ×FW ×Dinput are created. The filters are then
placed on top of the input matrix and are gradually moved from top to bottom and left to right.
For each filter M an output matrix O is computed using Equation 2.7 to compute the element
of the output matrix at row i and column j, where b is a trainable randomly initialised scalar.

Oi, j =

(
FH−1

∑
a=0

FW−1

∑
b=0

Dinput−1

∑
c=0

Xa+i,b+ j,c ∗Ma,b,c

)
+b (2.7)

Each time the filters move by a step size which is traditionally called stride. In Equation
2.8 the step used to move the filter along the height axis is denoted as SH while SW corresponds
to the step applied along the width axis. By reducing the stride, the output feature maps will
have a higher resolution, whereas increasing the stride will result in lower resolution output
feature maps. Striding is mainly used to reduce the computational cost of the network.

Padding is used in CNNs to maintain the spatial dimensions of the input while applying
convolutional filters. Without padding, the spatial dimensions of the input will be reduced
with each convolutional layer, which can lead to a loss of spatial information and decrease in
performance. Additionally, padding can also help to reduce the amount of border effect that
can occur when applying convolutional filters to the edges of an image. Therefore the input
of the convolution is expanded by adding vectors with zero values at the borders of the input.
PH vectors are added at the top and the bottom of the input and PW vectors are added on the
left and the right borders of the input.

In each step, a dot product is computed between the values of the filters and the part of
the input matrix that overlaps with the filter. 7 The output of the convolution is a matrix of
size Wout put ×Hout put ×Dout put where:

Hout put = (Hinput −FH +2PH)/(SH +1)

Wout put = (Winput −FW +2PW )/(SW +1)

Dout put = K

(2.8)

Filter dilation in CNNs is a technique used to increase the receptive field of a convolutional
filter without increasing the number of parameters. It is achieved by inserting zeroes between
the elements of the filter kernel and then convolving it with the input image. This increases
the spacing between the elements of the filter, effectively increasing the area of the input that
the filter can "see" or be receptive to. This technique can be useful in tasks such as image
segmentation, where a larger receptive field is needed to capture fine-grained details in the
image.

7Both striding and dot product operations can be parallelized thus making the CNN architecture faster than
RNN’s.

Page 25 of 172



26 Background

In convolutions applied to textual data, the filters are usually applied to the embedding
of the tokens. In that case, as presented in Figure 2.3, the second dimension of the filters is
usually equal to the size of the tokens’ embeddings (FH ×FW ×Dinput is equal to FH ×E ×1
where E is the size of the embedding of the token).

Fig. 2.3 Process of a CNN using one bigram filter. Word embeddings are retrieved for all
input tokens (green color). Light grey boxes in the embedding matrix (left) depict word
embeddings not detected in the input text. Padding is applied (dark grey boxes in the middle)
to the embeddings of the tokens. Starting from top to bottom a slice of two rows is selected
from the green matrix and a dot product is computed between the slice and the randomly
initialized trainable filter (pink boxes) to compute one cell of the convolution output (a red
box). Then the next two rows are used to compute the next red box and this process is
repeated until all rows are used.

In our experiments, we used CNNs specifically tailored for text processing. As presented in
Figure 2.3 given a sequence of tokens a feature map is computed by selecting the embedding
of each token. To apply a convolution we use a filter of size K ×E where K is the number
of tokens we want to examine simultaneously and E is the size of the word embeddings.
We drag the filter on top of the feature map and apply an element-wise multiplication and
sum the output scores to extract a score for the examined words. In Figure 2.3 a bigram
convolution is applied (K = 2) so the filter is applied to the vectors of two sequential tokens
each time. A higher K would mean that we use more words in each step but the trainable
parameters of the model grow.

This process can be applied multiple times with a different filter each time as in Figure
2.4. For each filter, a separate score is computed and the output of all filters combined creates
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Fig. 2.4 Process of a CNN using four bigram filters. The process resembles Figure 2.3. Each
filter is depicted with different color and the results of the convolutions are concatenated to
form the final result. Ideally, each filter captures a different feature of the consumed text.

a contextual embedding of the word as it has used features from the context (surrounding
words). The number of applied filters as well as the size of the filters are hyper-parameters
set by humans before training.

After a convolution, a contextual embedding is computed for each token. In some
experiments where a embedding for the entire sequence is needed, pooling methods are
applied. In Max-pooling the maximum score of each column is selected as an element for the
embedding of the entire sequence (see Figure 2.5). Similarly Average-Pooling the average of
all elements in the column is computed. More complex functions have also been proposed as
pooling mechanisms but will be further explained in our proposed models.
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Fig. 2.5 Pooling on the result of the convolution. In this example, the resulting feature vector
of the pooling mechanism is used as an input to a linear classifier for sentiment classification.

2.4 Transformer-based neural networks

The transformer architecture [186] sparked the creation of most state-of-the-art models in
Natural Language Processing. In this section, we present a quick overview of the transformer
architecture.

2.4.1 Byte-Pair Encoding (BPE)

Most transformer-based neural networks operate on sub-word units. One of the most common
algorithms for the extraction of sub-word units is the Byte-Pair encoding of tokens. Byte-Pair
Encoding [165] is a subword-based tokenization algorithm that splits the rare words into
smaller meaningful subwords (e.g. ‘subword’ turns to two subword units ‘sub’ and ‘##word’
where ‘##’ indicates that the token ‘word’ completes the preceding token). Each subword
unit is called a BPE. Given a pre-defined size of k BPEs for the vocabulary the algorithm
identifies the k most common sub-sequences of characters in a big corpus and adds them to
the vocabulary.

As shown in Table 2.1 given an example sequence ‘teaching deep learning’ as our corpus
the algorithm identifies the most common pair of characters ‘in’ and replaces it with a new
unseen character ‘I’. The algorithm repeats three times replacing ‘ea’ with ‘E’ and ‘Ig’ with
‘G’ and stops when the replacement matrix has k items (i.e. the vocabulary size has reached
the maximum allowed BPEs).

Using BPE, we start by finding the most common character pair in the sequence and
merge them into a single token. This process is repeated until the desired vocabulary
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Sequence alterations
teaching deep learning
teachIg deep learnIg
tEchIg deep lErnIg
tEchG deep lErnG

Steps
replace ‘in’ with I
replace ‘ea’ with E
replace ‘Ig’ with G
final representation

Byte Pair Replacement
Ig G
ea E
in I

Table 2.1 Example of BPE construction of a random sequence of characters. On the left
part of the figure, we observe how the sequence changes gradually as we replace ‘in’ with
‘I’, then ‘ea’ with ‘E’, and ‘Ig’ with ‘G’. The replacements are stored in the vocabulary on
the right. When millions of texts are processed the vocabulary includes the most common
sequences of characters along with the original unique characters of the processed texts.

size or a maximum number of iterations is reached. This way, the model can learn better
representations of the words that appear in the text, even if they are rare words or out-of-
vocabulary words.

2.4.2 Self Attention

The most important feature of the transformer block is the self-attention mechanism. In a
transformer block, a Self-Attention module computes an importance score for each sub-word
unit indicating how much the embedding of one sub-word unit contributes to the calculation
of the contextual embedding of every other sub-word unit in the input sequence.

In order to compute the attention scores the embeddings of the input sub-words, denoted
in Figure 2.6 as X , are multiplied by two trainable weight matrices WQ and WK . The notation
Q stands for Query and those vectors act as ‘givers’ i.e. they encode the information. The
notation K stands for Key and those vectors act as ‘receivers’ i.e. they receive information
from the Q vectors.

As seen in Figure 2.7 and Equation 2.9 the Q matrix is multiplied by the transpose
of the K matrix to form a cross-attention matrix. The result is then normalized using the
dimensionality of the vectors

√
dk and softmax is applied on each row of the attention matrix

so that the values of each row sum to 1.0. In the final attention matrix, the cell in row i
and column j holds an attention weight that indicates how much should the vector of the
sub-word at position j be taken into account when computing the contextual representation
of the sub-word at position i.
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Fig. 2.6 Self-Attention computation of Key-Query and Value vectors for 8 sub-words. The
embeddings of the sub-words are multiplied with three matrices containing trainable weights.
The Wv matrix is used to compute the output of a traditional Dense layer as if no attention
would be applied on top of the results. WQ and WK are trainable matrices used to compute Q
and K matrices which are essential to the computation of the attention scores of Figure 2.7.

Q = X ×Wq

K = X ×Wk

V = X ×Wv

Attention = softmax
(

Q×KT
√

dk

)
A = Attention×V

(2.9)

In Figure 2.7, the darker color in the attention matrix indicates a higher value. The result
of the multiplication X ×Wv corresponds to the output of a traditional perceptron layer that we
would use in a traditional MLP where no attention mechanism is applied. The attention matrix
is multiplied to the V matrix to extract contextual representations for each sub-word unit and
the resulting matrix A contains the contextual representations of the sub-word units. These
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Fig. 2.7 Self-Attention computation of attention matrix for 8 sub-words. Darker color in the
attention matrix indicates higher attention scores. The attention matrix is then used as in
Figure 2.8 to apply attention on the results.

representations encode each sub-word but alter the representation using the representation of
all sub-words in the input sequence.

Just like multiple filters can be used in convolutional layers aiming to capture different
higher level features of the input, in a transformer block multiple attention layers can also be
used to extract different contextual representations for the input sequence. In this process
called Multi-Head Attention the K,Q,V matrices of each attention mechanism are initialized
with different weights for each separate self-attention instance (also called attention head).
In Figure 2.9 we observe the output of 4 attention heads. In a transformer block the outputs
of all attention heads are concatenated and the resulting matrix is then multiplied with a
trainable weight matrix Wout . The Wout is trained to combine all contextual embeddings of
the sub-words and form the final contextual representations of the sub-words in matrix Z.

Many attention mechanisms have been proposed as alternative attention mechanisms
for a transformer layer. For example ANNA model [75] introduced a Neighbor-aware Self-
Attention mechanism which forces the diagonal of the attention matrix to have zero values.
This way they enforce the computation of contextual representation of a sub-word unit using
only the rest sub-word units of the input (i.e. the output of the transformer for a given
sub-word depends only on the context and not the sub-word unit itself). ANNA at the time
it was published achieved state-of-the-art results for Question Answering in SQUAD V1.1
dataset.
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Fig. 2.8 Self-Attention computation on a transformer layer for 8 sub-words. The attention
matrix is multiplied by the V matrix. The matrix V corresponds to the output of a traditional
Dense layer.

2.4.3 Positional Embeddings

As one could see in the example of Figure 2.6, if we swap the sub-word ‘I’ in the second
position with the sub-word ‘liked’ in the fourth position the only thing that would change
in the output representations would be the position of the contextual representations. The
contextual representations in matrix Z in Figure 2.9 would also swap but the numerical values
of the contextual representations would remain the same. Additionally, if the transformer
consumed a long text, the contextual representations for identical sub-words would be the
same regardless of their position in the text and their neighbouring tokens.

For these reasons, trainable positional embeddings are constructed and added to the input
vectors of the transformer. The sub-word at position 1 is added to the embedding of position
1 and so on. These positional embeddings are fine-tuned during training along with the rest of
the trainable parameters of the transformers. However, when positional embeddings are used
a maximum sequence length (in sub-words) has to be set. In most cases in the bibliography,
so far 512 positional embeddings are used setting a limit to the transformer input of 512
sub-words so longer sequences have to be truncated.

The original function used to compute positional embeddings in a transformer layer
is the sinusoidal function [186] presented in Equation 2.10. The sinusoidal positional
encoding outputs a unique encoding for each time-step (word’s position in a sentence) in a
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Fig. 2.9 The output of a Multi-Head Attention for 4 self-attention heads (pink color) is
multiplied by a trainable output matrix Wout (dark blue color) and the final output of the
transformer layer is computed.

sequence. Since no trainable embeddings are constructed this function can produce positional
embeddings for sentences regardless of their length.

PE(pos,i) =


sin( pos

100002i/d ), if i mod 2 == 0

cos( pos
100002(i−1)/d ), if i mod 2 == 1

(2.10)

Since unlimited positional embeddings can be computed using the sinusoidal function,
a transformer layer is limited only by computational resources. As longer sequences are
used as input to the transformer layer, bigger attention matrices must be used to compute the
contextual representations. Several deep learning models have been proposed that process
longer input sequences using fewer computational resources such as LongFormer [17],
BigBird [215] or Smith [203].

The Longformer [17] is a transformer-based model that is designed to process long
sequences in an efficient way. The proposed attention mechanism of Longformer scales
linearly with the sequence length, making it possible to process documents of thousands of
tokens or longer without the need to chunk or shorten the input.

Similar to LongFormer, BigBird [215] is a sparse attention mechanism that is linear in
the number of tokens. The authros claim that the model achieves state-of-the-art performance
on a number of natural language processing (NLP) tasks, such as question answering and
long document classification. The authors also introduce a novel application of attention-
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based models for extracting contextual representations of genomic sequences, like DNA, and
fine-tuning it for downstream tasks in genomics.

SMITH [203] is a novel Siamese Multi-depth Transformer-based Hierarchical Encoder
for document matching, which contains several design choices to adapt self-attention models
for long text inputs. The model is pre-trained using the masked sentence block language
modeling task to capture sentence level semantic relations within a document. Given a long
document, SMITH first encodes the sentences of the document using an encoder block and
then uses a sentence encoder block which consumes the embeddings of the sentences to
encode the entire document. Eve though SMITH bypasses the length limitations of the
input, it can only be used for document classification. The experimental results on several
benchmark data show that the SMITH model outperforms the previous state-of-the-art models
and increases the maximum input text length from 512 to 2048 when comparing with BERT
based baselines.

2.4.4 The encoder transformer block

The architecture of the encoder transformer block can be seen on the left part of Figure 2.10.8

The input of a traditional transformer block is sub-word units (Section 2.4.1) which are
translated into sub-word unit embeddings using an embedding matrix. Positional embeddings
(Section 2.4.3) are added to the sub-word unit embeddings to make them aware of their
position. Self attention (Section 2.4.2) is applied to compute contextual representations
for the sub-word units. A residual mechanism (i.e. the input of the self-attention layer is
added to the output) is used to allow back propagation of loss even if all weights of the
self-attention layer turn to zero and layer normalization normalizes the output values. A Feed
Forward layer is then applied to each contextual vector representation. This layer is called
time-distributed as the same layer is applied to all time-steps (all sub-words) of the input.
Finally a second residual mechanism and layer normalisation is applied to get the output of
the encoder transformer block.

2.4.5 Encoder - Decoder transformer

A transformer block as described above constitutes an encoder block. However, there are
architectures and tasks, such as translation, language modeling, or text summarization, that
also require decoding of an embedding or generating new text sequences. To that end, a
decoder transformer block was also introduced[186].

8Figure 2.10 is retrieved and used under CC-by-4 license from ‘Alammar, J (2018). The Illustrated
Transformer.’ : https://jalammar.github.io/illustrated-transformer/
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Fig. 2.10 An encoder-decoder architecture that uses both encoder and decoder transformer
blocks. On the left of the figure (green boxes), two encoder blocks are presented, and
on the right part (red box) the structure of a transformer decoder block is presented. The
encoder block consumes embeddings of sub-word units and applies positional encoding. A
Self-Attention mechanism computes contextual embeddings for the input sub-words. Then a
residual mechanism is applied followed by layer normalization. Finally, a time-distributed
Feed Forward layer is applied and a final residual and layer normalization layer computes
the output of the transformer. The decoder block resembles the encoder block however the
self-attention mechanism masks the input of the next timesteps when computing the output
at timestep t. Additionally, a second attention layer is added which instead of computing its
own K and V vectors uses the vectors computed by the encoder block.

The decoder transformer block operates differently than the encoder. The Masked
self-attention layer in a decoder (See also Figure 2.10) is only allowed to attend to earlier
positions of the output sequence by masking future positions before the softmax step in
the self-attention calculation is applied. Then residual mechanism and layer normalization
is applied. Additionally as a second differentiation from the encoder layer the ‘Encoder-
Decoder Attention’ layer is used. The‘Encoder-Decoder Attention’ is similar to multi-headed
self-attention, but instead of computing new key and value matrices it uses the key and value
matrices (matrices K and V ) of the encoder layer. Therefore the output of the attention is a
representation of both the input of the decoder the input sequence of the encoder block.

The last three steps of the decoder transformer block are similar to an encoder block.
A residual mechanism and layer normalization are applied, followed by a time-distributed
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linear layer. Finally a third residual mechanism and layer normalization is used to compute
the output of the decoder transformer block.

2.4.6 Pre-Training tasks

Most recent state-of-the-art models for NLP use transformer-based architectures. These
architectures are named and distinguished based on the number of layers as well as the
pre-training tasks used. For example, BERT [41] is a transformer-based model, where the
pre-training tasks are Masked Language Modeling (MLM), where the model is required
to restore a token replaced by a special token ‘[MASK]’ in the original input, and Next
Sentence Prediction (NSP) where the model should decide whether a sentence follows another
sentence in the original corpus they were sampled from or it was picked randomly. In BART,
[98] the pre-training tasks would be Masked Language Modeling, Token Deletion, Text
Infilling, Document Rotation, and Sentence Permutation using transformers in a Denoising
Autoencoder architecture.

Fig. 2.11 An example of the tasks used to pre-train the original BART model.

An example of all pretraining tasks can be seen in Figure 2.11. The target output is
presented in green color and includes two sentences (The tokens of the first sentence are
always underlined to easily detect them). In ‘sentence permutation’ the sentences are shuffled
and the model is trained to produce the original text. Similarly in ‘document rotation’
the original text is split into a random index and the order of the two parts of the text is
changed. ‘Document rotation’ is identical to ‘sentence permutation’ when the random index
coincides with the end of the first sentence. BERT-based models use token masking for
masked language modeling where subword units are replaced with ‘[MASK]’ tokens and
the model is pre-trained to replace the ‘[MASK]’ tokens with the missing subword units.
In an encoder-decoder setting like BART, the decoder can produce more than one subword
units to replace the ‘[MASK]’ token therefore multiple subwords may be replaced with one
‘[MASK]’ token in the input of the encoder. When training BART, besides using ‘token
masking’, the authors also used ‘token deletion’ where the subword units are removed but
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not replaced with the special token ‘[MASK]’, and also use ‘text infilling’ where ‘[MASK]’
tokens are randomly placed in the text. The model is pre-trained to ignore unnecessary
‘[MASK]’ tokens, and also add subword units even if the ‘[MASK]’ tokens are missing.

Page 37 of 172





Chapter 3

Background on QA Datasets

3.1 Question Answering Datasets

In this thesis, we mainly focus on standalone questions and textual data associated with
scientific biomedical literature. Our main goal is to develop advanced information retrieval
and question-answering systems that can effectively extract relevant information from large
biomedical corpora. In particular, we focus on the tasks of information retrieval and question-
answering in the biomedical domain.

These tasks are crucial for helping biomedical researchers access the information they
need to advance their work and improve human health. Therefore we provide information
about datasets that can be used for the tasks of information retrieval, snippet extraction, and
question answering.

3.2 Biomedical domain datasets

The most suitable and open dataset for Question Answering in the Biomedical Domain is
the dataset of the BIOASQ challenge [184]. The BIOASQ challenge is an annual competition
that evaluates the performance of information retrieval and question-answering systems for
biomedical research. BIOASQ provides, among other information, human-annotated tuples of
questions, relevant documents, and relevant snippets inside the relevant documents. These
data are created by biomedical experts and can be used in order to train and evaluate QA
systems.

In Task B phase B of the BIOASQ challenge, systems are given a set of questions and
a set of relevant documents that have been retrieved in response to those questions. The
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systems are then required to answer the questions by extracting the answer from the relevant
documents. There are four different types of questions that require different types of answers.

A factoid question is a question that can be answered with a short, factual statement.
These questions typically ask for specific information about a particular topic or entity. For
example, "Which protein has been found to interact with phospholamban (PLN) and is also
an anti-apoptotic protein?" are factoid questions. The answer to these questions is a single,
verifiable fact or piece of information. An example of a factoid question can be found in
table 3.1.

A list question, on the other hand, is a question that requires a list of items or entities as
an answer. These questions typically ask for multiple pieces of information or a set of entities
that are related to a particular topic. For example, "Which factors activate zygotic gene
expression during the maternal-to-zygotic transition in zebrafish?", "What are the effects of
depleting protein km23-1 (DYNLRB1) in a cell?" are list questions. The answer to these
questions is a list or a set of items.

A "yes/no" question is a type of question that can be answered with a simple "yes" or
"no" response. These questions typically ask whether a statement or claim is true or false.
For example, "Is Weaver syndrome similar to Sotos?", "Are ultraconserved elements often
transcribed?" are two examples of "yes/no" questions. Yes/No questions are used to evaluate
the ability of information retrieval systems and QA systems to determine the veracity of
statements or claims.

A summary question is a type of question that requires a summary or a brief overview of
a set of documents. These questions are typically answered with a short text that provides a
general overview of the main points or key takeaways from the relevant snippets provided by
human experts.

The models submitted by contestants in BIOASQ are evaluated in batches (sets) of
questions. The answers generated by the Participants’ algorithms are evaluated based on
various metrics such as precision, recall, F1 score, and MAP, and the results are used to rank
the participants and compare the performance of different algorithms. Additionally, human
experts review the submitted results to identify correct answers that may be missing from
the gold corpus thus the final comparison of the submitted models is fair. Up to this date, 5
batches of evaluation data are published each year.

Another useful dataset in the biomedical domain is the ‘baseline’1 of PubMed and
MEDLINE. PubMed is a search engine that provides free access to MEDLINE (and links
to full-text articles when possible), NLM’s database of citations and abstracts in the fields
of medicine, nursing, dentistry, veterinary medicine, health care systems, and pre-clinical

1For more information see: https://www.nlm.nih.gov/bsd/licensee/baseline.html
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Question Which protein has been found to interact with phospholamban
(PLN) and is also an anti-apoptotic protein?
To identify additional proteins that may interact with PLN, we
used the yeast-two-hybrid system to screen an adult human car-
diac cDNA library. HS-1 associated protein X-1 (HAX-1) was
identified as a PLN-binding partner.

Snippets Analysis of the anti-apoptotic function of (HAX-1) revealed that
the presence of PLN enhanced the (HAX-1) protective effects
from hypoxia/reoxygenation-induced cell death. These find-
ings suggest a possible link between the Ca(2+) handling by
the sarcoplasmic reticulum and cell survival mediated by the
PLN/(HAX-1) interaction.
The discovery of the PLN/(HAX-1) interaction therefore unveils
an important new link between Ca(2+) homeostasis and cell
survival, with significant therapeutic potential.

Answers ‘The HS-1 associated protein X-1’, ‘(HAX-1)’
Table 3.1 A training instance of the BIOASQ dataset for Phase B Task B. A human expert
poses a question and annotates the titles and abstracts of the biomedical articles by detecting
the answer span in the text. In this example, the question is factoid, and the answers that
should be extracted from the snippets are ‘The HS-1 associated protein X-1’ and ‘(HAX-1)’.

sciences. PubMed publishes yearly a snapshot of MEDLINE/PubMed data in XML format
referred to as ‘baseline’. NLM releases new and updated XML records on a daily basis. The
baseline of 2017 included 24,748,457 publications, while 16,806,115 of them contained
only the text of the abstract. By 2022 this number has risen to 33,848,661 publications,
while 22,889,477 of them contain only the text of the abstract. 2 Unlike BIOASQ, however,
PUBMED baseline does not include questions and answers.

The Medical Question Answering Dataset (MEDQUAD) [18] consists of 47,457 question-
answer pairs collected from 12 different NIH3 websites. The questions cover 37 different
topics related to diseases, drugs, and other medical entities such as tests. Contrary to BIOASQ,
however, MEDQUAD questions were created using 36 handcrafted patterns (e.g. ‘ques-
tion:When to contact a medical professional about DISEASE?’) instead of using questions
provided by humans.

PubMedQA[74], is a biomedical question answering (QA) dataset collected from PUBMED

abstracts. The task of PubMedQA is to answer research questions by selecting yes/no/maybe

2Detailed yearly statistics can be found in: https://www.nlm.nih.gov/bsd/licensee/baselin
estats.html

3The National Institutes of Health (NIH) is a part of the United States Department of Health and Human
Services (HHS) and is the primary agency of the U.S. government responsible for biomedical and public health
research.
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as an answer. Even though PubMedQA contains thousands of QA examples, only 1k of these
examples are human-authored and 211.3k of these examples are artificially generated.

CliCR [180] is a dataset for machine reading comprehension in the medical domain
that uses clinical case reports and contains around 100,000 gap-filling queries about these
cases. Almost 12K reports were collected from BMJ Case Reports 4 and span the years
2005–2016. A case report is a comprehensive account of a patient’s clinical experience that
emphasizes uncommon diseases, atypical symptoms of common ailments, and innovative
treatment techniques. Each report includes a section called ‘Learning Points’ which highlights
the essential information from the report. These learning points are usually paraphrased
fragments of the text and may not exactly match the sentences in the report. To generate
questions, we mask a medical entity by using these learning points.

The authors of the paper apply several baselines and neural network readers to the dataset
and observe a significant gap in performance (20% F1) between the best human and machine
readers. They analyze the skills required for successful answering and show how reader
performance varies depending on the applicable skills. They suggest that representing back-
ground knowledge by inducing embeddings for entities or integrating ontological knowledge
into the models is a promising avenue for future research.

MedQA-USMLE [73] is a dataset that can be used to train and evaluate machine reading
comprehension models in the biomedical domain, with a particular focus on diagnostic
questions. The dataset contains over 200,000 questions, along with their corresponding
answers, and covers a wide range of diseases, symptoms, and diagnostic criteria. The authors
also provide an analysis of the dataset, including the distribution of questions by disease and
the difficulty level of the questions. They trained and evaluated several deep learning MRC

models but none of them achieved good performance on these data. By publishing their new
dataset they encourage future research on biomedical MRC.

MedMCQA [137] is a large-scale, multiple-choice QA dataset designed to address real-
world medical entrance exam questions. The dataset contains more than 194k high-quality
questions covering 2.4k healthcare topics and 21 medical subjects. The questions are created
using text from entrance exams from the All India Institute of Medical Sciences and the
National Eligibility cum Entrance Test (NEET) which is a national-level examination that is
conducted by the National Testing Agency (NTA) in India. The dataset is designed to test the
reasoning abilities of a model across a wide range of medical subjects and topics, requiring
a deeper language understanding. Each sample contains a question, correct answer(s), and
other options. The paper provides a detailed explanation of the solution and shows that the
dataset is challenging for strong and domain-specific deep learning models, with the best

4https://casereports.bmj.com/
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baseline achieving only 47% accuracy. The authors believe that this dataset would facilitate
future research in this direction.

Context Chronic urethral obstruction because of urinary calculi, prostatic
hyperophy, tumors, normal pregnancy, tumors, uterine prolapse or
functional disorders cause hydronephrosis which by definition is
used to describe dilatation of renal pelvis and calculus associated
with progressive atrophy of the kidney due to obstruction to the outflow
of urine Refer Robbins 7yh/9,1012,9/e. P950 .

Question Chronic urethral obstruction due to benign prismatic hyperplasia
can lead to the following change in kidney parenchyma.

Choices Atrophy, Hyperophy, Hyperplasia, Dyplasia
Table 3.2 An example of a multiple choice question of the MedMCQA dataset. Given a
question, the system must select one of the given choices based on the provided context. In
this example ‘Atrophy’ is the answer and ‘Dyplasia’ cannot be found in the given context
which suggests that MedMCQA also includes questions that could only be answered using
prior knowledge.

EmrQA [138] describes an approach to generating large-scale QA datasets for specific
domains by reusing existing annotations from other NLP tasks. The authors demonstrate this
by creating a QA dataset for electronic medical records using annotations from a community-
shared dataset, resulting in a corpus called emrQA with 400,000+ question-answer evidence
pairs. The authors conclude that this method has the potential to make a significant impact in
domains such as medicine, where obtaining manual QA annotations is difficult.

In their paper, Gu et al. [56] challenge the assumption that mixed-domain pre-training
is necessary for biomedical NLP tasks and show that domain-specific pre-training can lead
to state-of-the-art results across a range of biomedical NLP applications. To facilitate this
study, the authors compiled a comprehensive biomedical NLP benchmark called BLURB,
which includes a diverse set of tasks such as named entity recognition, relation extraction,
document classification, and question answering. They also release their state-of-the-art
biomedical BERT models and set up a leaderboard based on BLURB, in order to accelerate
research in this field.

cMedQA [222] is a text corpus created by harvesting questions and answers from an
online Chinese health and wellness community. The paper focuses on the problem of Chinese
medical question-answer matching, which is more challenging than open-domain question-
answer matching in English due to the combination of its domain-restricted nature and the
language-specific features of Chinese. The authors propose a new end-to-end character-
level multi-scale convolutional neural framework that uses character embeddings instead of
word embeddings to avoid Chinese word segmentation in text pre-processing. Experimental
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results on the cMedQA dataset show that the proposed approach outperforms several strong
baselines, and achieves an improvement of top-1 accuracy by up to 19

DrugEHRQA [12] is the first QA dataset that contains question-answer pairs from both
structured tables and unstructured notes from publicly available Electronic Health Records
(EHRs). The dataset contains medication-related queries, with over 70,000 question-answer
pairs. The authors developed a simple baseline model for multimodal QA on EHR, using a
modality selection network [58]. The paper provides a benchmark dataset for multi-modal
QA systems and opens new avenues of research in improving question answering over EHR
structured data using context from unstructured clinical data.

MASH-QA [227] is a dataset for question answering in the consumer health domain,
where answers may need to be excerpted from multiple, nonconsecutive parts of text spanned
across a long document. The authors of the paper propose a new neural architecture called
MultiCo, which is able to capture the relevance among multiple answer spans by using a
query-based contextualized sentence selection approach for forming the answer to a given
question. The model is evaluated on multiple datasets and is shown to outperform pre-existing
state-of-the-art QA models by a wide margin. The authors emphasize that this is the first
work that introduces the QA setting with multiple discontinuous answer-spans from a long
document.

3.3 General Domain Reading Comprehension Datasets

The Text Retrieval Conference (TREC) workshop series5 encourages research in information
retrieval and related applications. The TREC Question Answering track [188] was the first
large-scale evaluation of domain-independent question-answering systems. Its dataset con-
tains both biomedical and non-biomedical questions. Multiple NIST assessors independently
created question interpretations (questions transformed into one or more executable queries
each) and judged responses for the set of non-biomedical questions. To judge the set of
medical questions, a NIST assessor was given a set of reference answers from a physician
and judged system responses based on the reference answers. Each medical question had
only one assessor and none of the assessors was a medical expert.

SemEval (Semantic Evaluation)6 is an ongoing series of evaluations of computational
semantic analysis systems. In the SemEval of 2015 the coordinators organized a total of
eighteen tasks into five tracks. In task “Answer Selection in Community Question Answering”
of the “Text Similarity and Question Answering” track they offered a dataset inviting systems

5http://trec.nist.gov
6http://alt.qcri.org/semeval2015/
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to retrieve snippets relevant to a question (subtask A) and answer YES/NO questions (subtask
B). The questions are derived from a community question-answering system, where there are
few restrictions, if any, on who can post and who can answer a question.

The Stanford Question Answering Dataset (SQUAD) [154] is a reading comprehension
dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where
the answer to every question is a segment of text, or span, from the corresponding given
passage. These questions are based on the content of the passage and can be answered by
reading through the passage. For each question of SQUAD there are one or more gold answers
consisting of snippets or phrases extracted from the passages. With 100,000+ question-
answer pairs on 500+ articles, SQUAD is one of the largest and most used manually curated
Machine Reading Comprehension (MRC) datasets we are aware of. There is also an online
scoreboard7 where the competitive teams can submit and compare their results.

Squad v2 [153] includes several changes and improvements over Squad v1. Unanswerable
questions were added to the corpus which are questions that do not have a corresponding
answer in the provided context. This allows models to be trained and evaluated on their
ability to identify unanswerable questions. More diverse and representative examples are
included, such as questions that require reasoning over multiple sentences or paragraphs,
or questions that require an understanding of idiomatic language or figurative language. A
new annotation process was followed, which involves a larger and more diverse group of
annotators, and a more rigorous quality control process to ensure high-quality annotations.
Finally, additional evaluation metrics are provided, such as F1-EM (F1 with exact match) to
better evaluate the performance of models on this task.

WikiQA [209] is a publicly available dataset for research on open-domain question
answering. Similar to Squad V2, it includes questions for which there are no correct answers,
enabling researchers to work on answer triggering, a critical component in QA systems. The
authors compare several systems on the task of answer sentence selection on both WikiQA
and a previous dataset called QASENT. The authors hope that the WIKIQA dataset will
enable further research in answer sentence selection in more realistic settings and provide
useful baselines.

Yang et al. [210] introduced HotpotQA, a dataset for question answering that includes
113k Wikipedia-based question-answer pairs. The authors argue that HotpotQA is a challeng-
ing dataset for QA systems since the questions require finding and reasoning over multiple
supporting documents to answer, and the questions are diverse and not constrained to any
pre-existing knowledge bases or knowledge schemas. HotpotQA also provides sentence-

7https://rajpurkar.github.io/SQuAD-explorer/
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level supporting facts required for reasoning, allowing QA systems to reason with strong
supervision and explain the predictions.

In Onishi et al. [135], the authors present a reading comprehension dataset called "Who-
did-What" which contains over 200,000 cloze-style questions constructed from the LDC
English Gigaword newswire corpus. The questions are formed by deleting a named entity of
type ‘Person’ from the first sentence of an article. An information retrieval system is then
used to select passages with high overlap between the passages and the cloze-style question.
The QA models are asked to select the named entity that answers the cloze-style question
from a list of named entities of type ‘Person’ found in the passages. Using pre-existing deep
learning MRC models, the authors show that this dataset yields a larger gap between human
and machine performance than pre-existing CNN and Daily Mail datasets.

Microsoft MAchine Reading Comprehension (MS MARCO) [132] is a large-scale real-
world reading comprehension dataset that contains 1,010,916 questions and 8,841,823 com-
panion passages extracted from 3,563,535 web documents. The questions are anonymized
search queries issued through the Bing search engine or Cortana and the companion passages
are the corresponding results. For each question, crowd-sourced human annotators were
asked to generate answers based on the information contained in the retrieved passages. The
annotators were allowed to mark a question as unanswerable based on the passages provided
and they were strongly encouraged to form answers in complete sentences In total 182,669
editorially generated answers were created from the retrieved passages.

CBTest dataset [62] contains cloze-style questions created using passages from children’s
books. Each cloze-style question (Table 3.3) is a sentence that follows the correspond-
ing passage in its book, with a randomly selected common noun, named entity, verb, or
preposition of the sentence removed and turned into a slot to be filled in. It contains approxi-
mately 687k passage-question instances. It was more recently expanded to BookTest [11],
which comprises approximately 14 million passage-question instances, by applying the same
methodology to a much larger collection of books.

The creators of BookTest dataset [11] built a dataset similar to the CBTEST dataset. They
created a large-scale annotated dataset for training machine reading comprehension (MRC)
models. The dataset is extracted from 3,555 copyright-free books, compared to the CBTEST

dataset, which was extracted from only 108 books. The creation of the BookTest dataset
followed the same procedure used to create the CBTEST dataset, and it contains 14,140,825
training examples. The dataset was created by detecting named entities and common nouns in
sentences, replacing them with gap tags, and using the preceding 20 sentences as the context
document. The training, validation, and test sets were generated from non-overlapping sets
of books and the models trained on the BookTest corpus can be evaluated on the original
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Context 1. The dusk , sweet night seemed to soothe her as it always did .
2. She leaned her head against the poplar by the gate .
3. How long Spencer Morgan had been standing by her she did not know,
but when she looked up he was there .
4. In the dim light she could see how haggard and hollow-eyed he had
grown .
5. He had changed almost as much as herself .
6. The girl ’s first proud impulse was to turn coldly away and leave him .
7. But some strange tumult in her heart kept her still .
8. What had he come to say ?
9. There was a moment ’s fateful silence .
10. Then Spencer spoke in a muffled voice .
11. “ I could n’t go away without seeing you once more,
Estella, to say good-bye .
12. Perhaps you wo n’t speak to me .
13. You must hate me .
14. I deserve it . ”
15. He paused , but she said no word .
16. She could not .
17. After a space , he went wistfully on .
18. “ I know you can never forgive me – no girl could .
19. I ’ve behaved like a fool .
20. There is n’t any excuse to be made for me .

Cloze-Style
Question

21. I do n’t think I could have been in my right senses , XXXXX.

Choices Estella, Morgan, dusk, excuse, first, fool, heart, night, space, tumult
Table 3.3 An example cloze-style question of the CBTest dataset created using a passage
from the book titled ‘The Martyrdom of Estella’. 21 random sentences were picked fro the
text and the entities of the passage were identified. An entity (Estella) is removed from the
21st sentence creating a cloze-style question. To answer the cloze-style question any model
must select the correct answer (Estella), from the proposed candidates (i.e. the entities found
in the text).

CBTEST data. The authors have shown that using more data can improve performance by up
to 14.8%, while attempts to improve the model architecture on the same training data have
only given gains of up to 2.1%.

The CNN and Daily Mail datasets [61] were produced in a similar manner. They comprise
news articles and cloze-style questions constructed by removing words from sentences
summarising the articles; they contain approx. 380k and 880k instances, respectively.
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Chapter 4

Biomedical Document & Snippet
Retrieval

4.1 Introduction

Question answering (QA) systems that search large document collections [31, 184, 187]
typically use pipelines of components operating at gradually finer text granularities. A fully-
fledged pipeline includes components that (i) retrieve possibly relevant documents typically
using conventional information retrieval (IR); (ii) re-rank the retrieved documents employing
a computationally more expensive document ranker; (iii) rank the passages, sentences, or
other ‘snippets’ of the top-ranked documents; and (iv) select spans of the top-ranked snippets
as answers (e.g., named entities). Recently, stages (ii)–(iv) are often pipelined neural models,
trained individually [57, 68, 116, 139, 212]. Although pipelines are conceptually simple,
errors propagate from one component to the next [64], without later components being able
to revise earlier decisions. For example, once a document has been assigned a low relevance
score, finding a particularly relevant snippet cannot change the document’s score.

In this chapter, we examine the effectiveness of deep learning models for document and
snippet retrieval. We present pipelined and joint approaches to retrieve both relevant docu-
ments and snippets given a biomedical question. Our research has led to three distinctions
in the BIOASQ challenges as well as the development of the first joint model ever to tackle
document and snippet retrieval in the biomedical domain simultaneously. The best deep
learning approach has also been used in real-world scenarios to (i) answer COVID-related
questions through an online tool and (ii) assist biomedical experts in relevant literature
identification for biomedical systematic reviews.
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4.2 Related Work

Past work on information retrieval has investigated several techniques, ranging from tra-
ditional IR approaches to deep learning models and pipelines. Neural document ranking
[57, 68, 139, 69, 116] only recently managed to improve the rankings of conventional IR; see
Lin et al. [102] for caveats. Document or passage ranking models based on BERT [42] have
also been proposed, with promising results, but most approaches use only simplistic task-
specific layers on top of BERT [206, 133], similar to our use of BERT for document scoring
(to be discussed in section 4.4.1). An exception is the work of MacAvaney et al. [112], who
explored combining ELMO [149] and BERT with complex neural IR models, namely PACRR

[68], DRMM [57], KNRM [39], CONVKNRM [197], an approach that we also explore in this
thesis by combining BERT with PDRMM in BJPDRMM and JBERT (to be discussed in section
4.5.1). However, we jointly retrieve both documents and snippets, whereas MacAvaney et al.
[112] retrieve only documents.

Models that directly retrieve documents by indexing neural document representations,
rather than re-ranking documents retrieved by conventional IR, have also been proposed
[52, 6, 81], but none addresses both document and snippet retrieval. Yang et al. [204] use
BERT to encode, index, and directly retrieve snippets, but do not consider documents. Lee et
al. [95] propose a joint model for direct snippet retrieval (and indexing) and answer span
selection, again without retrieving documents. However, creating vector representations of
millions of snippets and creating an index to store these representations is computationally
expensive. For example, in PUBMED (discussed in chapter 3.2 there are more than 30
million documents. Even if only 10 snippets were indexed for each document it would need
approximately 1TB to store the index created using vectors of size 768 when a BERT model
is used. In contrast, when using a BM25-based retrieval engine only 175GB of storage space
is required.

No previous work combined document and snippet retrieval in a joint neural model
which is one of the key contributions of this chapter. This may be due to existing datasets,
which do not provide both gold documents and gold snippets, with the exception of BIOASQ

[184], which is however small by today’s standards (2.7k training questions). For example,
Pang et al. [139] used much larger clickthrough datasets from a Chinese search engine,
as well as datasets from the 2007 and 2008 TREC Million Query tracks [150], but these
datasets do not contain gold snippets. SQUAD [154] and SQUAD v.2 [153] provide 100k
and 150k questions, respectively, but for each question they require extracting an exact
answer span from a single given Wikipedia paragraph; no snippet retrieval is performed,
because the relevant (paragraph-sized) snippet is given. Ahmad et al. [5] provide modified
versions of SQUAD and Natural Questions [87], suitable for direct snippet retrieval, but do
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not consider document retrieval. SearchQA [50] provides 140k questions, along with 50
snippets per question. The web pages where the snippets were extracted from, however,
are not included in the dataset, only their URLs, and crawling them may produce different
document collections, since the contents of web pages often change, pages are removed etc.
MS-MARCO [132] was constructed using 1M queries extracted from Bing’s logs. For each
question, the dataset includes the snippets returned by the search engine for the top-10 ranked
web pages. However, the gold answers to the questions are not spans of particular retrieved
snippets, but were freely written by humans after reading the returned snippets. Hence, gold
relevant snippets (or sentences) cannot be identified, making this dataset unsuitable for our
purposes.

Wang et al. [190] managed to achieve a Mean Average Precision (MAP) score 1 of
0.7134 in the TREC QA dataset [187] achieving at that time a new state of the art. They
used a combination of a three-layer stacked bidirectional recurrent neural network (biRNN)
[163, 166] with LSTM units [63] (see also section 2.2.1) as well as keyword matching using
the BM25 [156] score (see section 2.1). They claim that their experiments provide strong
evidence that distributed (embeddings extracted from the RNN) and symbolic (keyword
matching) representations encode complementary types of knowledge, which are all helpful
in identifying answer sentences.

Severyn et al. [167] describe a new deep learning architecture for re-ranking short texts,
such as questions and documents limited to one sentence each. The architecture is based
on two distributional sentence models using convolutional neural networks that map input
sentences to distributional vectors and learn the semantic similarity between them. The
advantages of the proposed model include its ability to learn from unsupervised corpora,
use a rich representation of query-document pairs, and ease of adding additional similarity
features. The model outperforms previous state-of-the-art systems in answer sentence
selection and Microblog retrieval tasks and does not require manual feature engineering or
external resources.

The next year, Yang et.al. [202] proposed an attention-based neural matching model
for ranking short answer texts based on whether they answer or not the question. They
used convolutional layers to extract token contextual embeddings for a sentence and a
question. Yang et al. also introduced a new attention mechanism which they called the
‘value-shared weighting scheme’ and applied it to the dot product similarity between the
contextual embeddings of the question and the sentence. Their attention mechanism divides
the similarity range [−1,1] into K bins (for example if the size of a bin is set to 0.1 then

1https://en.wikipedia.org/wiki/Evaluation_measures_(information_retriev
al)#Mean_average_precision
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20 bins are created). A trainable parameter is assigned to each bin so that pairs with close
similarities are attended by the same trainable weight. They experimented with their model
using additional features such as word overlap features, IDF weighted word overlap features,
and BM25 and they managed to get a MAP score of 0.7495 on the TREC QA dataset using
their model and only one additional feature, i.e. the Query Likelihood (QL) [201] score using
the toolkit LambdaMART [26].

Suggu et al. [178] presented a novel approach "Deep Feature Fusion Network (DFFN)"
for AQP (Answer Quality Prediction) which combines hand-crafted features (HCF) with
deep learning features. The DFFN architecture takes in a question, answer, and metadata and
predicts the quality of the answer. The approach proposes two different models, DFFN-CNN
and DFFN-BLNA, which differ in the way they model the input question-answer pair. DFFN
enriches the features learned by CNN and BLNA by incorporating external resources such
as Wikipedia, Google Cross-Lingual Dictionary (GCD) [177], and Clickthrough Data [67].
The results show that DFFN outperforms other approaches and achieves state-of-the-art
performance on the standard SemEval-2015 and SemEval-2016 benchmark datasets (see
section 3.3 for details on the SemEval series).

4.3 Data Handling

We use data from PUBMED (see section 3.2), a search engine that provides free access
to MEDLINE, NLM’s database of citations and abstracts in the fields of medicine, nurs-
ing, dentistry, veterinary medicine, health care systems, and pre-clinical sciences. The
document collection consists of approx. 30M ‘articles’ (titles and abstracts only) from the
‘MEDLINE/PubMed Baseline’ collection (years 1900-2020).2 We discarded the approx. 10M
articles that contained only titles, since very few of these can be used for Information Re-
trieval or Question Answering. For the remaining 20M articles3, a document was constructed
from the concatenation of each title and abstract. These documents were then indexed using
Galago4 and ElasticSearch5, removing stop words and applying Krovetz’s stemmer [84].

2Available from https://www.nlm.nih.gov/databases/download/pubmed_medline.html.
3By January 2023 this number rose to 24M articles.
4We used Galago version 3.10. Consult http://www.lemurproject.org/galago.php.
5We used ElasticSearch 5.0.1. Consult https://www.elastic.co/guide/en/elasticsearch/

reference/5.0/index.html.
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4.3.1 Biomedical Word Vector Representations

Word embeddings were pre-trained by applying WORD2VEC [119] to the 28M ‘articles’
(years 1900-2018) of the MEDLINE/PubMed collection. IDF values (see section 2.1) were
computed over the 18M articles that contained both titles and abstracts. We used the GenSim
implementation of WORD2VEC (skip-gram model), with negative sampling, and window size
set to 5, to produce word embeddings of 200 dimensions.6 For tokenization, we used the
‘bioclean’ tool provided by BIOASQ.7 In snippet retrieval, we used NLTK’s English sentence
splitter.8

4.4 Pipelined Methods for Document and Snippet Retrieval

We first describe pipeline approaches for document and snippet retrieval. These pipelines,
achieved state of the art scores compared to other pipeline models but also act as strong
baselines against the proposed joint models.

Fig. 4.1 Architecture of our pipelined document and snippet retrieval systems. The IR engine
retrieves candidate relevant documents (left). A neural document retrieval model ranks the
retrieved documents and returns the top 10. Then a neural snippet retrieval model ranks the
snippets from the 10 documents and returns the top 10 snippets.

6Consult https://radimrehurek.com/gensim/models/word2vec.html. All other hyper-
parameters where set to default values. We used Gensim v. 3.3.0. The word embeddings and code of our
experiments are available at https://github.com/nlpaueb/aueb-bioasq6.

7The tool accompanies an older set of embeddings provided by BIOASQ. See http://participants-a
rea.bioasq.org/tools/BioASQword2vec/.

8We used NLTK v3.2.3. See https://www.nltk.org/api/nltk.tokenize.html.
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4.4.1 Document retrieval in pipelined methods

BM25

In document retrieval, we re-rank documents retrieved by a traditional IR engine using BM25
(see section 2.1). As a first approach, we examine the rank of documents based on BM25
scoring without re-ranking the documents. This way we can measure the improvement of
each of the following re-ranking methods. During retrieval, the user poses a question in
natural language. Stopwords are removed from the question and the remaining words are
submitted as a query to the IR engine. The IR engine sorts the documents in descending order
according to their BM25 score and the top N documents are selected.9

TERM-PACRR

The first model we use for document retrieval is TERM-PACRR [24, 116], a modification of
PACRR [68].10 To train TERM-PACRR, we use mini-batches containing randomly selected
relevant and irrelevant documents (in equal numbers) from the top N documents that the IR

engine retrieves per training question, and we minimize binary cross-entropy (Equation 4.3)
for each document in the mini-batch. As in [24], we use a final linear layer that combines the
TERM-PACRR score with extra features:

• the number of common tokens in the question and the sentence,

• the number of common token bigrams in the question and the sentence,

• the sum of the IDF scores of the common tokens of the question and sentence,

• the BM25 score of the document as computed by the retrieval engine,

The overlap and IDF-weighted overlap scores are computed using Equation 4.1 where
Q represents the query terms, D represents the document terms, and IDF(t) is the inverse
document frequency for term t. In the case of the bigram overlap instead of query terms and
document terms, Q and D represent bigrams found in the query and document respectively.

overlap(Q,D) =
|Q∩D|

min(|Q| , |D|))

IDF-weighted-overlap(Q,D) = ∑
t∈Q∩D

IDF(t)

(4.1)

9In our experiments we set N = 100
10TERM-PACRR is called TERM-DRMM in [116].
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PDRMM

POoled SImilariTy Deep Relevance Matching Model (PDRMM) is our first deep learning
model for document re-ranking (Figure4.2). Given a query q = ⟨q1...qn⟩ of n query terms
(q-terms) and a document d = ⟨d1...dm⟩ of m terms (d-terms), PDRMM computes context-
sensitive term embeddings c(qi) and c(di) from the static WORD2VEC embeddings e(qi) and
e(di) by applying two stacked convolutional layers with trigram filters, residuals, and zero
padding to q and d, respectively. PDRMM then computes three similarity matrices S1,S2,S3,
each of dimensions n×m (Figure 4.2 upper left part). Each element si, j of S1 is the cosine
similarity between c(qi) and c(d j). S2 is similar, but uses the static WORD2VEC embeddings
e(qi),e(q j). S3 uses One-Hot vectors for qi,d j, signaling exact matches. A One-Hot vector
representation of a term is a vector of size equal to the number of unique words in a corpus
(vocabulary), where each dimension in the vector represents a unique word in the vocabulary.
Each dimension of the vector will be a binary value of either 0 or 1. The value is set to 1 at
the index of the word in the vocabulary, and 0 at all other dimensions. To each matrix (S1,
S2, or S3) we apply three row-wise pooling operators to extract 9 features for each q-term:
max-pooling, average-pooling, and the average of k-max. Max-pooling is used to obtain the
similarity of the best match between the q-term of the row and any of the d-terms. Average
pooling is used to obtain the average match of each q-term to all d-terms. The average of
k-max pooling is used to obtain the average similarity of the k best matches per q-term.11

We concatenate the three features extracted from each row of the three similarity matrices
(9 features in total) and concatenate them to obtain a new matrix S′ of dimensions n× 9
(Figure 4.2, right). Each row of S′ indicates the similarity of the corresponding q-term to any
of the d-terms, through three different views of the terms (One-Hot, static, context-aware
embeddings). Each row of S′ is then passed to a Multi-Layer Perceptron (MLP) to obtain a
single match score per q-term. This MLP consists of one dense layer with 8 neurons and leaky
RELU activation function, followed by a second dense layer with 1 output and no activation
function.

Each context-aware q-term embedding is also concatenated with the corresponding IDF

score (Fig. 4.2, bottom left) and passed to another linear layer that computes a score for each
q-term. A SoftMax activation function is then applied across all the q-term scores to compute
the importance of each q-term (e.g., words with low IDFs may not be helpful to answer the
question).12 Let v be the vector containing the n match scores of the q-terms, and u the vector
of the corresponding n importance scores (Fig. 4.2, bottom).

11In our experiments, k = 5. We added the average pooling to PDRMM to balance the other two pooling
operators that favor long documents.

12The importance scores of the q-terms can also be viewed as self-attention scores.
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Fig. 4.2 PDRMM for document scoring. The same model (with different trained parameters)
also scores sentences in the PDRMM+PDRMM pipeline and the joint JPDRMM model (adding
the layers of Figure 4.9).

We extract an initial relevance score for the document as r̂(q,d) = vT u, which is then
concatenated with the extra features (The same features used in TERM-PACRR). An MLP

computes the final relevance r(q,d) from the five features. 13 PDRMM is trained on triples
⟨q,d,d′⟩, where d is a relevant document from the top N that the IR engine returned for
question q, and d′ a randomly sampled irrelevant document among the top N. Hinge loss
(Equation 4.2) is used, requiring r(q,d) to exceed r(q,d′) by a margin.14

Hinge Loss(q,d,d′) = max(0,margin+ r(q,d′)− r(q,d)) (4.2)

BERT

As our second model for document retrieval, we use a BERT-based model. When fine-tuning
BERT on BIOASQ data or when using it at test time, we feed it with the concatenation of
a question and a (relevant or irrelevant) document. As standard, a special [CLS] token is
added to the start of the concatenation, while a [SEP] token separates the question from the
document (concatenated title and abstract), as illustrated in Figure 4.3. The output vector

13This MLP also consists of one dense layer with 8 neurons and leaky RELU activation function, followed by
a second dense layer with no activation function.

14In our experiments we set margin to 1.0
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of BERT for the [CLS] token is passed through a logistic regression layer (linear layer with
sigmoid) to obtain a BERT-based score for the document. This score is then concatenated to
extra features of the document (BM25 score and string overlap features), which are the same
as in TERM-PACRR. Finally, another logistic regression layer is applied to the concatenated
vector to get the final score of the document.

Fig. 4.3 Document scoring with BERT.

During fine-tuning, negative samples (irrelevant documents to be concatenated with
a training question) are drawn randomly from the non-relevant (according to the expert
annotators) documents in the list of top N documents that the conventional IR system (see
BM25 in section 2.1) returned for the particular question. Critically, we found that using two
losses per training instance helped accuracy. The first loss is the binary cross-entropy of the
final document score (Figure 4.3 last gray box). The second loss is also binary cross-entropy
but computed on the BERT-based score, before concatenating it with the extra features (Figure
4.3 first gray box). The two losses are summed.

Similarly to [24], we also experiment with a high-confidence version of BERT.15 In this
model, only documents with scores (probabilities of being relevant) greater than 0.01 were
returned as relevant, hence fewer than 10 documents (the maximum allowed in BIOASQ)
might be returned. This helped to improve the snippet retrieval component which was now
focused only on the most relevant documents.

15In [24], the high-confidence models were for another model, ABEL-DRMM.

Page 57 of 172



58 Biomedical Document & Snippet Retrieval

Binary Binary cross-entropy loss can be defined as:

L (y, ŷ) =− 1
N

N

∑
i=1

[yi log ŷi +(1− yi) log(1− ŷi)]

where:

N is the number of samples,

yi is the true label for the i− th sample,

ŷi is the predicted probability for the i− th sample to be positive and,

L (y, ŷ) is the binary cross-entropy loss for the prediction and ground truth pairs.
(4.3)

4.4.2 Snippet retrieval in pipelined methods

For snippet retrieval in pipelined methods, we trained state-of-the-art models to also rank
snippets of texts from the retrieved documents. For simplicity, we examine the sentences of
the top-ranked documents as snippets.

As in document retrieval, we use additional hand-crafted features:

1. the length of the question in characters,

2. the length of the sentence in characters,

3. the number of common tokens in the question and sentence,

4. the number of common tokens in the question and sentence excluding stopwords,

5. the number of common bigrams in the question and sentence,

6. the BM25 score of the sentence computed using all retrieved sentences as our corpus16,

7. the BM25 score of the document as computed by the retrieval engine,

8. the sum of the IDF scores of the common tokens of the question and sentence,

9. the sum of the IDF scores of the common tokens of the question and sentence, excluding
stopwords,

10. the sum of the IDF scores of the common tokens of the question and sentence, normal-
ized by the sum of the question’s tokens’ IDF scores.

16Instead of using all sentences of the 20M documents found in PUBMED we use only the sentences of the
retrieved documents as our corpus and compute the BM25 score (Equation 2.1).
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BM25

Similarly to document retrieval we use BM25 to also rank the sentences of the top-ranked
documents. A BM25 score (section 2.1) is computed using the user’s question and each
sentence separately (out of the context of the document).

BCNN

We apply two established deep learning models for sentence pair matching namely Basic
Bi-CNN (BCNN) and Attention-Based Convolutional Neural Network for Modeling Sentence
Pairs (ABCNN3) [212]. We re-implemented BCNN and ABCNN3 to extract a matching score
for each question-document pair.

For BCNN, given a question of Q terms and a snippet of S terms, we compute three
similarity scores sim1, sim2 and sim3 (Figure 4.4, dark pink boxes on the right) between the
question and the snippet. To compute sim1 we collect the WORD2VEC embeddings for both
question and snippet terms (Figure 4.4, left part) and apply global average pooling to get one
vector representation for the question and one for the snippet. Then sim1 is computed as the
cosine similarity of the two vectors.

We pad the embedding vectors (gray boxes in Figure 4.4) and apply a 4-gram convolu-
tional layer with a Tanh activation function on the padded embeddings. Then windowed
average pooling 4.4 is applied to the result of the convolution to get contextual vector rep-
resentations for the terms (Figure 4.4, middle). To compute sim2 we apply global average
pooling to the contextual vectors of the question and the snippet (Figure 4.4 middle top and
bottom) followed by cosine similarity.

Windowed average pooling is defined as:

Out(i, j) =
∑

w
k=0 In(i+ k, j)

w
where:

In is the input matrix of size K ×L,

Out is the output matrix of size (K −w+1)×L,

w is the size of the window (we set w = 4),

i is the row of the element we compute in the output matrix,

j is the column of the element we compute in the output matrix.

(4.4)
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A second 4-gram convolutional layer with a Tanh activation function is applied followed
by global average pooling17 to get one vector that intuitively embeds the meaning of the
entire sequence. The entire process is applied to both the Q terms of the question and the S
terms of the snippet and two vectors are computed (Figure 4.4, right). sim3 is computed as
the cosine similarity between the two vector representations.

The three cosine similarity scores (sim1, sim2, and sim3) are concatenated to extra hand-
crafted features (Figure 4.4, pink boxes on the right). A Logistic regression layer consumes
the concatenated vector and computes a relevance score between the snippet and the question.

Fig. 4.4 BCNN [212] scoring snippets relative to a question. The example illustrates a question
of 5 terms, a snippet of 7 terms, and a single convolution filter of width w = 3. Zero-padding
is shown as empty gray boxes. In each convolution/pooling block, the convolution layer is
followed by a windowed-average pooling of the same width w to preserve the dimensionality
of the input to the block. Thus convolution/pooling blocks can be repeated, making the model
arbitrarily deep.

17This is similar to setting the window size in window average pooling equal to the length of the input
sequence.
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ABCNN3

Attention-Based Convolutional Neural Network for Modeling Sentence Pairs (ABCNN3)
resembles the BCNN model. The difference lies in the attention mechanisms we apply before
and after each convolution. Given a question of Q terms and a sentence of S terms ABCNN3
computes three similarity scores sim1, sim2 and sim3 between the question and the sentence.
We collect the WORD2VEC vector representations of size E for the question terms and the
sentence terms. In order to compute sim1, global average pooling is used (see also BCNN)
on the vector representation of the question’s terms and the vector representation of the
sentence’s terms (Figure 4.5, part 1, top section), to compute one vector representation for the
entire question and a second vector representation for the sentence. Then sim1 is computed
using cosine similarity between the two vectors.

To compute sim2 the two sequences of embeddings are padded to the size of the longest
sequence (denoted as L in Figure 4.5) in the corpus. A euclidean distance matrix ED1 of
size L×L is computed using Equation 4.5 between every embedding of the question and
every embedding of the sentence. The intuition behind the similarity matrix ED1 is that it
can capture similarities between the question and the sentence which can be then used to
attribute higher attention values to similar tokens of the question and the sentence.

d (p,q) =

√
n

∑
i=1

(qi − pi)
2 (4.5)

A trainable attention matrix AW of size L×E is multiplied by the matrix that holds
the euclidean distance scores (ED1) to compute attention scores on the sentence terms
(Figure 4.5, part 1, middle). A second matrix multiplication is applied between the trainable
attention matrix AW and the transposed matrix of the euclidean distances (ED1T ) to compute
attention scores on the question terms. The attention matrices are stacked to the input vector
representations of the question and the sentence (bottom section of part 1 in Figure 4.5) and
a convolutional layer is applied on the stacked matrices (top section of part 2 in Figure 4.5).

A second similarity matrix (ED2) is computed using again the euclidean distance between
the contextual vector representations of the question and the contextual vector representations
of the sentence computed by the convolution. Then a column-wise summation and a row-
wise summation are computed on the similarities to capture one score per token as the total
similarity on the question terms (Figure 4.5, part 2, middle, ‘row sum’) and the sentence
terms (Figure 4.5, part 2, middle, ‘column sum’).

The summation results are expanded to match the size of the contextual vector representa-
tions and the two matrices are staked so that the total similarity score of a token is replicated
E times and aligned with all values of the contextual vector representation of the token. Sum
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pooling is used to extract the final contextual vector representations of the sentence and the
question terms. A global average pooling mechanism computes a final vector representation
for the entire question and another one for the entire sentence. Finally, the sim2 score is
computed as the cosine similarity of the pooled vectors (Figure 4.5, part 2, red box at the
bottom).

To compute sim3 the same process that computes sim2 is followed. This time however
instead of using the WORD2VEC embeddings of the question and the snippet as input, the
contextual embeddings computed in the former steps (Figure 4.5, part 2, ‘Sum Pooling
results’) are used. The three similarity scores computed by ABCNN3 (sim1, sim2, sim3)
are concatenated along with the extra hand-crafted features (just like when using the BCNN

model), and a final dense layer with SoftMax activation function decides whether the sentence
is relevant to the question or not.

Fig. 4.5 Attention mechanisms in the ABCNN3 model. ABCNN3 combines the two attention
mechanisms in order to improve the performance of BCNN. Part 2 is a continuation of part 1.
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PDRMM

We use the same process as in document retrieval (see Figure 4.2) to extract a score for each
sentence and then concatenate that score to the external features of the sentence. In this case,
instead of using the entire document and the question as input to the PDRMM model, we use
the query and a sentence instead. Given that we computed a vector that contains the sentence
score and the extra features for each sentence, we use a convolutional layer (Figure 4.6) to
extract each sentence’s final score, combining the sentence’s vector and the surrounding
sentences’ vectors.

Fig. 4.6 Convolution on Sentence PDRMM. The extra features (orange boxes) are concatenated
with the sentence scores. A 3-gram convolution learns to combine the extra features and the
scores of three sentences and computes a final score for each sentence.

BCNN-PDRMM

We use the same process as when using PDRMM for document retrieval (Figure 4.2), to
extract the intermediate scores of the sentences. Using BCNN, we apply average pooling
and cosine similarity to the input embeddings as well as to the output of each convolutional
layer extracting three scores for each sentence (sim1, sim2, and sim3 in Figure 4.4). We
concatenate the PDRMM intermediate score and the BCNN scores with the external features
and apply the convolution just like PDRMM to extract the final scores of the sentences.

ABCNN3-PDRMM

In the original PDRMM model (see also section 4.4.1) three pooling mechanisms are used
to compute similarities between the terms of the question and the terms of a document (see
4.2 right part). In ABCNN3-PDRMM we use the same pooling mechanisms but instead of
using a convolutional layer to extract contextual vector representations for the terms we use
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the output of the convolutional layers found in ABCNN3 (Figure 4.5 bottom right section
‘Attention result’).

BERT

We use the same architecture as when using BERT for scoring document relevance with
respect to a question (section 4.4.1). However, instead of using the concatenation of the
document and the question as input, this time we use the concatenation of the snippet and the
question. Additionally, instead of using four hand-crafted features as in BERT for document
retrieval, now we use the hand-crafted features used in all sentence retrieval models (10
features in total).

4.5 Joint Methods

We propose novel models for joint document and sentence retrieval. Our models compete
with state-of-the-art systems in both tasks using far fewer trainable parameters than other
proposed models. To our knowledge, we introduced the first model ever jointly trained for
documents and sentences. Our jointly trained models managed to surpass all the competitive
models in BIOASQ-7 and BIOASQ-8 challenges.

Fig. 4.7 The architecture of our joint document and snippet retrieval systems. The IR engine
retrieves candidate relevant documents. The joint neural model assigns scores to the sentences
of the retrieved documents and their snippets. We return the 10 documents with the highest
scores and the 10 snippets of those documents with the highest scores. In BIOASQ 7 we
participated with systems that use Galago as our IR engine. In BIOASQ 8 we replace Galago
with the ElasticSearch engine.
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4.5.1 JPDRMM, BJPDRMM and GRAPH-JPDRMM

We create a joint PDRMM-based model, called JPDRMM, which given a question and a
document, outputs relevance scores for each sentence (snippet) of the document, along with
a relevance score for the entire document. JPDRMM applies the same process described in
section 4.4.2 to compute a score for each sentence in the document. The maximum score
of all the sentences is selected and concatenated to the extra features of the document (left
part of Figure 4.9), which are the same as when PDRMM scores documents (see section
4.4.1). We have also experimented with other pooling operators to obtain the document score
from the sentence scores, including combinations of max-pooling, average pooling, and the
average of top k pooling, but they did not improve performance.

The score of the document is computed by applying an MLP to the concatenated features.
The MLP consists of one dense layer with 8 neurons and leaky RELU activation function,
followed by a second dense layer with no activation function. The scores of the sentences
are then revised to take into account the score of the entire document; the intuition is that
snippets from relevant documents are more likely to be relevant. To do so, we concatenate
the score of each sentence to the document score (Figure 4.9, right part), and pass each pair
of sentence-document scores through a logistic regression layer to obtain the final sentence
score.

Like the original PDRMM, JPDRMM is trained on triples ⟨q,d,d′⟩, where q is a question,
and d,d′ are relevant and irrelevant documents, respectively, sampled from the top N docu-
ments returned by the IR engine for q. In this case, however, we apply a sentence-splitter to d
and d′, and use JPDRMM to obtain relevance scores for d, d′, and each one of their sentences.
We compute a document hinge loss from the scores of d and d′ as when PDRMM scores
documents, and a binary cross-entropy (Equation 4.3) loss for each sentence (relevant or
irrelevant) of d and d′ as when PDRMM scores sentences. The document hinge loss is added
to the average sentence cross-entropy loss (averaged over all the sentences of d and d′), and
their sum is used to train the entire model via back-propagation.

We create three versions of JPDRMM: one using pre-trained WORD2VEC embeddings,
one using pre-trained word embeddings using graph link prediction [82], and one using
pre-trained embeddings obtained from the top layer of the publicly available BERT BASE

instance [42].18 We call W2V-JPDRMM, GRAPH-JPDRMM, and BJPDRMM the three versions,
respectively.

To train word vector representations used in GRAPH-JPDRMM we had to construct a
biomedical graph that contained thousands of biomedical entities so that out-of-vocabulary
words would be rare and the embeddings could cover a wide range of biomedical terms. The

18We also experimented with BIOBERT [94], but there was no notable improvement.
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node embedding method we used is an extension of NODE2VEC [55] that considers both the
topology of the graph it is applied to and the text associated with each node of the graph. In
our case, nodes are biomedical entities and the text of each node is the (often multi-word)
English name of the corresponding entity. The graph node embedding method uses an RNN

to obtain a node embedding from the word embeddings of the text (name) of the node and
then applies graph convolutions to make sure that the embeddings of nodes with common
neighbors are close to each other. In effect, the embeddings of two nodes (entities) end up
being close to each other if the two nodes have similar names (e.g., ‘acute cardiomyopathy’,
‘cardiomyopathy’) or similar neighbors.

To construct the entity co-occurrence graph, we used PUBTATOR [193] to identify the
biomedical entities in a randomly selected set of approx. 5 million PUBMED abstracts.
Whenever a biomedical entity was found in the same abstract as another one, a link between
the two entities was added to the graph. We then pruned links corresponding to co-occurrences
with frequencies lower than 10. Although the graph embedding method is primarily intended
to generate node embeddings, it also generates word embeddings, which we used as an
alternative to WORD2VEC embeddings. The intuition was that nodes (entities) with similar
neighborhoods in the co-occurrence graph are probably related, the graph node embedding
method places their embeddings close to each other, and this might also help place close to
each other the embeddings of the words of the names of the two related nodes since node
embeddings are based on the word embeddings of the node names. We call GRAPH-JPDRMM

the JPDRMM version that uses word embeddings obtained via the graph embedding method,
and W2V-JPDRMM the original JPDRMM version with biomedical WORD2VEC embeddings.

BERT’s tokenizer splits words into subword units (wordpieces) [195]. In BJPDRMM, in
order to use IDF scores of entire words and compute exact matches across entire words, as in
W2V-JPDRMM, we reconstruct the words from the subword units before feeding them to the
rest of the model. Also, we use BERT’s top-level embedding for the first wordpiece of each
reconstructed word as the pre-trained embedding of that word.

In BJPDRMM we also experimented with finetuning the BERT model when training
JPDRMM. We call BJPDRMM-NF the model where the BERT part is not fine-tuned. In another
variant of BJPDRMM, called BJPDRMM-ADAPT, the input embedding of each token is a
linear combination of all the embeddings that BERT produces for that token at its different
Transformer layers. The weights of the linear combination are learned via back-propagation.
This allows BJPDRMM-ADAPT to learn which BERT layers it should mostly rely on when
obtaining token embeddings. Previous work has reported that representations from different
BERT layers may be more appropriate for different tasks [158]. BJPDRMM-ADAPT-NF
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Fig. 4.8 The BJPDRMM-ADAPT model combines the vector representations computed by
each encoder block by weighting the vectors of each layer by a trainable scalar. Each vector
representation computed in layer i is multiplied by a corresponding weight wi (From w0 for
the first layer up to w11 for the last layer.).

combines the two approaches. The BERT part of the model is not fine-tuned however the
weights of the linear combination of embeddings from BERT layers are still learned.

4.5.2 JBERT

The joint JBERT model is the same as JPDRMM, but uses the BERT model for sentence retrieval
(Section 4.4.2), instead of PDRMM, to obtain the initial sentence scores. The top layers of
Figure 4.9 are then used, as in all joint models, to obtain the document score from the
sentence scores and revise the sentence scores. Similarly to BJPDRMM, we also experimented
with variations of JBERT, which do not fine-tune the parameters of BERT (JBERT-NF), use a
linear combination (with trainable weights) of the ‘[CLS]’ embeddings from all the BERT
layers (JBERT-ADAPT), or both (JBERT-ADAPT-NF).
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Fig. 4.9 Final layers of JPDRMM and JBERT. The input sentence scores are generated by
PDRMM (Figure 4.2) or BERT (Figure 4.3) now applied to document sentences. The
document’s score is obtained from the score of its best sentence and external features and is
also used to revise the sentence scores. Training jointly minimizes document and sentence
loss.

4.6 Dense Retrieval

4.6.1 SEMantic Indexing for SEntence Retrieval (SEMISER)

Our JPDRMM-based models of the previous section rely on conventional information retrieval
to obtain a set of N possibly relevant documents from the document collection, and then
invoke JPDRMM to re-rank the retrieved N documents and their snippets. Instead, in this
section, we have created a neural encoder to map each sentence of the document collection to a
sentence embedding, and we index the sentences of the document collection by their sentence
embeddings. We use a similar encoder to map each question to a question embedding, and
approximate k-NN retrieval algorithms [21, 113] to retrieve the sentences of the document
collection whose embeddings are closest to the question embedding; the retrieved sentences
are ranked by increasing distance to the question embedding. When required to retrieve
documents too, we simply report the documents that contained the retrieved sentences; the
relevance score of each document is the minimum question-sentence distance over all the
sentences of the document.19 The encoder of the sentences and the encoder of the queries are
jointly trained in a ‘self-supervised’ manner, detailed below, which does not require manually
labeled gold relevant documents and snippets per training question. Our proposed method
called SEMISER (SEMantic Indexing for SEntence Retrieval), is a new deep learning model
for semantic indexing of sentences [200].

SEMISER takes a sentence and a question as input (Figure 4.10). Each word of the
sentence and question is mapped to the corresponding word embedding. In BIOASQ 8, we

19We also maintain an index that maps sentences to their documents.
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used the same biomedical WORD2VEC embeddings as in the JPDRMM methods.20 Two
stacked trigram convolutional layers (with tanh activations) are used to obtain a context-
aware embedding for each word, and an attention layer (different for sentences and queries)
then computes the sentence and question embeddings. The attention layer actually produces
two sentence embeddings (vectors) and two question embeddings. The intuition is that the
two vectors will capture different views of the sentence and question, respectively, similar
in spirit to the multiple representations obtained when using multiple attention heads in
Transformer-based models [37]. To force the two sentence (or question) embeddings to
learn different views of the sentence (or question), we compute a cosine similarity loss
between the two sentence (or question) embeddings during training. We also compute the
maximum cosine similarity over all four pairs of sentence and question embeddings and
require it to be 1 (or 0) when SEMISER is given a question and a relevant (or irrelevant)
sentence, using binary cross-entropy loss.21 In our experiments, we simply added the three
losses. Although SEMISER can be trained in a supervised manner, by using pairs consisting
of queries and relevant (or irrelevant) sentences as positive (or negative) training instances,
BIOASQ provides relatively few training instances by today’s standards (approx. 2.6k training
queries, with approx. 1.24 relevant snippets per question on average). Instead, we opted for a
‘self-supervised’ approach, using an auxiliary training task for which very large numbers of
training instances can be obtained without manual annotation.

For the auxiliary training task, we used sentences from 50k randomly selected PUBMED

documents. The positive training instances were pairs consisting of one of the sentences
and a (possibly multi-word) key term extracted from the sentence using SGRANK [40],
an unsupervised key term extraction method. The negative training instances were pairs
consisting of one of the sentences and a key term extracted from another randomly selected
sentence. This process led to approx. 2.3 million training instances; we generated an equal
number of positive and negative instances. In effect, the auxiliary task requires SEMISER to
be able to generate sentence and query embeddings containing enough information to decide
if a sentence contains a key term (treated as a query) or not.

The intuition is that in most cases relevant sentences contain key terms of the queries,
hence being able to predict if a key term is included in a sentence is important. By forcing
key terms (more generally queries) to be represented by low-dimensional embeddings, we
also hope that similar queries will end up being close in the vector space and that similar
sentences will also end up being close in a similar manner.

20The word embeddings are not updated during training.
21We replace all negative cosine similarity values with zeros, using a RELU activation.
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Fig. 4.10 Illustration of the SEMISER model. Two trigram convolutions are applied to the
sentence embeddings (right) and an attention layer computes two vectors for the entire
sequence. A first cosine similarity (green box) is computed between the two vectors of the
sentence. During training, this similarity score is minimized so that the two vectors differ.
The same process is applied to the query embeddings and two vectors are computed for the
query. A cosine similarity is computed between the sentence vectors and the query vectors
and the maximum similarity is used as an overall similarity score between the sentence and
the query.

Having trained SEMISER, we use its right part (Figure 4.10) to obtain and index (off-line)
sentence embeddings and the left part to convert queries (on the fly) to query embeddings.
We use SEMISER to create two vector representations for each sentence in PUBMED. Both
vectors of all sentences are stored in the same index since they are computed using the same
convolutional layers. To retrieve sentences (and the documents that contain them), we query
the index of sentence embeddings (using approximate k-NN matching) to obtain the sentences
with the most similar sentence embeddings. For each retrieved sentence, we compute again
the maximum similarity score over all four pairs of sentence-query embeddings.
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Fig. 4.11 Using SEMISER for snippet (sentence) retrieval. Each sentence of each PUBMED

document is translated to two vector representations and all vectors are pre-computed and
indexed. In order to retrieve sentences relevant to a question, two vector representations of
the question are also computed and the sentences with the best cosine similarity in the vector
space are selected as relevant. Documents inherit the scores of their best snippets.

4.7 Experiments

4.7.1 Experiments on BIOASQ-7

During this thesis we have participated in multiple BIOASQ contests. Using data from
BIOASQ-7 (data provided by BIOASQ organizers during the seventh year of the competition)
we trained several models for document retrieval and snippet extraction. In BIOASQ-7
we participated with TERM-PACRR, PDRMM and BERT for document retrieval and BCNN,
ABCNN3, PDRMM, BCNN-PDRMM and ABCNN3-PDRMM for snippet extraction. We also
report the results of a simple pipeline that used BM25 both for document retrieval and
snippet extraction.

We submitted five different systems to BIOASQ 7 (Task 7b, Phase A), all of which consist
of components described above.

AUEB-NLP-1: W2V-JPDRMM (Section 4.5.1) for both document retrieval and snippet extrac-
tion.
AUEB-NLP-2: BJPDRMM (Section 4.5.1) for both document retrieval and snippet extraction.
AUEB-NLP-3: Pipeline consisting of TERM-PACRR (Section 4.4.1) for document retrieval,
followed by BCNN (Section 4.4.2) for snippet retrieval in batches 2 and 322, or PDRMM

(Section 4.4.2) in batches 4 and 5.
22See section 3.2 for details on BIOASQ batches.
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AUEB-NLP-4: Pipeline consisting of BERT for document retrieval, followed by BCNN (Sec-
tion 4.4.2) for snippet retrieval in batches 2 and 3, or PDRMM (Section 4.4.2) in batches 4
and 5.
AUEB-NLP-5: Pipeline consisting of BERT high confidence for document retrieval, followed
by BCNN (Section 4.4.2) for snippet retrieval in batches 2 and 3, or PDRMM (Section 4.4.2)
in batches 4 and 5.

In all five systems, after obtaining the top 10 documents and top 10 snippets, we re-ranked
the top 10 snippets by the scores of the documents they came from. The goal was to promote
snippets coming from highly relevant documents. In the first two systems, which use JPDRMM

versions, this final re-ranking of the snippets made almost no difference, since JPDRMM

internally revises the scores of the snippets taking into account the scores of the documents
they come from.

Table 4.1 reports the results of BIOASQ-7 tasks for document retrieval (Task b - phase
A) and snippet extraction (Task b - phase B) for batches 2–5. We did not participate in
batch 1. We observe that the BERT document ranker (used in AUEB-NLP-4) has the best
document MAP scores in all batches.23 The BERT high confidence document ranker (used in
AUEB-NLP-5) has the second best document MAP overall, but with greatly improved F1.

Interestingly, the joint model (used in AUEB-NLP-1/2) outperformed comparable pipeline
systems (AUEB-NLP-1 vs. AUEB-NLP-3, AUEB-NLP-2 vs. AUEB-NLP-4) by a wide margin
in snippet MAP. It obtained very competitive results in snippet MAP even without using
BERT embeddings (AUEB-NLP-1) and against pipelines that used BERT for document retrieval
(AUEB-NLP-4) and additional re-ranking heuristics (AUEB-NLP-5). Recall, also, that in
the joint model we selected the best training epoch by monitoring the document MAP on
development data, whereas for the snippet retrieval components of the pipeline models
(AUEB-NLP-3/4/5) snippet MAP was monitored; hence, the snippet MAP scores of the joint
model might improve further by monitoring snippet MAP. We also note that the joint models
use much fewer trainable parameters than the pipeline models (Table 4.2) and they outperform
AUEB-NLP-3, which was one of the best systems of BIOASQ 6. It is also interesting that in
both document and snippet retrieval, there is no clear difference between AUEB-NLP-1, which
does not rely on BERT at all, and AUEB-NLP-2, which uses BERT to obtain word embeddings.

Particularly interesting is that the joint model (AUEB-NLP-1/2) outperforms the BERT

based high-confidence model (AUEB-NLP-5) in snippet retrieval. Similarly to Brokos et
al. [24], we observed that passing only high-confidence retrieved documents to the snippet
ranking component in pipeline systems improved snippet retrieval greatly (compare the

23Document MAP is the official document retrieval measure of BIOASQ and also the measure we monitored
on the development data to select the best training epoch.
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snippet scores of AUEB-NLP-4 vs. AUEB-NLP-5), because it allowed the snippet retrieval
component to operate only on documents that were likely to be relevant. However, JPDRMM

did not require such heuristics. Instead, since it models the fact that good snippets come from
good documents and vice-versa, it naturally selected snippets mostly from high-confidence
documents. Thus the empirical results validate the hypothesis that joint modeling is beneficial.
An open question is why the joint models do worse on document ranking compared to the
pipeline models (AUEB-NLP-4/5). This is likely due to BERT (the document scorer of AUEB-
NLP-4/5) being such a powerful model. A future line of investigation is to build joint models
that integrate BERT to a larger extent, instead of just providing word embeddings to JPDRMM

as in BJPDRMM.

4.7.2 Ablation studies on the joint document and snippet retrieval mod-
els

Ablation is a technique that involves removing or deactivating specific components of a
deep neural network model to study the impact on model performance. This technique can
be helpful for understanding the relative importance of different model components and
for identifying potential areas for improvement. In this section, we report ablation studies
and evaluate the impact of additional hand-crafted sentence and document features on the
performance of the JPDRMM model.

We applied 10-fold cross-validation on the data of BIOASQ 7 and report the results
in Table 4.3. All joint models discussed in Section 4.5.1 use the sum of the document
and snippet loss (L = Ldoc +Lsnip). By contrast, in Table 4.3 we use a linear combination
L = Ldoc+λsnipLsnip and tune the hyper-parameter λsnip ∈ {100,10,1,0.1,0.01}. We also try
removing the extra document and/or sentence features to check their effect. This experiment
was performed only with JPDRMM, which is one of our best joint models and computationally
much cheaper than methods that employ BERT. Here we perform a 10-fold cross-validation
on the union of the training and development subsets.

Table 4.3 shows that further performance gains (6.80 to 7.85 document MAP, 15.42 to
17.34 snippet MAP) are possible by tuning the weights of the two losses, comparing to the
configuration we had used in Section 4.7.1, where both the sentence and document extra
features were used and λsnip was 1. The best scores are obtained when using both the extra
sentence and document features. However, the model performs reasonably well even when
one of the two types of extra features is removed, with the exception of λsnip = 10. The
standard deviations of the MAP scores over the folds of the cross-validation indicate that the
performance of the model is reasonably stable.
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4.7.3 Experiments on BIOASQ-8

We submitted the following five systems to BIOASQ 8 (Task 8b, Phase A). In all cases, we
used BM25 when scoring documents with ElasticSearch.

AUEB-NLP-1: W2V-JPDRMM (Section 4.5.1) for document and snippet retrieval, with BM25
(Section 4.4.2) for initial document retrieval.
AUEB-NLP-2 (batches 2–5 only): Same as AUEB-NLP-1, but with GRAPH-JPDRMM (Section
4.5.1) instead of W2V-JPDRMM (Section 4.5.1).
AUEB-NLP-3: Same as AUEB-NLP-1, but we use SEMISER (Section 4.6.1) to re-score the
sentences of the nd documents that W2V-JPDRMM (Section 4.5.1) retrieves. Each one of the
nd documents is then re-ranked by the score of its best snippet.
AUEB-NLP-4: SEMISER (Section 4.6.1) for document and snippet retrieval (Figure 4.10)
in batches 1–2. An ensemble of AUEB-NLP-1 and AUEB-NLP-2 in batches 3–5. In batches
3–4, the ensemble summed the scores of the two models (both when scoring documents and
snippets); in batch 5, it used the maximum score of the two models.
AUEB-NLP-5: BM25 (Section 4.4.2) for document retrieval, then SEMISER for snippet
retrieval.

The last three systems were intended to test the performance of SEMISER, when used on
its own for both document and snippet retrieval (AUEB-NLP-4, batches 1–2), when pipelined
after BM25 (AUEB-NLP-5), or when used as an additional re-scoring mechanism after
W2V-JPDRMM (AUEB-NLP-3). Since SEMISER performed very poorly when used on its own
(AUEB-NLP-4, batches 1–2), in the last three batches we used the slot of AUEB-NLP-4 to
experiment with ensembles of our two best systems (AUEB-NLP-1 and AUEB-NLP-2).

Table 4.4 reports the official MAP scores of our systems for batches 1–5, along with the
best score achieved by other participants in each batch. We also report system rankings,
again based on MAP.

A first observation is that AUEB-NLP-1 and AUEB-NLP-2, which use W2V-JPDRMM and
GRAPH-JPDRMM respectively, performed particularly well in snippet retrieval. In batches
1–4, they were the top two systems in snippet retrieval, largely outperforming all other
systems in MAP, and they ranked 2nd and 3rd in batch 5, where their MAP was close to that
of the best system.24 The two systems also performed well in document retrieval, where they
were ranked in the top 8 positions in all batches among more than 20 participants. These
document and snippet retrieval results also indicate that JPDRMM works equally well with
the original biomedical WORD2VEC embeddings (W2V-JPDRMM) and the word embeddings
we obtained from the entity co-occurrence graph via the graph node embedding method

24We are surprised by the fact that the official MAP scores occasionally exceed 100%, which may be due to
using a wrong normalization.
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(GRAPH-JPDRMM see Section 4.5.1). We observe that in all batches AUEB-NLP-1 (i.e. the
W2V-JPDRMM) is always located in the top 5 systems, excluding the document retrieval
score of batch 5. AUEB-NLP-2 (i.e. the GRAPH-JPDRMM) competes with AUEB-NLP-1 in all
batches and surpassed it in batch 4.

Another key observation is that SEMISER, which uses self-supervised neural encoders
to index and retrieve sentences and indirectly documents (AUEB-NLP-4, batches 1–2 only),
performed poorly, both in document and snippet retrieval. When SEMISER was used only
to score the sentences of documents retrieved by BM25 (AUEB-NLP-5), its snippet MAP

improved substantially (see batches 1–2), but remained well below the snippet MAP of the
best systems. For document retrieval, AUEB-NLP-5 uses BM25, hence the corresponding
document MAP results show the performance of conventional information retrieval. When
SEMISER was used to re-score sentences and documents retrieved by BM25 and W2V-
JPDRMM (AUEB-NLP-3), both document MAP and snippet MAP were lower than those of
AUEB-NLP-5. Overall, we were unable to obtain benefits by including SEMISER in any of our
systems. The simplistic ensembles (summing or taking the maximum score) of AUEB-NLP-1
and AUEB-NLP-2 that we experimented with (AUEB-NLP-4, batches 3–5) did not improve
document MAP and, more surprisingly, led to much worse snippet MAP compared to the
scores of the systems we combined.

4.7.4 Experiments on the Natural Questions Dataset

Even though there was no other large-scale IR dataset providing multiple gold documents
and snippets per question, we needed to test our best models on a second dataset, other than
BIOASQ. Therefore we modified the Natural Questions dataset [87] to a format closer to
BIOASQ’s. Each instance of Natural Questions consists of an HTML document of Wikipedia
and a question. The answer to the question can always be found in the document as if a
perfect retrieval engine were used. A short span of HTML source code is annotated by humans
as a ‘short answer’ to the question. A longer span of HTML source code that includes the
short answer is also annotated, as a ‘long answer’. The long answer is most commonly a
paragraph of the Wikipedia page. In the original dataset, more than 300,000 questions are
provided along with their corresponding Wikipedia HTML documents, short answer and
long answer spans. We modified Natural Questions to fit the BIOASQ setting. From every
Wikipedia HTML document in the original dataset, we extracted the paragraphs and indexed
each paragraph separately to an ElasticSearch index, which was then used as our retrieval
engine. We discarded all the tables and figures of the HTML documents and any question that
was answered by a paragraph containing a table. For every question, we apply a query to
our retrieval engine and retrieve the first N = 100 paragraphs. We treat each paragraph as a
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document, similarly to the BIOASQ setting. For each question, the gold (correct) documents
are the paragraphs (at most two per question) that were included in the long answers of
the original dataset. The gold snippets are the sentences (at most two per question) that
overlap with the short answers of the original dataset. We discard questions for which
the retrieval engine did not manage to retrieve any of the gold paragraphs in its top 100
paragraphs. We ended up with 110,589 questions and 2,684,631 indexed paragraphs. Due to
a lack of computational resources, we only use 4,000 questions for training, 400 questions
for development, and 400 questions for testing, but we make the entire modified Natural
Questions dataset publicly available.

Table 4.5 reports results on the modified Natural Questions dataset. We experiment with
the best pipeline and joint model of Table 4.1 that did not use BERT (and are computationally
much cheaper), i.e., PDRMM+PDRMM and JPDRMM, comparing them to the more conven-
tional BM25+BM25 baseline. Since there are at most two relevant documents and snippets
per question in this dataset, we measure Mean Reciprocal Rank (MRR) [114], and Recall
at top 1 and 2. Both PDRMM+PDRMM and JPDRMM clearly outperform the BM25+BM25
pipeline in both document and snippet retrieval. As in Table 4.1, the joint JPDRMM model
outperforms the PDRMM+PDRMM pipeline in snippet retrieval, but the pipeline performs
better in document retrieval. Again, this is unsurprising, since the joint models are geared
towards snippet retrieval. We also note that JPDRMM uses half of the trainable parameters of
PDRMM+PDRMM. No comparison to previous work that used the original Natural Questions
is possible, since the original dataset provides a single document per question.
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DOCUMENT RETRIEVAL
System Rank F-M. MAP GMAP

Batch 2
AUEB-NLP-1 9 17.84 7.41 0.66
AUEB-NLP-2 10 18.23 7.41 0.62
AUEB-NLP-3 5 19.05 7.71 0.75
AUEB-NLP-4 1 19.11 8.49 0.67
AUEB-NLP-5 2 34.43 8.30 0.49
Top Comp. 3 18.77 7.91 0.48

Batch 3
AUEB-NLP-1 4 23.80 10.41 1.18
AUEB-NLP-2 2 24.49 11.21 1.56
AUEB-NLP-3 6 22.66 9.86 1.04
AUEB-NLP-4 1 24.71 11.99 1.51
AUEB-NLP-5 3 40.34 11.02 1.64
Top Comp. 5 28.94 10.33 0.18

Batch 4
AUEB-NLP-1 4 20.56 9.51 1.01
AUEB-NLP-2 3 20.51 9.68 0.83
AUEB-NLP-3 5 19.42 9.09 0.83
AUEB-NLP-4 1 21.48 10.34 1.12
AUEB-NLP-5 2 37.83 10.15 1.16
Top Comp. 6 18.53 8.35 0.51

Batch 5
AUEB-NLP-1 3 9.90 3.68 0.06
AUEB-NLP-2 6 9.00 3.55 0.06
AUEB-NLP-3 5 9.91 3.66 0.07
AUEB-NLP-4 1 11.20 4.25 0.10
AUEB-NLP-5 2 20.12 3.99 0.08
Top Comp. 4 9.27 3.68 0.05

SNIPPET RETRIEVAL
System Rank F-M. MAP GMAP

Batch 2
AUEB-NLP-1 1 18.55 14.38 0.19
AUEB-NLP-2 3 17.64 12.90 0.28
AUEB-NLP-3 6 11.11 6.25 0.13
AUEB-NLP-4 5 10.96 6.43 0.14
AUEB-NLP-5 2 19.01 13.62 0.23
Top Comp. 4 12.12 8.93 0.04

Batch 3
AUEB-NLP-1 1 24.72 22.06 0.81
AUEB-NLP-2 2 25.63 21.97 0.89
AUEB-NLP-3 7 14.43 9.90 0.28
AUEB-NLP-4 5 15.44 11.26 0.37
AUEB-NLP-5 3 24.56 19.21 0.85
Top Comp. 4 16.17 14.04 0.09

Batch 4
AUEB-NLP-1 2 24.40 20.86 0.65
AUEB-NLP-2 1 23.65 21.14 0.75
AUEB-NLP-3 7 17.79 11.49 0.53
AUEB-NLP-4 9 17.91 11.16 0.56
AUEB-NLP-5 3 24.67 18.21 0.98
Top Comp. 4 17.23 15.27 0.13

Batch 5
AUEB-NLP-1 3 8.04 5.81 0.02
AUEB-NLP-2 1 8.18 6.31 0.03
AUEB-NLP-3 8 5.81 3.87 0.02
AUEB-NLP-4 6 6.53 4.16 0.02
AUEB-NLP-5 2 9.89 6.17 0.03
Top Comp. 4 6.56 4.99 0.01

Table 4.1 Performance on BIOASQ Task 7b, Phase A (batches 2–5) for document and snippet
retrieval. Top Comp. is the top scoring submission from other teams.

Model Number of Parameters
AUEB-NLP-1 5,793
AUEB-NLP-2 3,541,551
AUEB-NLP-3 16,519
AUEB-NLP-4/5 (with BCNN for snippets) 109,499,902
AUEB-NLP-4/5 (with PDRMM for snippets) 109,489,455

Table 4.2 The number of trainable parameters for systems submitted in BIOASQ 7.

Page 77 of 172



78 Biomedical Document & Snippet Retrieval

Sent extra doc extra weight AV. DOC MAP AV. SENT MAP
yes yes 100 6.08 (0.17) 14.50 (0.34)
yes no 100 1.34 (0.19) 03.94 (0.49)
no yes 100 0.78 (0.26) 01.73 (0.42)
yes yes 10 6.23 (0.14) 14.73 (0.32)
yes no 10 1.20 (0.14) 03.59 (0.45)
no yes 10 1.18 (0.23) 02.19 (0.29)
yes yes 1 6.80 (0.07) 15.42 (0.23)
yes no 1 1.35 (0.24) 03.77 (0.73)
no yes 1 7.35 (0.16) 14.58 (0.88)
yes yes 0.1 7.85 (0.08) 17.28 (0.26)
yes no 0.1 6.77 (0.25) 13.86 (1.10)
no yes 0.1 7.59 (0.12) 15.77 (0.60)
yes yes 0.01 7.83 (0.07) 17.34 (0.37)
yes no 0.01 6.61 (0.19) 12.96 (0.29)
no yes 0.01 7.65 (0.10) 14.24 (1.63)

Table 4.3 JPDRMM cross-validation results on BIOASQ 7 data for tuned weights of the two
losses, with and without the extra sentence and document features. The MAP scores are
averaged over the 10 folds. We also report standard deviations (±). (Results corresponding
to the configuration of Section 4.7.1 are shown in italics)
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DOCUMENT RETRIEVAL
System Rank MAP Rank MAP Rank MAP Rank MAP Rank MAP
Batch Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

AUEB-NLP-1 3 33.59 2 31.81 3 44.41 5 40.09 8 45.97
AUEB-NLP-2 n/a n/a 6 31.03 1 45.1 1 41.63 6 46.57
AUEB-NLP-3 14 24.37 14 27.02 24 32.56 25 28.29 23 33.89
AUEB-NLP-4 21 4.93 26 7.12 2 45.02 2 41.47 9 45.96
AUEB-NLP-5 13 28.62 9 28.43 15 38.31 19 34.77 18 40.93

Top Comp. 1 33.98 1 33.04 4 43.69 3 41.21 1 48.42
SNIPPET RETRIEVAL

System Rank MAP Rank MAP Rank MAP Rank MAP Rank MAP
Batch Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

AUEB-NLP-1 1 85.75 1 68.21 2 96.32 1 102.44 2 108.31
AUEB-NLP-2 n/a n/a 2 65.49 1 100.39 2 99.2 3 106.39
AUEB-NLP-3 9 21.71 15 15.56 13 23.85 13 17.54 13 26.37
AUEB-NLP-4 15 2.73 17 3.28 9 35.94 11 34.24 12 33.56
AUEB-NLP-5 4 36.36 10 22.17 10 32.17 8 35.31 11 37.34

Top Comp. 2 54.49 3 33.74 3 65.58 3 71.63 1 112.67

Table 4.4 Performance on BIOASQ Task 8b, Phase A for document and snippet retrieval. Top
Comp. is the top scoring submission of other teams. AUEB-NLP-2 (W2V-JPDRMM) did not
participate in batch 1. AUEB-NLP-4 was different in batches 1–2 (SEMISER on its own) and
batches 3–5 (W2V-JPDRMM and GRAPH-JPDRMM ensembles).

Document Retrieval Snippet Retrieval
Method Parameters MRR Recall@1 Recall@2 MRR Recall@1 Recall@2

BM25+BM25 4 30.18 16.50 29.75 8.19 3.75 7.13
PDRMM+PDRMM 11.4k 40.33 28.25 38.50 22.86 13.75 22.75

JPDRMM 5.8k 36.50 24.50 36.00 26.92 19.00 25.25
Table 4.5 MRR (%) and recall at top 1 and 2 (%) on the modified Natural Questions dataset.
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4.8 Deployment of Models in Vivo

In collaboration with Brown University and the Athena Research and Innovation Center,
we have deployed one of our deep learning models and developed a literature identification
system for systematic reviews. A systematic review is a summary of the medical literature,
seeking to identify and synthesize all relevant information to formulate the best approach
to diagnosis or treatment. Thousands of scientific articles are screened for each systematic
review which makes it a cumbersome task for human experts. These articles are mainly
retrieved using handcrafted queries with combinations of terminology using ‘AND’ and ‘OR’
rules.

In the domain of systematic reviews, a key question (Figure 4.12) refers to a clear and
specific question that guides the review process. The key question serves as the foundation
for defining the inclusion and exclusion criteria for the studies, as well as for analyzing
and synthesizing the results. The key question should be developed based on the review’s
purpose and should reflect the underlying research problem. In systematic reviews, the
key question is usually formulated using the PICO (population, intervention, comparison,
outcome) framework, which helps to clarify the specific elements of the review question.
The key question is essential for ensuring the validity, transparency, and replicability of the
systematic review. As seen in Figure 4.12 these questions are not trivial and differ in length
and content compared to questions used in BIOASQ.

Fig. 4.12 Key questions posed by human experts working on abstract screening for systematic
reviews. The questions are used unchanged as input to our retrieval model.
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We developed a system called Pythia [3] which enables interactive abstract screening
throughout the entire PUBMED database. Its functionality is based on an already-developed
tool used by experts [189] for abstract screening but we propose an improved version where
deep learning relevance ranking is integrated. The Key Questions are expressed in plain
text, are then processed by Pythia, and a batch of 100 PUBMED abstracts are retrieved for
screening. The user can then screen all relevant and irrelevant documents in the batch. Pythia
takes into account human annotations of all relevant and irrelevant documents in the batch
and presents the next batch of documents to the user. This process is repeated until users
have collected all relevant to the systematic review articles.

Given a key question the system searches for candidate publications in the ElasticSearch
database and retrieves the top 1,000 documents based on BM25 (see section 2.1) similarity
score. The documents are then re-ranked using scores computed by the JPDRMM model
described in section 4.5. Since multiple key questions are submitted to the system we retrieve
and rank 1000 abstracts for each key question and form a larger ranked list from the union of
the retrieved abstracts of all key questions. If an abstract is retrieved by more than one key
question the final score of the abstract is the maximum score computed. Finally, the top 100
abstracts are presented as the first batch of results to the users.

The abstracts are screened by a human, who annotates each one as relevant or irrelevant.
Once this is done, Pythia extracts a set of positive key phrases from the publications annotated
as relevant and a set of negative key phrases from the publications annotated as irrelevant,
using SGRANK [40]. Any abstract examined by the users is removed from the pool of
retrieved abstracts. The score of the remaining abstracts is penalized if any negative key
phrase is present in the abstract or increased for any abstracts containing a positive key
phrase, thus incorporating the feedback provided by users. Finally, the remaining abstracts
are ranked based on their score and the next batch of 100 abstracts are presented to the
user. This process is repeated until the user has retrieved a sufficient number of relevant
documents.

Overall as human experts reported that in four reviews, the number of abstracts reviewed
per relevant abstract number needed to read (NNR) was lower than in the manually screened
project. On the other hand, our system did not perform well in two reviews, probably because
the key questions do not resemble the data used to train the retrieval model (BIOASQ data).
Finally, we observed that more relevant citations are retrieved in early batches, but retrieval
was generally unaffected by other aspects, such as study design, study size, and specific key
questions.
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4.9 A demonstrator for searching in COVID-19 literature

The outbreak of the COVID-19 pandemic has led to many scientific publications. As more
research was conducted in order to understand the new virus and identify new therapies
thousands of new publications are published (Figure 4.13).

Fig. 4.13 COVID-19 related papers per month for the last 5 years.

We developed a prototype search engine for biomedical literature that can be used to
aid researchers and medical professionals find the latest and most relevant information on
COVID-19. The prototype retrieval engine for biomedical literature plays a crucial role in
helping researchers and medical professionals stay informed about the latest advancements in
COVID-19 research. This is achieved by offering quick and efficient access to an extensive
collection of scientific articles on the subject. This not only saves valuable time, but also
helps to keep professionals informed about the latest discoveries, treatments, and potential
solutions to COVID-19.

In addition to its role in supporting COVID-19 research, the engine also helps to combat
the spread of misinformation and fake news[71, 107, 159]. With so much information and
misinformation being shared on the internet, it can be difficult for professionals and the
general public to differentiate between credible sources and those that are not. The engine’s
curated collection of scientific articles, however, provides a trusted source of information on
COVID-19, allowing professionals to make informed decisions and take action based on the
most up-to-date research available.

We extracted approximately 1.8M sections from the full body of 190K biomedical articles
openly available as the CORD-19 dataset [191]. To make our search engine robust we use
our JPDRMM model described in section 4.5.1 to retrieve documents and relevant snippets.

The search engine is available through a web page 25. On the landing page of our search
engine, the user can express in plain text a question (Figure 4.14, first green box). Optionally
the user can narrow down the results by filtering sentences that are only found in a specific

25Visit http://cslab241.cs.aueb.gr:5000/
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Fig. 4.14 Demonstration of search engine landing page.

section of the full body of the paper such as ‘Introduction’, ‘Methods’, ‘Results’ (second
green box in Figure 4.14).

The search engine ranks the available sections in our corpus using JPDRMM and retrieves
the top 20 documents (Figure 4.15). The graphical user interface assigns darker green colors
to documents with higher relevance scores. The user views the titles of the papers that
may include the answer to the question and can select one or many of them by clicking
on the green box. Upon clicking a green box, the sentences of the relevant section appear
(Figure 4.16). If one of the top relevant sentences is present in the document, the sentence is
highlighted with yellow color.

Lastly, by clicking on a link that is created using the Digital Object Identifier (DOI), the
user has the ability to be directed to the webpage of the original article on the publisher’s
website. Up to this date, more than 3.6K searches have been submitted to our COVID-19
search engine.
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Fig. 4.15 Demonstration of search engine result page.

Fig. 4.16 Demonstration of search engine document selection.
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4.10 Conclusions and Future Work

In this chapter, we presented our work on a new joint model for document and snippet
retrieval in the BIOASQ competition. Our work makes several important contributions to
the field of QA for large document collections. We proposed deep learning architectures to
jointly rank documents and snippets with respect to a question. Our experiments showed
that the joint models greatly outperform the traditional pipelines in snippet retrieval while
remaining competitive in document retrieval. Additionally, we showed that our joint model
that does not use BERT is competitive with BERT-based models and outperforms the best
BIOASQ 7, and 8 systems.

We tested our retrieval models in the real-life scenario of systematic reviews. Our models
helped experts retrieve relevant articles for a systematic review faster than traditional retrieval
in four systematic reviews. Furthermore, we created a search engine for Covid-19 which can
help biomedical experts submit a question and retrieve relevant documents. More than 3.6K
requests have been processed up to this date.

We also provided a modified version of the Natural Questions dataset that is suitable
for document and snippet retrieval. Our JPDRMM model performed well in both document
and snippet retrieval on this dataset, improving the traditional BM25 ranking. Our retrieval
models can be extended with code from chapter 6 of this thesis to extract factoid answers
from the retrieved documents.

A major component of PDRMM-based models is the similarity scoring of documents and
questions. Instead of replacing WORD2VEC in JPDRMM with BERT embeddings to create
BJPDRMM or graph embeddings to create GRAPH-JPDRMM we can use all of the vector rep-
resentations and let the network to decide which similarities are important. We have created
a multi-view JPDRMM model (MV-JPDRMM) which uses seven similarity matrices instead of
three. As vector representations, we use the one-hot encoding, the WORD2VEC embeddings,
the graph embeddings, the BERT embeddings as well as contextual representation produced
by three convolutional layers consuming the embeddings of WORD2VEC, graph, and BERT

respectively. This approach resembles models like ABCNN3-PDRMM and BCNN-PDRMM

used for snippet extraction in BIOASQ-7, but in MV-JPDRMM we combine all contextual
similarities and ask the model to learn how to combine this information. This model has not
yet been used in any competition, but we hope to do so in future work.

We hope to extend our joint models and datasets to also identify exact answer spans
within snippets (Chapter 5), similar to the answer spans of SQUAD [154] and SQUAD v.2
[153]. This would lead to a multi-granular retrieval task, where systems would have to
retrieve relevant documents, relevant snippets, and exact answer spans from the relevant
snippets. BIOASQ already includes this multi-granular task, but exact answers are provided
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only for factoid questions and they are rewritten by humans (as in MS-MARCO), rather than
being spans of the relevant snippets.
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Chapter 5

Biomedical Machine Reading
Comprehension and New Artificial
Datasets

5.1 Introduction

The human-annotated corpora have a clear and significant advantage in terms of the quality
of the data. The data is meticulously curated and verified, ensuring that the annotations are
accurate and consistent. This leads to a higher level of reliability and trust in the data, which
is essential for various applications such as machine learning and artificial intelligence.

However, the creation of human-annotated data is a major challenge. It requires a
significant amount of resources, both in terms of time and financial investment. Collecting
and annotating large datasets can take months or even years, and the cost of paying human
annotators can quickly add up. This results in human-annotated datasets that may not have
the desired size or scale, especially for the training of deep learning models that require vast
amounts of data to function optimally.

Moreover, the lack of scalability of the human annotation process creates a bottleneck
for data collection, as it can be challenging to increase the size of the annotated dataset as
needed. This is in contrast to automatically generated data, which can be produced at a much
faster pace and at a lower cost. Therefore, while the quality of human-annotated data is
unrivaled, the cost and time constraints associated with its creation may limit its practical use
in some cases.

In order to enable researchers to test and implement new deep learning methods, we
created two new large datasets (namely BioRead and BIOMRC) for biomedical cloze-style
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Question Answering without the need for human annotations. A cloze-style question is a type
of fill-in-the-blank question where certain words or phrases are removed from a sentence or
a passage, and the reader is asked to fill in the missing words based on the context. The goal
of a cloze-style question is to assess the reader’s understanding of the text and their ability to
use context clues to determine the missing information. An example of a cloze-style question
from the CBTEST dataset can be seen in table 3.3 (see chapter 3).

In our research, we thoroughly evaluated multiple existing Machine Reading Compre-
hension (MRC) models on our newly created datasets and compare the results against strong
baselines. The evaluation was conducted to assess the performance of these models in
understanding and answering questions about the text. In a small-scale experiment, our
models managed to outperform human performance in biomedical MRC when humans lack
expertise in the biomedical domain but fail to surpass biomedical experts in the same task.

5.2 Related Work

Several biomedical MRC datasets exist [18], but have orders of magnitude fewer questions
than the datasets we created and present in this chapter or are not suitable for a cloze-style
MRC task [138, 19, 223]. The closest dataset to the datasets we created in this chapter is
CLICR [180] (see also chapter 3), a biomedical MRC dataset with cloze-type questions created
using full-text articles from case reports. The creators of the Clicr dataset used CLAMP [176]
to detect biomedical entities and link them to concepts of the UMLS Metathesaurus [103].
Cloze-style questions (100k passage-question instances) were created from the ‘learning
points’ (summaries of important information) of the reports, by replacing biomedical entities
with placeholders.

The QA dataset of BIOASQ [184] contains questions written by biomedical experts. / The
gold answers comprise multiple relevant documents per question, relevant snippets from the
documents, exact answers in the form of entities, as well as reference summaries, written
by the experts. Creating data of this kind, however, requires significant expertise and time.
In the first eight years of BIOASQ, only 3,243 questions and gold answers had been created.
So in chapter 6 we also explore if our new larger automatically generated datasets could be
used to pre-train models, which could then be fine-tuned for human-generated QA or MRC

datasets.
Outside the biomedical domain, several cloze-style open-domain MRC datasets have

been created automatically such as CBTEST [62], CNN DailyMail [61], SearchQA [50], or
BookTest [11], but have been criticized of containing questions that can be answered by
simple heuristics like our basic baselines [30].
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For example, Chen et al. [30] train a model that takes into account 8 features for each
candidate to answer cloze-style questions of the DailyMail dataset. These features include
the occurrence of an entity in the passage and the cloze-style question, the frequency of
the entity in the passage, the first position of occurrence, the exact match between the text
surrounding the entity and the surrounding text of the placeholder, word distance between
the entity and non-stop question words, as well as dependency parse match between the
placeholder and the entity. They show that even though the model is simple and uses these
heuristic features it manages to compete or even surpass previously proposed neural network
models for cloze-style QA.

There are also several large open-domain MRC datasets annotated by humans such as
[87], Squad V1 [154], and V2 [153], NewsQA [183], MSMARCO [132], or the RACE
dataset [88]. To our knowledge the biggest human-annotated corpus is Google’s Natural
Questions dataset [87] (see also chapter 4), with approximately 300K human-annotated
examples. Datasets of this kind require extensive annotation effort, which for open-domain
datasets is usually crowd-sourced. Crowd-sourcing, however, is much more difficult for
biomedical datasets, because of the required expertise of the annotators.

5.3 New Datasets for Biomedical Machine Reading Com-
prehension

5.3.1 BioRead

We have created a new publicly available cloze-style biomedical machine reading compre-
hension (MRC) dataset with approximately 16.4 million passage-question instances called
BioRead [141]. BioRead was constructed in the same way as the widely used Children’s
Book Test [62] and its extension BookTest [11] (see chapter 3), but using biomedical journal
articles and employing MetaMap [10] to identify UMLS concepts. BioRead is one of the
largest MRC datasets, and one of the largest in the biomedical domain.

PUBMED is a free search engine accessing primarily the MEDLINE database of references
and abstracts on life sciences and biomedical topics. To create BioRead we randomly selected
approximately 90.6k from the approximately 3.4M articles of the Open Access Subset of
PUBMED Central and applied MetaMap [10] on them. MetaMap detects biomedical entities
in a text, assigns a preferred name to the detected entity,1 and links them to established
biomedical ontologies by reference ids. We replaced each concept that MetaMap recognized
by its preferred name. Using a shifting window of 21 sentences in each document, we

1E.g. MetaMap uses ‘Carcinoma of lung’ as the preferred name for ‘lung cancer’.
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removed an entity from the 21st sentence creating a pseudo-question and kept the rest 20
sentences as context. The entity was only removed when it could also be found in the
context. We train deep learning models to select the entity found in the context which fills
the placeholder in the pseudo-question. An instance example can be seen in Table 5.1.

Context: salsolinol (100mg/kg i.p.)
or l-dopa (100mg/kg i.p.) was acutely

administered (100mg/kg i.p.). in the combined
treatment group, l-dopa (100mg/kg i.p.)

was administered once 15min after salsolinol
administration. the

rats were decapitated 2h after injection.
the concentration of dopamine and its

metabolites were measured using hplc . the
results are expressed as the
means sem (n=710 animals
per group). the data were

[...]
l-dopa (f[1,27]=26.9, p<0.01) on the level of

3-mt (table1). however, neither treatment with
salsolinol (f[1,27]=0.09, n.s.) nor the

interaction between salsolinol and l-dopa
(f[1,27]=0.03, n.s.) was significant (table1).

Question: the duncans post hoc test
showed that l-dopa induced an increase

in the concentration of 3-mt (by approximately
300%, p<0.01) but that salsolinol did not

influence this effect of l-dopa (table1).
Candidates: injection, control group,

treatment, concentration, substantia nigra,
l-dopa, rats, dopamine,

dopac, hplc, salsolinol, analysis
Answer: l-dopa

Context: @entity10 (100mg/kg i.p.)
or @entity5 (100mg/kg i.p.) was acutely

administered (100mg/kg i.p.). in the combined
treatment group, @entity5 (100mg/kg i.p.)

was administered once 15min after @entity10
administration. the

@entity6 were decapitated 2h after @entity0
the @entity3 of @entity7 and its

metabolites were measured using @entity9 the
results are expressed as the
means sem (n=710 animals
per group). the data were

[...]
@entity5 (f[1,27]=26.9, p<0.01) on the level of
3-mt (table1). however, neither @entity2 with

@entity10 (f[1,27]=0.09, n.s.) nor the
interaction between @entity10 and @entity5
(f[1,27]=0.03, n.s.) was significant (table1).

Question: the duncans post hoc test
showed that @placeholder induced an increase

in the @entity3 of 3-mt (by approximately
300%, p<0.01) but that @entity10 did not
influence this effect of @entity5 (table1).

Candidates: @entity0, @entity1,
@entity2, @entity3, @entity4,
@entity5, @entity6, @entity7,

@entity8, @entity9, @entity10, @entity11
Answer: @entity5

Table 5.1 An example instance of BioRead, before (left) and after (right) replacing recognized
UMLS concepts by pseudo-tokens. Red words and phrases are wrong candidate answers.
The correct answer is shown in green and underlined.

We created two different versions of the dataset using two settings. In the first setting
(setting A) we use a random identifier to replace an entity in an instance,(an example instance
is shown in Table 5.1). If the same entity could be found in other instances of the dataset
most probably this entity would have a different identifier. This forces the models to rely
only on the context of an entity to select the best candidate to fill in the placeholder. In the
second setting (setting B) we use a random identifier to replace an entity in the entire dataset.
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BioRead BioReadLite
Training Development Test Total Training Development Test Total

Instances ∼15,1M ∼600,7k ∼652,9k ∼16.4M 800k 50k 50k 900k
Avg candidates 25.9 27.3 26.3 26.0 18.89 20.8 19.4 19.0
Max candidates 40 40 40 40 30 30 30 30
Min candidates 2 2 2 2 2 2 2 2
Avg context len. 456.9 464.5 455.9 457.1 317.2 320.8 298.9 316.4
Max context len. 999 999 999 999 400 400 400 400
Min context len. 26 56 48 26 30 30 30 30
Avg question len. 33.4 35.5 34.8 33.5 16.8 16.8 16.8 16.8
Max question len. 300 300 300 300 25 25 25 25
Min question len. 5 5 5 5 5 5 5 5

Table 5.2 Statistics of BioRead and BioReadLite. All lengths are measured in tokens using a
whitespace tokenizer.

This allows our models to train their parameters based on the context and the entities as well.
In that case, though, the models may not perform well if an entity that can be found in the
test data has not been seen in the train data of the models. We also created BioReadLite, a
subset of BioRead containing 900k instances, being thus suitable for research groups with
fewer resources. Statistics for the two datasets are presented in Table 5.2. Both BioRead and
BioReadLite are publicly available.2

5.3.2 BIOMRC

BIOMRC is a dataset very similar to BioRead in both nature and the creation process. bcCon-
trary to BioRead which was created using the full body of biomedical articles, we used titles
and abstracts from biomedical articles to create BIOMRC. BIOMRC alleviates several issues
detected in BioRead. Many instances of BioRead contain passages or questions crossing
article sections, originating from the references sections of articles, or including captions and
footnotes due to parsing failure of the original articles (Table 5.3). Another source of noise is
misclassified entities from MetaMap, which often misses or mistakenly identifies biomedical
entities3.

In BIOMRC to avoid crossing sections we use abstracts and titles of biomedical articles as
passages and questions, respectively, which are clearly marked up in PUBMED data, instead
of using the full text of the articles. Titles are likely to be related to their abstracts, which
reduces the noise-to-signal ratio significantly and makes it less likely to generate irrelevant
questions for a passage. We replace a biomedical entity in each title with a placeholder, and
we require systems to guess the hidden entity by considering the entities of the abstract as

2https://archive.org/details/bioread_dataset.tar
3E.g., it often annotates ‘to’ as the country ‘Togo’.
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‘question’ originating from caption:
“figure 4 htert @entity6 and @entity4 XXXX cell invasion.”

‘question’ originating from reference:
“2004 , 17 , 250 257 .14967013 c samuni y. ; samuni u. ;
goldstein s. the use of cyclic XXXX as hno scavengers .”

‘passage’ containing captions:
“figure 2: distal UNK showing high insertion of rectum

into common channel. figure 3: illustration of the cloacal
malformation. figure 4: @entity5 showing UNK”

Table 5.3 Examples of noisy BioRead data. XXXX is the placeholder, and UNK is the
‘unknown’ token. The first example is a question originating from a figure caption. The
second example is a question originating from a reference section. The third example
comprises text extracted from a reference section. These instances are unreliable as there
is no assurance that they are contextually relevant to the surrounding text used to create the
machine reading comprehension examples.

BIOMRC LARGE BIOMRC LITE BIOMRC TINY
Training Development Test Total Training Development Test Total Setting A Setting B Total

Instances 700,000 50,000 62,707 812,707 87,500 6,250 6,250 100,000 30 30 60
Avg candidates 6.73 6.68 6.68 6.72 6.72 6.68 6.65 6.71 6.60 6.57 6.58
Max candidates 20 20 20 20 20 20 20 20 13 11 13
Min candidates 2 2 2 2 2 2 2 2 2 3 2

Avg abstract len. 253.79 257.41 253.70 254.01 253.78 257.32 255.56 254.11 248.13 264.37 256.25
Max abstract len. 543 516 511 543 519 500 510 519 371 386 386
Min abstract len. 57 89 77 57 60 109 103 60 147 154 147

Avg title len. 13.93 14.28 13.99 13.96 13.89 14.22 14.09 13.92 14.17 14.70 14.43
Max title len. 51 46 43 51 49 40 42 49 21 35 35
Min title len. 3 3 3 3 3 3 3 3 6 4 4

Table 5.4 Statistics of BIOMRC LARGE, LITE, TINY. The questions of the TINY version were
answered by humans. All lengths are measured in tokens using a whitespace tokenizer.

candidate answers. Unlike BioRead, we use PUBTATOR [193], a repository that provides
more than 30 million abstracts and their corresponding titles from PUBMED, with multiple
annotations.4 PUBTATOR used DNORM’s biomedical entity annotations, which are more
accurate than MetaMap’s [92].

Following BioRead’s methodology, we release two versions of BIOMRC, LARGE and
LITE, containing 812k and 100k instances respectively, for researchers with more or fewer
resources, along with the 60 instances (TINY) humans answered. Random samples from
BIOMRC LARGE were selected to create LITE and TINY. BIOMRC TINY is used only as a test
set for human evaluation; it has no training and validation subsets.

4Like PUBMED, PUBTATOR is supported by NCBI. Consult: www.ncbi.nlm.nih.gov/research/pu
btator/
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5.4 Reading Comprehension Models

We re-implemented and tested on BioReadLite and BIOMRC LITE two well-known MRC
methods, AS-READER [77] and AOA-READER [37]. The authors of the AOA-READER models
even though they reported state-of-the-art results on the BookTest dataset did not release
the code to replicate their results. Therefore we re-implemented their deep learning MRC

model along with the AS-READER model and made efforts to improve both of them. We test
these two models along with four baselines, as a first step towards a leaderboard for models
trained and tested on our introduced datasets. We also introduce two transformer-based
deep-learning models for MRC which managed to surpass all baselines and competitive
deep-learning models setting a new state-of-the-art for our BIOMRC dataset.5 We made
publicly available the re-implementations of the two MRC methods 6 and the code of the
newly introduced MRC models.7

5.4.1 Attention Sum Reader (AS-READER)

AS-READER [77] uses a bidirectional recurrent neural network (biRNN) [163, 166] with
GRU units [34] to process the passage (context) and another one to process the cloze-style
question (Figure 5.1). The last states of the first biRNN (the concatenated last states of
the two directions) represent the cloze-style question, whereas the states of the second
biRNN (the concatenated states of the two directions, for each token position) are used as
context-sensitive embeddings of the passage tokens. The dot product between the question
representation and the context-sensitive embedding of each passage token is then computed,
and a softmax is applied to the dot products to turn them into attention scores ranging from 0
to 1. The candidate answers can only be single tokens of the passage. If a candidate answer
occurs multiple times in the passage, its attention scores are summed. Finally, the candidate
answer with the largest (summed) attention score is selected.

5.4.2 Attention Over Attention Reader (AOA-READER)

AOA-READER’s architecture is presented in Figure 5.2. It uses a biRNN to create context-
sensitive embeddings for each passage token, as in AS-READER. Another biRNN processes
the question, but instead of keeping only the (concatenated) last states of the two directions as
the question representation, all the states of the question biRNN (the concatenated states from

5We have only tested the new deep-learning models on BIOMRC since BIOMRC is an improved version of
BioRead dataset.

6https://github.com/dpappas/BIOREAD_code
7https://github.com/PetrosStav/BioMRC_code
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Fig. 5.1 Architecture of the AS-READER Model.

both directions, for each question token position) are kept as context-sensitive embeddings
of the question tokens. The dot product between each context-sensitive embedding of the
passage and each context-sensitive embedding of the question is then computed, leading to a
matrix M of dimensions C×Q of dot products, where C and Q are the lengths of the passage
(context) and question, respectively, in tokens. Intuitively, each element mi, j of M shows how
relevant token i of the passage is to token j of the question. The i-th row of M contains Q
scores, showing how relevant each token of the question is, from the viewpoint of the i-th
token of the passage. The rows of M are averaged (after applying a softmax to each row first)
to obtain a single row-vector CA with Q scores that show how relevant each token of the
question is with respect to all the tokens of the passage.

Similarly, the j-th column of M contains C scores showing how relevant each token
of the passage is, from the viewpoint of the j-th token of the question. The matrix-vector
multiplication M1×CAT , where M1 is the original M with a softmax applied to each column,
produces T S scores that show how important each passage token is from the viewpoint of
the entire question, as captured by CA. A softmax is applied to the T S scores, to turn them
into attention scores from 0 to 1. As in AS-READER, the candidate answers can only be
single tokens of the passage. If a candidate answer occurs multiple times in the passage, its
attention scores are summed and form the CS scores in Figure 5.2. Finally, the candidate
answer with the largest (summed) attention score is selected.
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5.4.3 Improvements on AS-READER and AOA-READER

We re-implemented the described AS-READER and AOA-READER models. We then ex-
perimented with improvements to the structures of the models. We observed that it is not
necessary to apply the attention mechanism on tokens that are not candidate answers since
the error back propagates only through the RNN for these tokens.

In Figure 5.2 the ‘CS’ vector stores the score of each candidate answer which is computed
as the sum of the scores of all occurrences of the candidate in the passage. Since only the
scores of the candidates are used to compute and back-propagate a loss, many values stored
in M, M1, and M2 are not used, since only candidate scores are selected from the ‘TS’
vector. Therefore a first and straightforward improvement of these models was to average the
emissions of the passage-RNN for each candidate before applying the attention mechanism
(before computing the M matrix). We still used the contextual vector representations produced
by the biRNNs but instead of using all contextual vector representations from the biRNN
that consumes the passage, we only use the contextual vector representations that correspond
to occurrences of candidate answers. Additionally, for each candidate, we average all vector
representations produced by the biRNN resulting in one vector per candidate. Then, as in the
original AOA-READER model, we compute the dot product between the candidates’ averaged
contextual vector representations and the questions’ token vector representations to compute
a matrix M which is smaller than the original implementation (M has as many rows as the
total number of distinct candidates in the passage).

We also experimented with replacing the attention mechanism of the models (dot product
between a question’s token vector representation and a passage’s token vector representation)
using:

• a self-attention mechanism [168] applied on the contextual vector representations of
the passage and the question tokens produced by the RNN,

• an MLP with trainable parameters which consumes the concatenation of the vector
representation of a question’s token and the vector representation of a passage’s token.

Even though we did not improve the results of the models, we managed to produce
faster versions of the AS-READER and AOA-READER models which also demand fewer
computational resources since we reduced the size of the attention matrices. However, in all
of our experiments with BioRead and BIOMRC, we use the structure of the models reported
in their original papers.
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Fig. 5.3 Illustration of our SCIBERT-based models. Each sentence of the passage is concate-
nated with the question and fed to SCIBERT. The top-level embedding produced by SCIBERT

for the first sub-token of each candidate answer is concatenated with the top-level embedding
of [MASK] (which replaces the placeholder XXXX) of the question, and they are fed to an MLP,
which produces the score of the candidate answer. In SCIBERT-SUM-READER, the scores of
multiple occurrences of the same candidate are summed, whereas SCIBERT-MAX-READER

takes their maximum.

5.4.4 BERT-SUM and BERT-MAX Reader

AS-READER when first introduced was the state-of-the-art model for cloze-style QA, and
this was mainly due to the use of the attention mechanism between the question and the
passage. A major advantage of the transformer-based models is the more elaborate attention
mechanism that is applied to the input and their pre-training. Therefore we created BERT-
based models for cloze-style QA and further trained (fine-tuned) them on the newly created
datasets. We use SCIBERT [16], a pre-trained BERT [42] model for scientific text. SCIBERT

is pre-trained on 1.14 million articles from Semantic Scholar,8 of which 82% (935k) are
biomedical while the rest of the articles belong to the computer science domain.

For each passage-question instance, we split the passage into sentences using NLTK [20].
We concatenate each sentence with the cloze-style question, after replacing the placeholder
‘XXXX’ with BERT’s [MASK] token. Each sentence-question pair is then consumed by SCIB-
ERT (Figure 5.3) and the top-level vector representations of the entity identifiers (@entityN)
of the sentence are collected along with the vector representation of the [MASK] token. As
BERT’s tokenizer splits the entity identifiers into sub-word units [42] (see also section 2.4),

8https://www.semanticscholar.org/

Page 97 of 172

https://www.semanticscholar.org/


98 Biomedical Machine Reading Comprehension and New Artificial Datasets

we use the vector representation of the first sub-word to represent the entire entity. The
top-level token representations of BERT are context-aware, and it is common to use the first
or last sub-token of each named entity.

For each entity of the sentence, we concatenate its top-level representation with that of
the [MASK] token, and we feed them to a Multi-Layer Perceptron (MLP) to obtain a score for
the entire entity (candidate answer). Following the same process, we compute one score for
any entity in the passage. If an entity occurs multiple times in the passage, we take the sum
or the maximum of the scores of its occurrences. In both cases, a softmax is then applied to
the scores of all the entities, and the entity with the maximum score is selected as the answer.
We call this model SCIBERT-SUM-READER or SCIBERT-MAX-READER, depending on how it
aggregates the scores of multiple occurrences of the same entity (Figure 5.4).

Fig. 5.4 Architecture of the SCIBERT-SUM-READER and the SCIBERT-MAX-READER.

5.4.5 Baselines

The first baseline (BASE1), returns the candidate answer (@entityID) that occurs most
frequently in the context (passage), on the grounds that this candidate answer is more likely
to have also occurred in the question (a sentence that follows the passage in the BioRead
dataset or the title in the BIOMRC dataset) and, hence, more likely to have been converted to
@placeholder.

The second and third baselines (BASE2 and BASE3), return the candidate answer that
occurs first or last in the context, respectively. The last candidate answer is arguably more
likely to be repeated in the question and, hence, more likely to have been converted to
@placeholder, whereas the first candidate is the least likely to be repeated in that sense.9 We
also suspected that the biRNN encoder of the passage of AS-READER and AOA-READER

9These baselines were initially designed for BioRead and were then maintained in BIOMRC to allow
comparing results.
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would tend to ‘remember’ more the last (in the forward RNN) and the first (in the backwards
RNN) tokens (and candidate answers) of the passage, in an extreme case behaving like
BASE2 and BASE3.

In the fourth baseline, BASE4, we first extract all the token n-grams (n = 2) of the
question that contain the @placeholder.10 For each candidate answer (@entityID), we then
replace the @placeholder in all the extracted n-grams by the particular candidate answer and
count the total number of occurrences of the resulting n-grams in the context. The candidate
answer with the largest total number of n-gram occurrences is returned as the answer.

In BioRead, the correct answer is never (by construction) the most frequent entity of
the passage. Therefore, unless there are multiple entities with the same highest frequency,
BASE3 performs poorly. Hence in BIOMRC experiments, we also include a variant, BASE3+,
which randomly selects one of the entities of the passage with the same highest frequency, if
multiple exist, otherwise, it selects the entity with the second highest frequency.

5.5 Experiments, Results & Analysis

5.5.1 BioRead

Human performance

To get a rough estimate of how easily humans can answer the questions of BioRead, we
randomly selected 30 instances from BioRead’s test subset and gave them to three human
annotators, who had no biomedical background. The annotators were shown the context
and question of each instance (as in Table 5.1, right) in a user interface that displayed
@entityIDs as hyperlinks, and they were asked to select (click on) the correct candidate
answer (@entityID) (Figure 5.5). When the annotators felt they were clueless (or very
uncertain) about the correct answer, they could indicate this by clicking on a button, but they
were instructed to select an answer when they felt it was probably the correct one, even if
they were not entirely sure.

The mean accuracy of the three annotators was 68.01% (77.27%, 65.22%, 61.54% per
annotator), counting only instances they answered (78.89% on average, 73.33%, 76.67%,
86.67% per annotator). The mean pairwise inter-annotator agreement, measured as Cohen’s
Kappa [35], was 68.57, considering only questions answered by both annotators in each pair.
If not answering a question is treated as an additional candidate answer, the mean pairwise
Kappa becomes 50.32.

10We experimented with 2 ≤ n ≤ 6, and selected n = 2, which led to the best results on both the development
sets of BioReadLite and BIOMRC LITE.
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Results on BioReadLite

Table 5.5 summarises our experimental results on BioReadLite; we did not have the compu-
tational resources to experiment with the full BioRead dataset, but we hope that others may
be able to do so.11 With the exception of the last row of Table 5.5, in all other cases we used
setting A of Section 2, i.e., the identifier of each @entityID was unique only within the partic-
ular instance. For AS-READER and AOA-READER, we used the same hyper-parameter values
as in the work of Kadlec et al. [78] and Cui et al. [37], respectively. Hence, a direct possible
improvement would be to fine-tune the hyper-parameters for BioRead (or BioReadLite),
which requires, however, substantial computational resources. We stopped training the two
methods when their development loss had converged, i.e., after 5 epochs for AS-READER,
15 epochs for AOA-READER when using setting A, and 20 epochs for AOA-READER when
using setting B; recall that in setting B the identifier of each @entityID is unique in the entire
dataset. A single training epoch (including computing the development loss) takes 17, 21,
and 22 hours, respectively. Performance is measured in terms of accuracy, i.e., number of
correctly answered development or test instances, divided by the total number of development
or test instances.

Table 5.5 shows that AOA-READER is clearly more accurate than AS-READER, at the
expense of training speed, reaching 50.44% and 49.94% development and test accuracies
with setting A, compared to 37.90% and 42.01% for AS-READER, respectively. These
results confirm that the more elaborate attention mechanism of AOA-READER is important,
as also reported in previous work [37, 11, 125]. Despite its simplicity, BASE1 (the most
frequent candidate answer in the passage) is a reasonably strong baseline, reaching 26.86%
development and 28.87% test accuracy, but AS-READER and AOA-READER outperform
it by a wide margin. BASE2 and BASE3 are much weaker, suggesting that AS-READER

and AOA-READER do not just remember the first or last candidate answers of the passage.
The best baseline is BASE4 (n-grams). It scored 40.10% development and 37.20% test
accuracy, surpassing AS-READER on the development subset, and challenging AS-READER

on the test subset. Nevertheless, AOA-READER outperformed BASE4 by a wide margin.
The performance of AOA-READER improved further (from 50.44% to 52.41% development
accuracy, from 49.94% to 51.19% test accuracy), at the expense of additional training time,
when setting B was used, i.e., when each entity ID was unique in the entire dataset, suggesting
that AOA-READER was able to learn properties of at least some entities (concepts) from
multiple training passages.

11We used a PC running Ubuntu, with 64 GB RAM, a 16 core CPU, and a GeForce GTX TITAN X GPU
with 12GB memory.
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We also trained the best method, AOA-READER with setting B, on smaller subsets of
BioReadLite to study the effect of the size of the training set. We always used 20 epochs in
this experiment, the number of epochs it took for the development loss to converge when
using the entire training set of BioReadLite (Table 5.5, last row). Table 5.6 shows that
increasing the size of the training set leads to improved development accuracy. We see a
similar trend in test accuracy (from 49.22% to 51.19%) when going from 50% to 100% of
the training set, but surprisingly the best test accuracy (51.51%) was obtained when using
only 25% of the training set. The latter may be the result of a random fluctuation (e.g., the
optimizer may have managed to find a better local minimum of the loss function in that case).
It would be better to repeat each experiment multiple times, with different random parameter
initializations, and report mean results (and standard deviations), but we did not have the
required resources. Overall, however, it seems worth experimenting with the entire BioRead
dataset, instead of BioReadLite, to see if its larger training subset would lead to significant
improvements in accuracy.

Dev. Test Training
Method Accuracy Accuracy Epochs

BASE1 set. A 26.86 28.87 n/a
BASE2 set. A 8.14 9.38 n/a
BASE3 set. A 16.48 17.28 n/a
BASE4 set. A 40.10 37.20 n/a

AS-READER set. A 37.90 42.01 5 × 17 h
AOA-READER set. A 50.44 49.94 15 × 21 h

AOA-READER set. B 52.41 51.19 20 × 22 h
Table 5.5 BioReadLite results (%), and the number of epochs (and time) required for the
development loss to converge, when each entity ID is unique setting A in the particular
instance only, or setting B in the entire dataset.

Training Dev. Test Training
Subset Accuracy Accuracy Epochs

25% 47.06 51.52 20 × 6 h
50% 50.25 49.22 20 × 11 h

100% 52.41 51.19 20 × 22 h
Table 5.6 BioReadLite results (%) of AOA-READER, with setting B, using the entire or only
subsets of the training set.
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5.5.2 BIOMRC

Human performance

We extended the human performance experiments applied on BioRead by asking both biomed-
ical experts and non-biomedical experts to answer cloze-style questions. We also examined
whether allowing annotators to see the original names of the biomedical entities would help
them answer the question (maybe because of prior expert knowledge). We provided 30
questions (from BIOMRC LITE) to three non-experts (graduate CS students) in Setting A,
and 30 other questions in Setting B. We also showed the same questions of each setting to
two biomedical experts. In Setting A both the experts and non-experts were also provided
with the original names of the biomedical entities (entity names before replacing them with
@entityN pseudo-identifiers) to allow them to use prior knowledge; see the top three zones
of Figure 5.6 for an example. By contrast, in Setting B the original names of the entities
were hidden, to force the humans to base their answers on the contexts of the entities, not
any knowledge about the entities themselves.

Passage

The study enrolled 53 @entity1 (29 males, 24 females) with @entity1576 aged 15-88 years.
Most of them were 59 years of age and younger. In 1/3 of the @entity1 the diseases started
with symptoms of @entity1729, in 2/3 of them–with pulmonary affection. @entity55 was
diagnosed in 50 @entity1 (94.3%), acute @entity3617 –in 3 @entity1. ECG changes
were registered in about half of the examinees who had no cardiac complaints. 25 of them
had alterations in the end part of the ventricular ECG complex; rhythm and conduction
disturbances occurred rarely. Mycoplasmosis @entity1 suffering from @entity741 ( @en-
tity741 ) had stable ECG changes while in those free of @entity741 the changes were short.
@entity296 foci were absent. @entity299 comparison in @entity1 with @entity1576 and in
other @entity1729 has found that cardiovascular system suffers less in acute mycoplasmosis.
These data are useful in differential diagnosis of @entity296 .

Candidates

@entity1 : [‘patients’] ; @entity1576 : [‘respiratory mycoplasmosis’] ; @entity1729 :
[‘acute respiratory infections’, ‘acute respiratory viral infection’] ; @entity55 : [‘Pneu-
monia’] ; @entity3617 : [‘bronchitis’] ; @entity741 : [‘IHD’, ‘ischemic heart disease’]
; @entity296 : [‘myocardial infections’, ‘Myocardial necrosis’] ; @entity299 : [‘Cardiac
damage’] .

Question Cardio-vascular system condition in XXXX .
Expert Human Answers annotator1: @entity1576; annotator2: @entity1576.

Non-expert Human Answers annotator1: @entity296; annotator2: @entity296; annotator3: @entity1576.

Systems’ Answers
AS-READER: @entity1729; AOA-READER: @entity296; SCIBERT-SUM-READER: @en-
tity1576.

Fig. 5.6 Example from BIOMRC TINY. In Setting A, humans see both the pseudo-identifiers
(@entityN) and the original names of the biomedical entities (shown in square brackets).
Systems see only the pseudo-identifiers, but the pseudo-identifiers have global scope over
all instances, which allows the systems, at least in principle, to learn entity properties
from the entire training set. In Setting B, humans no longer see the original names of the
entities, and systems see only the pseudo-identifiers with local scope (numbering reset per
passage-question instance).
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Table 5.7 reports the human and system accuracy scores on BIOMRC TINY. Both experts
and non-experts perform better in Setting A, where they can use prior knowledge about the
biomedical entities. The gap between experts and non-experts is three points larger in Setting
B than in Setting A, presumably because experts can better deduce properties of the entities
from the local context. Turning to the system scores, SCIBERT-MAX-READER is the best
system, but much of its performance is due to the max-aggregation of the scores of multiple
occurrences of entities. With sum-aggregation, SCIBERT-SUM-READER obtains exactly the
same scores as AOA-READER, which again performs better than AS-READER. (AOA-READER

and SCIBERT-SUM-READER make different mistakes, but their scores just happen to be
identical because of the small size of TINY.) Unlike our results on BIOMRC LITE, we now
see all systems performing better in Setting A compared to Setting B, which suggests they do
benefit from the global scope of entity identifiers. Also, SCIBERT-MAX-READER performs
better than both experts and non-experts in Setting A, and better than non-experts in Setting
B. However, BIOMRC TINY contains only 30 instances in each setting, and hence the results
of Table 5.7 are less reliable than those from BIOMRC LITE (Table 5.9).

Method Setting A Setting B
Experts (Avg) 85.00 61.67

Non-Experts (Avg) 81.67 55.56
AS-READER (previous method) 66.67 46.67

AOA-READER (previous method) 70.00 56.67
SCIBERT-SUM-READER (new method) 70.00 56.67
SCIBERT-MAX-READER (new method) 90.00 60.00

Table 5.7 Accuracy (%) on BIOMRC TINY. Best human and system scores are shown in bold.

Results on BIOMRC LITE

Table 5.9 reports the accuracy of all methods on BIOMRC LITE for Settings A and B. In
both settings, all the neural models clearly outperform all the basic baselines, with BASE3
(the most frequent entity of the passage) performing worst and BASE3+ performing much
better, as expected. In both settings, SCIBERT-MAX-READER clearly outperforms all the
other methods on both the development and test sets. The performance of SCIBERT-SUM-
READER is approximately ten percentage points worse than SCIBERT-MAX-READER’s on the
development and test sets of both settings, indicating that the superior results of SCIBERT-
MAX-READER are to a large extent due to the different aggregation function (max instead of
sum) it uses to combine the scores of multiple occurrences of a candidate answer, not to the
extensive pre-training of SCIBERT. AOA-READER, which does not employ any pre-training,
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Annotators (Setting) Kappa
Experts setting A 70.23

Non Experts setting A 65.61
Experts setting B 72.30

Non Experts setting B 47.22
Table 5.8 Human agreement (Cohen’s Kappa, %) on BIOMRC TINY. Avg. pairwise scores for
non-experts.

is competitive to SCIBERT-SUM-READER in Setting A and performs better than SCIBERT-
SUM-READER in Setting B, which again casts doubts on the value of SCIBERT’s extensive
pre-training. We expect, however, that the performance of the SCIBERT-based models, could
be improved further by fine-tuning SCIBERT’s parameters.

The performance of SCIBERT-SUM-READER is slightly better in Setting A than in Setting
B, which might suggest that the model manages to capture global properties of the entity
pseudo-identifiers from the entire training set. However, the performance of SCIBERT-MAX-
READER is almost the same across the two settings, which contradicts the previous hypothesis.
Furthermore, the development and test performance of AS-READER and AOA-READER is
higher in Setting B than A, indicating that these two models do not capture global properties
of entities well, performing better when forced to consider only the information of the
particular passage-question instance. Overall, we see no strong evidence that the models we
considered are able to learn global properties of the entities.

In both Settings A and B, AOA-READER performs better than AS-READER, which was
expected since it uses a more elaborate attention mechanism, at the expense of taking longer
to train (Table 5.9).12 The two SCIBERT-based models are also competitive in terms of
training time, because we only train the MLP (154k parameters) on top of SCIBERT, keeping
the parameters of SCIBERT frozen.

12We trained all models for a maximum of 40 epochs, using early stopping on the dev. set, with patience of 3
epochs.
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The trainable parameters of AS-READER and AOA-READER are almost double in Setting
A compared to Setting B. To some extent, this difference is due to the fact that for both
models we learn a word embedding for each @entityN pseudo-identifier, and in Setting A the
numbering of the identifiers is not reset for each passage-question instance, leading to many
more pseudo-identifiers (31.77k pseudo-identifiers in the vocabulary of Setting A vs. only 20
in Setting B); this accounts for a difference of 1.59M parameters.13 The rest of the difference
in total parameters (from Setting A to B) is due to the fact that we tuned the hyper-parameters
of each model separately for each setting (A, B), on the corresponding development set.
Hyper-parameter tuning was performed separately for each model in each setting, but led to
the same numbers of trainable parameters for AS-READER and AOA-READER, because the
trainable parameters are dominated by the parameters of the word embeddings. Note that the
hyper-parameters of the two SCIBERT-based models (of their MLPs) were very minimally
tuned, hence these models may perform even better with more extensive tuning.

AOA-READER was also better than AS-READER in our experiments on BioReadLite
dataset, but the development and test accuracy of AOA-READER in Setting A of BioRead was
52.41% and 51.19%, respectively while in Setting B, it was 50.44% and 49.94%, respectively
(see Table 5.5). The much higher scores of AOA-READER (and AS-READER) on BIOMRC

LITE are an indication that the new dataset is less noisy, or that the task is at least more
feasible for machines. Our results on BioReadLite were slightly higher in Setting A than in
Setting B, suggesting that AOA-READER was able to benefit from the global scope of entity
identifiers, unlike our findings in BIOMRC.

Figure 5.7 shows how many passage-question instances of the development subset of
BIOMRC LITE have 2, 3, . . . , 20 candidate answers (top left), and the corresponding accuracy
of the basic baselines (top right), and the neural models ((bottom) in Settings A (bottom
left) and B (bottom right)). BASE3+ is the best basic baseline for 2 and 3 candidates, and
for 2 candidates it is competitive to the neural models. Overall, however, BASE4 is clearly
the best non-neural baseline, but it is outperformed by all neural models in almost all cases,
as in Table 5.9. SCIBERT-MAX-READER is again the best system in both settings, almost
always outperforming the other systems. AS-READER is the worst neural model in almost
all cases. AOA-READER is competitive to SCIBERT-SUM-READER in Setting A, and slightly
better overall than SCIBERT-SUM-READER in Setting B, as can be also seen in Table 5.9.

13Hyper-parameter tuning led to 50- and 30-dimensional word embeddings in Settings A, B, respectively. AS-
READER and AOA-READER learn word embeddings from the training set, without using pre-trained embeddings.
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5.6 Conclusions and Future work

In this work, we made significant contributions to the field of machine reading comprehension
in the biomedical domain. Firstly, we introduced two large datasets that provide ample
opportunities for the development and testing of new machine reading comprehension
models. Secondly, we introduced two deep learning models that are specifically designed for
this task. Our models were thoroughly evaluated against strong baselines, and they surpassed
all of them. Finally, we conducted a comparison against human annotators, and while our
models outperformed non-expert humans, they were unable to surpass human annotators
with specialized biomedical expertise. These results indicate that there is still room for
improvement in this field and that future work will be necessary to further advance the state
of the art.

Future work could tune more extensively the BERT-based model to further improve its
efficiency, and investigate if some of its techniques (mostly its max-aggregation, but also
using sub-tokens) can also benefit the other neural models we considered (AS-READER and
AOA-READER). One could also experiment with other MRC models that recently performed
particularly well on open-domain MRC datasets [224]. Finally, one could explore if pre-
training neural models on BioRead is beneficial in human-generated biomedical datasets
[184].

The BioRead and BIOMRC datasets, being cloze-type automatically generated datasets,
don’t have the complexity of a real-world (not-synthetic) Question Answering [96] dataset
like SQUAD [154]. However, we believe that we could use our datasets to pretrain reading
comprehension models before fine-tuning for more complex Biomedical Question Answering
datasets. Alternatively, artificial datasets like BioRead and BIOMRC can be used for data
augmentation, and this direction is explored in the next chapter.
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Chapter 6

Biomedical Factoid QA and Data
Augmentation

6.1 Introduction

Training supervised machine learning models requires a substantial amount of annotated
data. Data augmentation (DA) techniques are widely used to increase robustness and improve
results on several NLP tasks when there is a limited number of training data.

Data augmentation in NLP refers to the process of artificially increasing the size of a
dataset by generating new samples from the existing data. This is done to improve the
performance of a model by increasing the diversity of the training data. The new samples
are created by applying various techniques such as changing the order of words, adding
or removing words, replacing words with synonyms or random words, or other techniques
such as the ones discussed in this chapter. The goal of data augmentation is to make the
model robust to various forms of input, so it can generalize better to unseen data and handle
real-world variations of the data. This is particularly important in NLP, where small datasets
and limited training data are often a challenge, making data augmentation an important
technique for improving the performance of NLP models. While several techniques for data
augmentation are widely used to train deep neural networks for computer vision, no data
augmentation technique has yet emerged as a standard practice for data augmentation in NLP.

In this chapter, we investigate the effectiveness of seven data augmentation techniques
(namely using Machine Reading Comprehension data, increasing the context of the text,
Back Translation, Question Generation, Information Retrieval, and two token substitution
techniques) on training deep neural networks for biomedical factoid QA, using BIOASQ-8
(2021), Phase B, Task B data (see also Section 3.2). To our knowledge, we are the first to
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ever compare seven data augmentation techniques in QA. BIOASQ contains only a limited
number of factoid question-answer (QA) pairs that have been annotated by human experts.
This small amount of annotated data makes it challenging for QA models to generalize to
unseen questions. We show that using any of the proposed data augmentation techniques
improves results on BIOASQ factoid QA.

We also experiment with COVIDQA [121], a dataset containing 2,019 question/answer
pairs annotated by volunteer biomedical experts on scientific articles related to COVID-
19. Using the data augmentation techniques that performed best on BIOASQ data, we also
improved the results of a deep-leaning factoid QA model for the COVIDQA dataset.

6.2 Related Work

DA is a key ingredient of success in deep learning for computer vision [171]. DA for NLP

has been explored less, but is an active research area [172, 53], with methods ranging from
leveraging knowledge graphs [124] to generating textual data from scratch [208, 14]. The
most common NLP task in DA is text classification [13]. Feng et al. [53] consider span-
based NLP tasks in specialized domains, which includes biomedical MRC, among the most
challenging for DA.

Word substitution is a simple and common DA approach in NLP. In thesaurus-based
substitution [76, 2], words are replaced by synonyms or closely related words (e.g., hyper-
nyms). Word embedding substitution [192] replaces words by others nearby in a pre-trained
vector space model (see Section 6.3.2). Alternatively, a random word is removed, inserted
[194, 117], or noised with spelling errors [15]. Sentences may also be re-ordered or re-
moved [169, 32]. Text generation has also been used in several NLP tasks for adversarial
augmentation [33], to paraphrase training examples [155, 27, 196], or generate new [9, 85].
Back-translation [164] is also widely used across NLP tasks [172, 53](see Section 6.3.2).

Previous DA work for QA in particular includes back-translation [49], question generation
[221, 8, 28, 108, 208], paraphrasing [47, 104], and synonym replacement [134], but not in
a biomedical setting. The IR-based DA we used (Section 6.3.2 bellow) follows Yang et
al. [205], who experimented in English and Chinese, but not in the biomedical domain.
Expanding the passage with surrounding sentences (Section 6.3.2 bellow) follows Yoon et al.
[213], who used this method in BIOASQ. Dhingra et al. [44] create artificial cloze-style MRC

datasets (similar to the ones we created in Chapter 4, but not biomedical) and use them to
pre-train neural QA models (but not Transformer-based), which are then fine-tuned on real
training examples. By contrast, we use artificial MRC datasets to fine-tune large pre-trained
Transformers. All the above studies experimentally compare at most two DA methods; we
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compare seven. Hence, our work is the largest (in terms of methods considered) experimental
study of DA for QA (and possibly NLP).

Longpre et al. [105] report that back-translation did not improve generalization in (non-
biomedical) QA experiments with fine-tuned pre-trained Transformers, unlike our findings.
Longpre et al. [106] report that back-translation and Easy Data Augmentation [194] are not
always effective in text classification when fine-tuning pre-trained Transformers, even with
small end-task training sets. Consequently, Feng et al. [53] recommend exploring when DA

is effective for large pre-trained models. Our work contributes to this discussion by showing
that DA can lead to very substantial performance gains, even when using large pre-trained
Transformers fine-tuned on large generic (SQUAD) and/or small domain-specific (BIOASQ)
end-task datasets.

6.3 Experimental Setup

6.3.1 Model

In our experiments, we use pre-trained deep learning models available from Hugging Face.1

Huggingface offers notebooks of open-source code with which most users train their own
question answering deep learning models.2 The provided code however trains a DL model
which extracts a maximum number of one answer span in the given text computing only a
single start offset and a single end offset.

We slightly altered Hugging Face’s code to allow the extraction of multiple answers in
the text. The original code is fed with a question concatenated with a text that contains the
answer. The input is split to BPEs (see Section 2.4) and a distilled BERT model extracts a
vector representation for each BPE (In our experiments, we use an ALBERT-XL model instead
of DISTILBERT and justify our decision in Section 6.3.2 below). Then an MLP is used to
extract two logits for each BPE as shown in Figure 6.1. The two logits are used as probability
scores of the BPE being the start of the answer span or the end of the answer span respectively.
To train the model, a softmax activation function is used across the start logits of all BPEs
and a second softmax activation function across the end logits of all BPEs. A categorical
cross-entropy loss is applied in both cases (start logits, end logits) per token and an overall
loss is computed.

1Consult https://huggingface.co/models
2The code uses SQUAD as a corpus and can be found in the following link: https://colab.research

.google.com/github/huggingface/notebooks/blob/master/examples/question_answe
ring.ipynb
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Fig. 6.1 Architecture of the model used for all of the following factoid QA experiments.
ALBERT-XL is fed with a question and snippet. Its contextualized embeddings are passed
through an MLP with SIGMOID activations that produces a begin (Pb) and end (Pe) probability
per token of the snippet.

In our dataset, there are often multiple occurrences of the answer in the input of the
models. Softmax is a soft version of argmax that tries to assign a high probability score to
only one of the logits (in the same that an argmax returns 1 for only one of the positions of
the vector it is fed with). In the case where multiple occurrences of the answer are found in
the text, there are multiple tokens that are beginnings (or ends) of answer spans.

One way to represent the gold truth labels for a case with two occurrences would be
to split the probability mass (0.5 for each occurrence), however categorical cross-entropy
cannot handle these cases. Another one would be to create two training instances where each
instance would have the value of 1 to different positions. In the latter scenario, the model
would be trained to compute a different output given the same input.

In our version of the code, we replace the output softmax activation function with the
SIGMOID function. Additionally, instead of using categorical cross-entropy loss we compute
the binary cross-entropy loss between each logit and the gold truth per token, and we sum
the (per-token) binary cross-entropy losses.

6.3.2 Data Augmentation Approaches

Off-the-shelf models

As a starting point, we compared the performance of three publicly available pre-trained
models that have already been fine-tuned for MRC on SQUAD [154] or SQUAD-V2 [153].3

3We obtained the models from https://huggingface.co/ktrapeznikov/albert-xlarge-v2
-squad-v2. We use the XL version of ALBERT. The other two models adopt the BERT-BASE architecture; no
XL variants were available.
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At the time of our experiments, ALBERT-based models [91] were among the best on the
SQUAD leaderboards; here, we use ALBERT fine-tuned on SQUAD-V2. We also considered
BIOBERT [94], because it is pre-trained on a biomedical corpus; again, we use it fine-tuned
on SQUAD-V2. The third model, DISTILBERT [162], was chosen because of its much smaller
size, which makes running experiments easier. This model is pre-trained on a generic
corpus, like the original BERT, and we use it fine-tuned on SQUAD. All three models are
used here off-the-self, i.e., they are only evaluated, not trained in any way on BIOASQ data.
Throughout this work, we use the development subset of the BIOASQ data to select models
and configurations of DA methods, but in this particular experiment we use the union of the
training and development subsets, since no BIOASQ training is involved. ALBERT is the best
off-the-shelf model considered (Table 6.1), hence we use it in all other experiments.

Model PRAUC (BIOASQ train+dev)
DISTILBERT (SQUAD) 64.27
BIOBERT (SQUAD-V2) 69.22
ALBERT (SQUAD-V2) 75.05

Table 6.1 Off-the-shelf pre-trained models, fine-tuned for MRC on SQUAD or SQUAD-V2. We
report Precision-Recall AUC (PRAUC, %) on BIOASQ training and development data, since
no BIOASQ training is involved.

Baselines

We use two baselines that do not involve DA: i) off-the-shelf ALBERT, pre-trained on a
generic corpus, already fine-tuned on SQUAD-V2 (last model of Table 6.1); and ii) same as
the first baseline, but further fine-tuned (on top of the fine-tuning on SQUAD-V2) on our
BIOASQ training data, with the modified architecture of Section 6.3.1. Table 6.2 shows that
the second baseline is much stronger. Hence, we report performance gains with DA methods
against the second baseline in subsequent sections.4

Settings

In our experiments, we examine three settings for training deep learning models with
augmented data. In setting PRETRAIN we only use augmented data without using any
training instances of the original BIOASQ data and report the results. If the DA techniques
produce data of poor quality then results on PRETRAIN setting will be worse than using

4We also experimented with pre-trained ALBERT directly fine-tuned only on BIOASQ, but the performance
was much worse.
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Model +train ex. PRAUC (BIOASQ dev)
ALBERT (SQUAD-V2) 0 80.25

+BIOASQ 2,848 89.57

Table 6.2 Performance of baselines on BIOASQ development data. The first one is ALBERT-XL

fine-tuned on SQUAD-V2. The second one is further fine-tuned on BIOASQ, with the modified
architecture of Figure 6.1. We also show the number of domain-specific (BIOASQ) training
examples.

the original BIOASQ data. In setting FINETUNE we further train the model that produces
the best development score in the PRETRAIN setting with the original BIOASQ data. In this
setting, the model consumes the original data after the augmented data therefore it may
correct noise introduced by augmented data. In setting COMB we shuffle the original data
and the augmented data and produce one training set. In our experiments, we examine all
three settings but only report the results of the best setting in each experiment. A detailed
version of all the results (FINETUNE, PRETRAIN, COMB) can be found in the Appendix.

BIOMRC

For this augmentation method, we use BIOMRC [145], which is described in Chapter 5 and
is one of the most recent and largest artificial cloze-style biomedical MRC datasets. From
the two versions of the BIOMRC dataset, we chose to use BIOMRC LITE which includes
100k cloze-style questions. Each ‘question’ is the title of a biomedical article, with an entity
mentioned in the title hidden. Each question is accompanied by a passage (the abstract of the
article), candidate answers (entities mentioned in the abstract), and the gold answer. From
each passage, we keep only the sentence containing the gold answer as the given snippet,
and we generate a question-snippet-answer triple. If more than one sentences of the passage
contain the gold answer, we create multiple triples, one for each sentence. We end up with
approximately 142k artificial training triples.

When BIOMRC is used for data augmentation the results improve and achieve 93.15 dev
PRAUC for the development set (Table 6.4). Even if we only use the BIOMRC data to train our
models, 10k training examples suffice to surpass the results of the original BIOASQ dataset.
This once more confirms the value of the BIOMRC dataset. Better results can be obtained if
the entire BIOMRC dataset (instead of the BIOMRC LITE) is used to train our model.
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DA with instances from BIOMRC
ID Instance
19823942 BIOMRC question: Systolic versus diastolic cardiac function variables during

[MASK] treatment for breast cancer .
BIOMRC snippet: epirubicin induces considerable decrease in left ventricular
ejection fraction and a high risk of CHF.
BIOMRC answer: epirubicin

Table 6.3 A training instance extracted from BIOMRC. Each instance is a triple containing a
cloze-style question, a snippet, and the span of the snippet answering the question. We have
underlined the answer span found in the snippet.

ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)
+BIOASQ 2,848 89.57
+BIOMRC 2,848 78.66

+BIOMRC +BIOASQ 5,696 91.57
+BIOMRC 10,000 91.20

+BIOMRC +BIOASQ 12,848 93.15
+BIOMRC 30,000 90.57

+BIOMRC +BIOASQ 32,848 92.19
+BIOMRC 50,000 91.19

+BIOMRC +BIOASQ 52,848 91.51
+BIOMRC 100,000 90.93

+BIOMRC +BIOASQ 102,848 92.39

Table 6.4 Adding training examples from an artificial cloze-style MRC dataset (BIOMRC). The
‘+train ex.’ column shows the number of domain-specific training examples (from BIOMRC

and/or BIOASQ) used, on top of examples seen during fine-tuning on SQUAD-V2.

Token Substitution

In token substitution, we use pre-trained biomedical language models to replace tokens
of the input with words extracted from the language models. In our first approach for
token substitution, we use biomedical WORD2VEC [119, 24] embeddings. Given a question-
snippet-answer training instance, we consider all the word tokens of the snippet (excluding
stop-words). For each token wi (i = 1, . . . ,n) of the snippet, we select the ki ≤ K most similar
words w j ( j = 1, . . . ,ki) of the vocabulary, using cosine similarity of word embeddings
(w⃗i, w⃗ j), that satisfy cos(w⃗i, w⃗ j) ≥ C. We then produce (k1 + 1)(k2 + 1) . . .(kn + 1)− 1
artificial training instances by replacing each token wi of the snippet with one of its ki most
similar words (or itself), requiring at least one token of the original snippet to have been
replaced. We then randomly sample 10k to 100k of the resulting instances and use them as
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additional training examples. We set K = 10, C = 0.95 based on preliminary experiments
on development data. Adding 10k of the resulting artificial training examples to the original
BIOASQ examples leads to 95.60 development PRAUC, outperforming the strong baseline
(89.57) by six percentage points (Table 6.6). Using only the 10k artificial examples, without
any of the original examples, achieves almost identical performance (95.59), which suggests
that the generated examples are of high quality. As when using artificial MRC examples
(Table 6.4), adding more than 10k artificial instances provides no further benefit, probably
because we end up adding too many minor variants of the same original examples.

DA with word substitution based on WORD2VEC
ID Instance
21546092 BIOASQ snippet: Beck’s Medical Lethality Scale (BMLS) was administered

to assess the degree of medical injury, and the SAD PERSONS mnemonic
scale was used to evaluate suicide risk.
BIOASQ question: What is evaluated with the SAD PERSONS scale?
Snippet after WORD2VEC substitution: becks medical lethality scale bmls
was administered to evaluate the degree of medical injury and the sad people
domain-general scale was utilized to investigate suicide risk

BIOASQ answer: suicide risk
Table 6.5 A training instance generated via word substitution based on WORD2VEC. We
randomly select at most 10 words of a BIOASQ snippet and substitute each word wi with its
most similar word w j from the vocabulary of the WORD2VEC model. Highlights of the same
color indicate substituted words and the corresponding substitutions.

ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)
+ BIOASQ 2,848 89.57

+WORD2VEC 2,848 95.56
+WORD2VEC +BIOASQ 5,696 95.27

+WORD2VEC 10,000 95.59
+WORD2VEC +BIOASQ 12,848 95.60

+WORD2VEC 30,000 95.28
+WORD2VEC +BIOASQ 32,848 95.20

+WORD2VEC 50,000 95.16
+WORD2VEC +BIOASQ 52,848 95.13

+WORD2VEC 100,000 95.36
+WORD2VEC +BIOASQ 102,848 95.22

Table 6.6 Data augmentation with WORD2VEC-based word substitution, using biomedical
embeddings.

Page 118 of 172



6.3 Experimental Setup 119

In the second approach for token substitution, we use BIOLM [99] and specifically a
ROBERTA -LARGE model pre-trained on PUBMED, PMC, and MIMIC-III [226] with a
new vocabulary extracted from PUBMED.5 We use the same process as in WORD2VEC

word substitution, but each candidate replacement w j of an original word wi of the snippet
must now satisfy p(w j) ≥ P (instead of cos(w⃗i, w⃗ j) ≥ C), where p(w j) is the probability
assigned to w j by the pre-trained model; we also rank the candidate replacements w j of
each wi by p(w j). We set P = 0.95, based on preliminary experiments on development
data. Table 6.8 shows that BIOLM-based substitution is almost as good as WORD2VEC-based
substitution (94.45 vs. 95.60), but for BIOLM, the best performance is obtained with 50k
artificial examples (compared to 10k for WORD2VEC). This is probably due to the fact that
BIOLM suggests words that fit the particular context of the word being replaced and may,
thus, suggest words with very different meanings that can be used in the particular context,
adding noisy examples. By contrast, when using WORD2VEC we compare more directly
each original word with candidate replacements.

DA with word substitution based on BIOLM
ID Instance
27789693 BIOASQ question: Which database associates human noncoding SNPs with

their three-dimensional interacting genes?
BIOASQ sbippet: 3DSNP: a database for linking human noncoding SNPs
to their three-dimensional interacting genes .
BIOASQ snippet after BIOLM substitution: 3DSNP: a method for linking
functional GWAS SNPs to their three-dimensional structural structures

BIOASQ answer: 3DSNP
Table 6.7 Training instance generated via word substitution based on BIOLM. We randomly
select at most 10 words of a BIOASQ snippet and we substitute each word wi with the most
probable word w j suggested by BIOLM after masking wi. Highlights of the same color
indicate substituted words and the corresponding substitutions.

Context

In the original training question-snippet-answer ⟨q,s,a⟩ triples, s is usually a single sentence.
To help the QA model learn to better distinguish relevant from irrelevant parts of the given
snippet, we experimented with an additional DA method, where we find the original article
that s comes from and we expand s with the k1 (and k2) sentences preceding (and following)
it.6 For each original ⟨q,s,a⟩ triple, we create multiple new ⟨q,s′,a⟩ artificial triples, for

5We did not use BIOLM as an off-the-shelf QA model (Section 6.3.2), because it was not available fine-tuned
on SQUAD.

6In BIOASQ, each gold snippet is accompanied by the PUBMED id of the article it was extracted from.
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ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)
+BIOASQ 2,848 89.57
+BIOLM 2,848 91.76

+BIOLM +BIOASQ 5,696 92.37
+BIOLM 10,000 94.06

+BIOLM +BIOASQ 12,848 94.06
+BIOLM 30,000 93.63

+BIOLM +BIOASQ 32,848 93.75
+BIOLM 50,000 93.94

+BIOLM +BIOASQ 52,848 94.45
+BIOLM 100,000 93.79

+BIOLM +BIOASQ 102,848 93.84

Table 6.8 Data augmentation with word substitution based on masked language modeling
using BIOLM.

different values of k1 ≥ 0 and k2 ≥ 0, such that k1 + k2 = K.7 We experiment with K = 2
(three new triples for each original one); then to obtain more artificial examples, we repeat
with K = 4 (five new triples for each original). To avoid truncation of the input examples,
we remove all artificial examples that exceed 500 characters in length. For K ∈ {2,4}, we
obtain a development PRAUC score of 94.21 (Table 6.10), which is surpassed only by the
two embedding-based word substitution methods (Tables 6.6–6.8). This DA method was
introduced by Yoon et al. [213] who used it in BIOASQ.8

Adding surrounding text to the original data improves the results by a wide margin from
89.57 to 94.21 (Table 6.10). Even using just 2 surrounding sentences improves the results
by 4 points. The best approach however is to increase the text by adding both 2 and 4
surrounding sentences, achieving a dev PRAUC of 94.21 even if the original BIOASQ data
that contain only single sentences are not used (94.20 dev PRAUC).

Back Translation

Back translation (BTR) has been used for data augmentation in several NLP tasks [53, 172].
The training examples are machine-translated from a source to a pivot language and back,
obtaining paraphrases. We initially used French as the pivot language, then also Spanish and
German, always translating from English to a pivot language and back with Google Translate.
For each question-snippet-answer training triple of BIOASQ, we generate two new triples by

7Simply setting k1 = k2 would risk misguiding the model to always prefer the central sentence. We also
experimented with adding random k1 (or k2) sentences before (and after) s, but the performance was much
worse, possibly because the random sentences led to inferior context-aware token embeddings.

8Yoon et al. [213] reported an improvement in BIOASQ’s Lenient Accuracy by 2.49 percentage points.
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DA by adding context
ID Instance
15149039 BIOASQ question: Which metabolite activates AtxA?

BIOASQ snippet: Transcription of the major Bacillus anthracis virulence genes
is triggered by CO2, a signal mimicking the host environment.
BIOASQ snippet with additional context: Transcription of the major Bacillus
anthracis virulence genes is triggered by CO2, a signal mimicking the host
environment. A 182-kb plasmid, pXO1, carries the anthrax toxin genes and the
genes responsible for their regulation of transcription, namely atxA and, pagR,
the second gene of the pag operon. AtxA has major effects on the physiology of
B. anthracis. It coordinates the transcription activation of the toxin genes with
that of the capsule biosynthetic enzyme operon, located on the second virulence
plasmid, pXO2. In rich medium, B. anthracis synthesises alternatively two
S-layer proteins (Sap and EA1).
Answer: CO2

Table 6.9 A training instance generated by adding context around the original BIOASQ snippet.
In the generated snippet the original one is highlighted.

ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)
+BIOASQ 2,848 89.57

+CONTEXT (K = 2) 4,568 93.91
+CONTEXT (K = 2) +BIOASQ 7,416 94.05

+CONTEXT (K ∈ {2,4}) 6,428 94.20
+CONTEXT (K ∈ {2,4}) +BIOASQ 9,276 94.21

Table 6.10 Data augmentation by adding context to the snippet (K = 2 or K ∈ {2,4} sur-
rounding sentences).

back-translating either the question or the snippet. If a new triple is identical to the original
one, we discard it. We obtained 4,901 new training examples pivoting only to French, and
15,593 when also pivoting to Spanish and German.

Table 6.12 shows the results of data augmentation using back translation. When we use
only French as our target language and create the same number of training examples as the
original BIOASQ dataset and augment the training corpus we achieve the best results (92.95
PRAUC) for the development set. Competitive results can be achieved using all three target
languages (French, Spanish, and German) even when we do not use the original corpus but
only the translated data (92.21 PRAUC). However, it is observed that translated data in most
cases do not have the same quality as the original data, since adding the original data in the
training corpus always improves the results (92.95 from 91.84 PRAUC, 91.44 from 89.80
PRAUC and 89.99 from 89.80 PRAUC).
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DA via snippet back-translation
ID Instance
8699317 Pivot language: French

BIOASQ question: Which is the protein implicated in Spinocerebellar ataxia
type 3?
BIOASQ snippet: Ataxin-3 (AT3) is the protein that triggers the inherited neu-
rodegenerative disorder spinocerebellar ataxia type 3 when its polyglutamine
(polyQ) stretch close to the C-terminus exceeds a critical length
Back-translated snippet: Ataxin-3 (AT3) is the protein that triggers spinocere-
bellar ataxia type 3 in inherited neurodegenerative disorder when its polyglu-
tamine (polyQ) stretches near the C-terminus exceeds a critical length.
BIOASQ answer: Ataxin-3

Table 6.11 A training instance generated via back-translation of BIOASQ snippets using
French as a pivot language. The generated instance contains a back-translated snippet and
the corresponding BIOASQ question and answer.

ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)
+BIOASQ 2,848 89.57

+BTR [FR ] 2,848 91.84
+BTR [FR ] +BIOASQ 5,696 92.95

+BTR [FR ] 4,901 89.80
+BTR [FR ] +BIOASQ 7,749 91.44

+BTR [FR,ES,DE ] 2,848 89.80
+BTR [FR,ES,DE ] +BIOASQ 5,696 89.99

+BTR [FR,ES,DE ] 14,229 92.21
+BTR [FR,ES,DE ] +BIOASQ 17,077 92.21

Table 6.12 Data augmentation via back-translation (BTR), using one (FR) or three (FR, ES,
DE) pivot languages.

Question Generation

Question generation (QG) has been found an effective DA method in open-domain MRC

[8, 28, 108]. The main reported benefit is that it increases the diversity of questions [151, 179].
Typically QG models are fed with a snippet s, select an answer span a of s, and generate
a question q answered by a. We take the T5 [152] encoder-decoder Transformer model
fine-tuned for QG on a modified version of SQUAD by Enrico et al. [108]9 and use it to
generate alternative questions q′ and answer spans a′ from the snippets s of the BIOASQ

⟨q,s,a⟩ training triples, producing artificial ⟨q′,s,a′⟩ triples. Multiple artificial triples can be

9The T5 QG model we used is available at https://github.com/patil-suraj/question_gener
ation.
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generated from the same original one (the same s), but we require each q′ to be answered
by a different answer span a′ to maximize the diversity of questions. We obtained 3,389
artificial triples from the 2,848 original ones this way. An alternative we explored is to
select random snippets s from random PUBMED abstracts, and use the QG model to produce
artificial ⟨q′,s,a′⟩ triples. The alternative approach can generate millions of artificial triples;
we generated up to 100k.

DA via Question Generation using BIOASQ snippets
ID Instance
16800744 Generated question: What is the human tissue kallikrein family of?

BIOASQ snippet: The human tissue kallikrein family of serine proteases (hK1-
hK15 encoded by the genes KLK1-KLK15) is involved in several cancer-related
processes.
Generated answer: serine proteases

Table 6.13 A training instance generated using T5. Given a BIOASQ snippet T5 selects a span
of the snippet and generates a question that can be answered by that span. We select spans
different than the ones used in BIOASQ.

DA via Question Generation using random snippets from random PUBMED abstracts
ID Instance
30706485 Generated question: What were connected to a volume-cycled ventilator after

sedation, analgesia and endotracheal intubation?
PUBMED snippet: After sedation, analgesia and endotracheal intubation, pigs
were connected to a volume-cycled ventilator.
Generated answer: pigs

Table 6.14 A training instance generated using T5. Given a random snippet from a random
PUBMED article, T5 selects a span of the snippet and generates a question that can be
answered by that span.

Using the T5 model to automatically create training examples slightly improves the
results from 89.57 when using only the original dataset to 90.69 PRAUC for the development
set (Table 6.15) when using additional 50k training examples. Using only data created from
the T5 model does not surpass the results of the model trained only on the original data.
This is expected as the questions found in the augmented data may not resemble the original
questions of the BIOASQ dataset and may be too simplistic.
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ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)
+BIOASQ 2,848 89.57

+T5 @BIOASQ 3,389 84.46
+T5 @BIOASQ +BIOASQ 6,237 88.46

+T5 @PUBMED 2,848 85.79
+T5 @PUBMED +BIOASQ 5,696 89.29

+T5 @PUBMED 10,000 87.30
+T5 @PUBMED +BIOASQ 12,848 89.34

+T5 @PUBMED 30,000 86.65
+T5 @PUBMED +BIOASQ 32,848 90.51

+T5 @PUBMED 50,000 87.30
+T5 @PUBMED +BIOASQ 52,848 90.69

+T5 @PUBMED 100,000 87.30
+T5 @PUBMED +BIOASQ 102,848 90.61

Table 6.15 Data augmentation via question generation using T5. Questions are generated
from the training snippets of BIOASQ (T5 @BIOASQ) or from random snippets from random
PUBMED abstracts (T5 @PUBMED).

Information Retrieval

Data augmentation based on Information Retrieval (IR) has been found promising in previous
open-domain QA work [205].10 Given a question and a gold answer, the question is used
as a query to an IR system. Any retrieved document (or passage therein) that includes
the gold answer is used to construct a new training example (with the same question and
gold answer). We used the open data from the PUBMED Baseline Repository11 to create a
pool of 22.3M biomedical documents. Each document is the concatenation of the title and
abstract of a PUBMED article. We indexed all documents with an ElasticSearch retrieval
engine12 and used the 500 top ranked (by BM25) documents per question. From the original
2,848 question-snippet-answer triples, only 289 more were generated, because in most of
the retrieved documents no sentence included the entire answer (individual terms of the
answer might be scattered in the document). We suspect that the biomedical experts of
BIOASQ create questions whose answers cannot be found in large numbers of documents
(unlike common questions in open-domain QA datasets), and the few relevant documents
(and snippets) of each question have already been included in the BIOASQ training data.

10[205] gained 2.7 to 9.7 F1 percentage points (pp.) in all four datasets they experimented with.
11lhncbc.nlm.nih.gov/ii/information/MBR.html
12https://www.elastic.co/
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Table 6.17 shows that IR-based augmentation led to very minor gains in our case, because of
the very few additional instances.

DA via Information Retrieval
ID Instance
25941473 BIOASQ question: Which is the neurodevelopmental disorder associated to

mutations in the X- linked gene mecp2?
Retrieved snippet: Genotype-specific effects of Mecp2 loss-of-function on
morphology of Layer V pyramidal neurons in heterozygous female Rett syn-
drome model mice.
BIOASQ answer: rett syndrome

Table 6.16 A training instance generated via IR. A BIOASQ question is used as the query to
retrieve PUBMED documents. For each snippet of the retrieved documents that contains the
answer, we generate a new training triplet consisting of the BIOASQ question, the snippet,
and the BIOASQ answer.

Data augmentation using IR improves results from 89.57 to 89.80 PRAUC for the de-
velopment set when combined with the original BIOASQ data. Unfortunately in the entire
PUBMED database, only 289 examples could be created from the retrieved documents when
the question is used as a query.

ALBERT (SQUAD-V2) +train ex. PRAUC (BIOASQ dev)
+BIOASQ 2,848 89.57

+IR 289 80.30
+IR +BIOASQ 3,137 89.80

Table 6.17 Data augmentation via information retrieval (IR), using PUBMED titles and
abstracts as documents.

6.4 Results & Analysis

6.4.1 BIOASQ Results

In Table 6.18 we present the precision-recall AUC for both development and test set. For
reasons of space economy, we only report for each DA method, the results of the model
that obtained the best development performance, among models obtained using different
numbers of artificial training instances. Overall we observe that all DA strategies improve
the results for both development and test set. Test scores are worse than the development

Page 125 of 172



126 Biomedical Factoid QA and Data Augmentation

scores which is expected as early stopping is applied and the model from the epoch with the
best development score is selected. However, the improvement (shown in parenthesis) of the
scores when using DA is higher in the test set.

Method +train ex. PRAUC (dev) PRAUC (test)
ALBERT (SQUAD-V2) 0 80.25 77.78

+ BIOASQ 2,848 89.57 76.78
+WORD2VEC +BIOASQ 12,848 95.60 (+6.03) 84.99 (+8.21)

+BIOLM +BIOASQ 52,848 94.45 (+4.88) 82.76 (+5.98)
+CONTEXT +BIOASQ 9,276 94.21 (+4.64) 81.63 (+4.85)
+BIOMRC +BIOASQ 12,848 93.15 (+3.58) 82.04 (+5.26)

+BTR +BIOASQ 18,441 92.66 (+3.09) 81.27 (+4.49)
+T5 @PUBMED +BIOASQ 52,848 90.69 (+1.12) 80.26 (+3.48)

+IR +BIOASQ 3,137 89.80 (+0.23) 78.66 (+1.88)

Table 6.18 Performance of DA methods on development and test data, ordered by decreasing
development score. For each DA method, we use the configuration (from Tables 6.4–6.10)
with the best development score.

We employed ten-fold stratified cross-validation to evaluate the results based on micro-
PRAUC. Ten-fold stratified cross-validation is a model evaluation method used in machine
learning to assess the performance of a model. The dataset is divided into ten equal parts
(‘folds’) and the model is trained and evaluated on each fold, one at a time. The process
is repeated ten times, with each fold serving as the test set once. The advantage of this
method is that all samples are used for both training and testing, ensuring that all parts of the
dataset are used and that the model has seen all the examples at least once. In comparison to
the previous evaluation method, ten-fold cross-validation uses ten folds instead of just one.
However, this leads to a ten-fold increase in the amount of time needed to complete a single
experiment.

We evaluate all DA strategies except IR, which produced the smallest number of additional
training examples and contributed less in the results of Table 6.18. We also use always 10k
additional training examples in every DA experiment, to achieve a fair comparison for context
increasing and back translation techniques which produce fewer training examples. After
ten-fold cross-validation we observe once more that all DA strategies improve the results.

Surprisingly, increasing the length of the processed snippet by adding surrounding
sentences improves the results and surpasses all data augmentation techniques. As seen
in Table 6.20 there are some cases where the snippet is short in length, and even though
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Method PRAUC (dev) F1 0.5 (dev) PRAUC (test) F1 0.5 (test)
No AUG 74.62 34.82 77.19 35.08

CONTEXT 79.27 (+4.65) 60.85 81.17 (+3.98) 63.86
WORD2VEC 79.03 (+4.41) 60.68 80.41 (+3.22) 63.94

BIOLM 78.71 (+4.09) 62.82 80.52 (+3.33) 68.00
BTR 77.69 (+3.07) 62.34 79.99 (+2.80) 66.92

BIOMRC 76.97 (+2.35) 55.24 79.85 (+2.66) 58.33
T5 76.50 (+1.88) 56.60 79.27 (+2.08) 59.82

Table 6.19 10-fold cross validation results for BIOASQ.

it contains the answer there is not much context. However, by increasing the context
(adding two more sentences) we observe that there is a lot more context which also shares
multiple tokens with the question so the QA model performs better using context-based data
augmentation. Small sentences without enough context are not present in BIOASQ data since
the biomedical experts were asked to annotate snippets that contain enough information to
answer the questions. This might explain why WORD2VEC data augmentation performed
better in BIOASQ than context-based data augmentation.

Substituting tokens using language models also improves the results and constitutes the
best data augmentation technique when adding context cannot be applied as an augmentation
technique. Using pre-trained WORD2VEC embeddings for data augmentation also competes
with data augmentation using the BIOLM language model despite their training method being
more simplistic. BIOMRC and T5 question generation were ranked last as data augmentation
techniques even though they both improve model results. However, in all experiments, we
used only 10k new training examples even if we could produce seemingly unlimited new
artificial training data.

6.4.2 COVIDQA Results

Results on BIOASQ were very encouraging for biomedical factoid QA. To ensure that our
previous results were not BIOASQ-specific, we decided to experiment with another biomedical
QA dataset. Similarly to BIOASQ, COVIDQA [121] includes biomedical questions annotated
by volunteer biomedical experts on scientific articles. However, COVIDQA uses only articles
related to COVID-19. The experts examined 147 biomedical articles and created multiple
question/answer pairs for each article. In total 2,019 question/answer pairs were created.

COVIDQA includes multiple answers that do not fit our factoid QA setting as the answers
are too long. We discarded all answers that exceeded 40 characters and answers that included
only one character. For each paragraph, multiple occurrences of the answer could be found.
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An instance from the COVIDQA dataset
ID Instance
83 Question: What potential mechanism, could be presumed to underlie the

pathogenesis of HCPS?.
Answer: Innate immune mechanisms
Snippet: These include: (1) Innate immune mechanisms.
Snippet Augmented with WORD2VEC: These involve: (1) Innate immune
mechanisms.
Snippet with context: It is tempting to speculate that mediators produced in
the lung in connection with the inflammatory infiltrate can percolate through
the coronary circulation with minimal dilution in HCPS, a disadvantageous
consequence of the close anatomic juxtaposition of the two organs. Thus, at
least three classes of potential mechanisms, some overlapping and all certainly
nonexclusive of the others, could be presumed to underlie the pathogenesis of
HCPS. These include: (1) Innate immune mechanisms.

Table 6.20 An instance of the COVIDQA dataset along with an instance created using
WORD2VEC data augmentation and context-based data augmentation. We observe that
when the context is increased there are more tokens shared between the augmented snippet
and the question.

We applied sentence splitting and created multiple examples that include a question a snippet,
and an answer so that the resulting instances from the COVIDQA dataset resemble the format
of the instances we used in BIOASQ experiments. Using the same format allows us also
to evaluate on COVIDQA data, the already fine-tuned models on BIOASQ data (see also
BEST-BIOASQ in Table 6.21) which we further discuss below. According to these criteria we
ended up using 2,024 examples.

Method PRAUC (dev) F1 0.5 (dev) PRAUC (test) F1 0.5 (test)
No AUG 58.47 6.47 55.11 6.82

BIOLM 66.79 30.64 59.65 25.35
WORD2VEC 65.17 22.29 61.74 20.56

CONTEXT 64.70 27.97 60.78 27.15
BIOMRC 61.69 17.14 55.52 15.38

BEST-BIOASQ 67.97 46.14 67.57 45.60
BEST-BIOASQ + BIOLM 68.38 40.01 65.67 37.87

BEST-BIOASQ + WORD2VEC 66.27 38.55 61.97 35.38

Table 6.21 10-fold cross validation results for COVIDQA.

We once again start with the ALBERT model pre-trained only on SQUAD data. We applied
our data augmentation techniques to the COVIDQA data and applied 10-fold cross-validation
similarly to BIOASQ experiments to evaluate model performance. In Table 6.21 we observe
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that once again all data augmentation techniques improve the results. On average BIOLM

achieved the best PRAUC score in the development set (0.6679) and WORD2VEC substitution
achieved the best test PRAUC score (0.6174) confirming that word substitution is a strong
data augmentation technique for biomedical factoid QA.

Instead of using the ALBERT model, which was pre-trained only on SQUAD data, we also
experimented using the model that performed best across all folds on the development set
of BIOASQ data. In the bottom part of Table 6.21 we observe that upon further fine-tuning
the best BIOASQ model with COVIDQA data the results further improve compared to the
results of the models that were only trained with COVIDQA data (from 65.17 to 66.27 for
WORD2VEC and from 66.79 to 68.38 for the BIOLM approach). This is expected as the model
has been exposed to more training examples for the biomedical factoid QA task. It is however
strange that the BEST-BIOASQ model that was trained only on COVIDQA data performed
better than the BEST-BIOASQ model that was trained on both the original COVIDQA and the
augmented data (67.57 TEST PRAUC when using the original COVIDQA data, 65.67 TEST

PRAUC when the original COVIDQA data and BIOLM data augmentation and 61.97 when
the original COVIDQA data and WORD2VEC data augmentation). It might be the case that
since COVIDQA was constructed using only 147 documents the BEST-BIOASQ model finally
overfits on training data and therefore performs poorly on test data.

6.5 Conclusions and Future work

In this chapter, we presented a novel factoid question-answering model that can extract
multiple text spans as answers to a given question. This is a significant contribution to
the field of biomedical NLP as it is the first time that seven data augmentation techniques
have been compared in this domain. We evaluated our model on two biomedical datasets,
BIOASQ and COVIDQA, and found that all data augmentation techniques improved the results
in both datasets. Additionally, fine-tuning the model on BIOASQ and then on COVIDQA

resulted in even further improvement in performance on the COVIDQA dataset. Overall, this
work presents new insights and methodologies for improving the performance of factoid
question-answering models in biomedical NLP.

The current work on data augmentation in NLP has a few limitations, which are also
common in the field. Firstly, the focus is on data augmentation in the input space, meaning
the artificially generated data is in text form, similar to the original data. Secondly, the data
augmentation is performed only once, before training, as opposed to generating new artificial
instances for each training epoch. These limitations, although common, lead to reduced
computational costs and enable sharing of augmented datasets.
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However, there is room for improvement in the current approach. Future work can include
online data augmentation and feature space data augmentation [29, 43, 172] to expose the
model to more synthetic data and act as layer-specific regularization. Additionally, the study
of active learning [51, 115] can be incorporated to select the most informative, diverse, and
representative artificial training instances generated by data augmentation. The effect of data
augmentation in few-shot learning can also be studied using small subsets of the BIOASQ

dataset.
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Chapter 7

Conclusions and Future Work

7.1 Summary of the thesis and its contributions

Our research aimed to address three major research questions in the field of biomedical
natural language processing (NLP). The first question centered around document and snippet
retrieval in the biomedical domain. The goal was to develop methods for efficiently and
accurately retrieving relevant information from large collections of biomedical documents.
The second research question concerned the creation of big corpora for machine reading
comprehension in the biomedical domain. Here, we aimed to build large datasets that can
be used to train deep learning models for machine reading comprehension tasks. The third
and final research question focused on data augmentation for biomedical factoid question
answering. The goal here was to explore and compare different data augmentation techniques
for factoid question answering in the biomedical domain.

Working in the biomedical NLP domain is particularly challenging due to the highly
specialized and technical language used in biomedical texts. However, the potential benefits
of advances in this field are substantial, as they can aid in the development of new medical
treatments and therapies. Our research is therefore valuable in that it contributes to the
ongoing efforts to make the vast amounts of biomedical information more accessible and
understandable to both experts and non-experts. Our work on document and snippet retrieval
can help healthcare practitioners quickly locate relevant information for patient care, while
our work on machine reading comprehension and data augmentation for question answering
can help in the development of intelligent systems that can assist with medical diagnosis and
treatment.

In Chapter 4 of our research, we aimed to tackle the critical challenge of document
and snippet retrieval in the biomedical domain. To address this challenge, we proposed a
novel architecture that jointly ranks documents and snippets with respect to a given question.
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This architecture can be utilized with any neural text relevance model and is designed
to be highly flexible and adaptable to a wide range of applications. Our research results
were highly successful, with our models demonstrating vast improvements over existing
pipelines in terms of snippet retrieval performance while also remaining competitive in
document retrieval. In addition, we provided a modified version of the Natural Questions
dataset, modified for document and snippet retrieval thus creating a valuable resource for
the community. Furthermore, our models were deployed in two real-world use cases to
aid biomedical experts, such as answering questions related to the COVID pandemic and
performing literature identification and screening for systematic reviews. Importantly, our
models were recognized for their exceptional performance, winning prizes for document
retrieval and snippet retrieval in BIOASQ-7 [143] (see also the results of the competition
[127]), BIOASQ-8 [144] (see also the results of the competition [129]), and BIOASQ-9 (see
also the results of the competition [128]), respectively.

In chapter 5 of our research, we made significant contributions to the field of Machine
Reading Comprehension (MRC) in the biomedical domain. MRC is a subfield of Natural
Language Processing (NLP) and is related to Question Answering (QA) in that it aims to
understand and extract relevant information from a given document to answer questions.
We constructed and made publicly available two large MRC datasets, namely BioRead and
BIOMRC, which consist of 16.4 million and 800 thousand instances respectively. BioRead is
one of the largest MRC datasets to date and the first of its kind in the biomedical domain. To
demonstrate the effectiveness of our datasets, we re-implemented and tested two well-known
MRC methods (AS-READER and AOA-READER) and compared them against four baselines,
as a first step towards a biomedical MRC leaderboard. Additionally, we introduced two
new deep learning models for MRC and showed that the best-performing model was able to
surpass non-experts in selecting the correct answer to questions in a small-scale experiment
using 60 examples from the BIOMRC dataset. Finally, we showed that BIOMRC could be
used as a data augmentation method to improve results for Factoid Question Answering,
highlighting the usefulness of the artificially created dataset.

Finally, in chapter 6 of our work, we studied the impact of Data Augmentation (DA) on
biomedical Question Answering (QA) with a focus on the factoid questions in the BIOASQ

challenge. We started by evaluating pre-trained models that were already fine-tuned on
general domain QA data and selected the best model available. We modified the architecture
of the chosen model (ALBERT) to enable the identification of multiple answer spans in the
text. Furthermore, we performed additional fine-tuning on the BIOASQ dataset, in addition
to its pre-existing fine-tuning on the generic question-answering (SQUAD) dataset, to attain
a more robust baseline. Our experiments showed that the simplest DA method considered,
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word substitution, was the best data augmentation method that improved both development
and test performance significantly. We also verified the effectiveness of word substitution
through experiments on the COVIDQA dataset. The performance of the model was further
improved when it was fine-tuned on both the BIOASQ and COVIDQA datasets.

7.2 Future work

There is a large scope for future work in the field of Biomedical Question Answering
(QA) using Natural Language Processing (NLP) techniques. In recent times, several deep
learning models with millions of trainable parameters have been developed and trained
in the biomedical domain, such as BioElectra[79], BioMegatron[170], GatorTron[207],
MED-PALM [174], BioGPT [110] and BioBART [214]. An interesting study that could be
conducted would be to replace the transformer-based models used in our research with these
pre-trained biomedical language models and evaluate the performance of our models that
use the embeddings produced by these models. Another improvement could be achieved by
fine-tuning the transformer-based models that we used in our experiments to see if there is
any improvement in their performance. We did not perform these experiments due to time
and computational limitations.

Multiple questions of the BIOASQ dataset are answered either by the name of a gene
or the name of the disease. Therefore external knowledge could be used to identify these
biomedical entities in the processed texts, such as the International Classification of Diseases
(ICD1), which includes names and synonyms of all human-related diseases or the Genecards
ontology [161], which includes metadata about genomes of many species. In the examined
texts, the use of these vocabularies enables the identification of diseases and genes and helps
to narrow down the entities to a single one when a question specifically asks for that type of
entity. Alternatively, a knowledge graph could be used, such as the extensive DRKG[70] or a
smaller biomedical graph containing specific entities [82] to identify and tag more biomedical
entities and identify relations between the entities of the question and the examined text. The
utilization of knowledge graphs has the potential to provide answers to questions that inquire
about the relationship between two entities, specifically in regards to a specific relation. For
example, the question ‘Can LB-100 downregulate miR-33?’ taken from the BIOASQ dataset
can be answered by a graph where the entity ‘LB-100’ is linked with the entity ‘miR-33’ by
the relation ‘downregulation’ in DRKG.

In both retrieval models and factoid QA models an issue that could be addressed is the
identification and replacement of the abbreviated forms of phrases in a biomedical text.

1The current version of the ontology (ICD11) is described in: https://icd.who.int/en.
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For example in the snippets provided by BIOASQ there is a question that requires the text
‘essential tremor’ as an answer, however, in some snippets, only the abbreviated form (‘ET’)
can be found2. Therefore even if the model selects the abbreviation as an answer it would be
identified as an incorrect answer and the model would be penalized. The use of abbreviations
in language models (like the pre-trained language models used in all of our experiments) can
pose a challenge as they can represent multiple entities in a text. To address this issue, it is
necessary to replace abbreviations with their full forms in order to ensure accurate embedding
representation.

All proposed deep learning models for factoid Question Answering (QA) are limited
to the knowledge present in the input snippet. The language models encode the tokens in
their context and the contextual embeddings are then used to extract spans from the text
as answers to a given question. The vast knowledge that a biomedical expert has obtained
through years of training and the common sense that humans possess are mainly represented
by the large language models. A possible solution to enhance the current state of factoid
QA is to integrate the knowledge from biomedical graphs with biomedical language models,
similar to work from Yasunaga et al. [211].

2You can visit PUBMED to read the corresponding abstract https://pubmed.ncbi.nlm.nih.gov/29
481820/
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Appendix A

Detailed experiments

A.1 Details on Data Augmentation experiments

In this section, we provide more details on the data augmentation experiments that we
conducted as part of our research. We present the results of these experiments and discuss the
implications of our findings for the use of data augmentation in biomedical factoid question
answering.

A.1.1 BIOASQ additional experiments

Learning Curves

In Tables A.1, A.2, A.3 we report the performance of the factoid QA model described in
Section 6.3.1 when a limited number of additional data can be created. In these experiments,
we use the same data split that we used in Table 6.2 and apply data augmentation using
BIOMRC, WORD2VEC, and BIOLM. We use four different sample sizes (10K, 30K, 50K, and
100K additional training instances) and train our model several times gradually increasing
the training size.

When using BIOMRC for data augmentation, it is preferable to use 100K training examples
to pre-train the model and then further finetune it with the original BIOASQ data.

The same can be observed when using WORD2VEC for data augmentation where the best
DEV PRAUC is achieved (95.91). On the other hand, even when 10K augmented training
examples are used the model achieves almost identical results (95.19 DEV PRAUC). On
unseen data however we observe that as we add more augmented data, the performance of
the models increases (from 83.65 to 89.93 DEV PRAUC). It is probable that using more data
allows generalization of the model hence the better performance on unseen data.
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Method Setting + train ex. PRAUC (dev) F1 0.5 (dev) PRAUC (test) F1 0.5 (test)
No AUG N/A 2848 0.8957 0.5924 0.7678 0.6000
BIOMRC PRETRAIN 10000 0.9120 0.7758 0.7928 0.6191
BIOMRC FINETUNE 12848 0.9235 0.7550 0.8146 0.6776
BIOMRC COMB 12848 0.9315 0.7951 0.8204 0.6748
BIOMRC PRETRAIN 30000 0.9057 0.7541 0.8012 0.6462
BIOMRC FINETUNE 32848 0.9232 0.7590 0.8154 0.6994
BIOMRC COMB 32848 0.9219 0.7491 0.8205 0.6462
BIOMRC PRETRAIN 50000 0.9119 0.7634 0.8223 0.6591
BIOMRC FINETUNE 52848 0.9183 0.7648 0.8023 0.6896
BIOMRC COMB 52848 0.9151 0.7808 0.8383 0.6749
BIOMRC PRETRAIN 100000 0.9093 0.7844 0.8149 0.6246
BIOMRC FINETUNE 102848 0.9321 0.7860 0.8266 0.6987
BIOMRC COMB 102848 0.9239 0.8010 0.8124 0.6308

Table A.1 results for BIOASQ-8 learning curve using BIOMRC

Method Setting + train ex. PRAUC (dev) F1 0.5 (dev) PRAUC (test) F1 0.5 (test)
No AUG N/A 2848 0.8957 0.5924 0.7678 0.6000

WORD2VEC PRETRAIN 10000 0.9559 0.7448 0.8359 0.6821
WORD2VEC FINETUNE 12848 0.9519 0.7941 0.8365 0.6809
WORD2VEC COMB 12848 0.9560 0.7654 0.8499 0.6860
WORD2VEC PRETRAIN 30000 0.9528 0.7425 0.8310 0.6834
WORD2VEC FINETUNE 32848 0.9418 0.8165 0.8501 0.7109
WORD2VEC COMB 32848 0.9520 0.7678 0.8408 0.6924
WORD2VEC PRETRAIN 50000 0.9516 0.7540 0.8301 0.6796
WORD2VEC FINETUNE 52848 0.9489 0.8200 0.8496 0.7276
WORD2VEC COMB 52848 0.9513 0.7540 0.8386 0.6770
WORD2VEC PRETRAIN 100000 0.9536 0.7540 0.8117 0.6788
WORD2VEC FINETUNE 102848 0.9591 0.8027 0.8993 0.7804
WORD2VEC COMB 102848 0.9522 0.7678 0.8333 0.6745

Table A.2 results for BIOASQ-8 learning curve using WORD2VEC

The use of BIOLM for data augmentation yielded comparable results to the use of
WORD2VEC for data augmentation in terms of performance on the development set. No sig-
nificant differences in scores were observed across different settings within the development
set. The best DEV PRAUC was achieved when augmented and original data were shuffled and
then used to train the model (94.45 DEV PRAUC). Contrary to using WORD2VEC, using more
augmented data produced by BIOLM reduces the TEST PRAUC.

In further experiments, we simulated the scenario where fewer original training examples
are available, by using only a portion of the data of the original BIOASQ dataset. Each time
we sample a subset of the dataset (20%, 40%, 60%, 80%, and 100%) and use this portion
of the dataset to train, apply data augmentation and fine-tune the model. In Table A.4 we
can see the results for data augmentation using BIOLM. To save time, we used only one data
augmentation method in this experiment, and we selected BIOLM as it performed best for the
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Method Setting + train ex. PRAUC (dev) F1 0.5 (dev) PRAUC (test) F1 0.5 (test)
No AUG N/A 2848 0.8957 0.5924 0.7678 0.6000

BIOLM PRETRAIN 10000 0.9406 0.8056 0.8417 0.6751
BIOLM FINETUNE 12848 0.9406 0.8021 0.8346 0.6783
BIOLM COMB 12848 0.9406 0.8177 0.8235 0.6751
BIOLM PRETRAIN 30000 0.9363 0.7337 0.8374 0.6859
BIOLM FINETUNE 32848 0.9369 0.8211 0.8363 0.6507
BIOLM COMB 32848 0.9375 0.7763 0.8323 0.6731
BIOLM PRETRAIN 50000 0.9394 0.7993 0.8229 0.6636
BIOLM FINETUNE 52848 0.9366 0.8200 0.8247 0.6636
BIOLM COMB 52848 0.9445 0.8039 0.8276 0.6584
BIOLM PRETRAIN 100000 0.9379 0.8154 0.8223 0.6674
BIOLM FINETUNE 102848 0.9381 0.8090 0.8272 0.6769
BIOLM COMB 102848 0.9384 0.7740 0.8262 0.6526

Table A.3 results for BIOASQ-8 learning curve using BIOLM

COVIDQA dataset and achieved the second-best performance for the BIOASQ dataset. Overall
data augmentation always improves PRAUC performance even if we only use 20% of the
original BIOASQ dataset. The best performance is achieved when the entire original dataset
is used to create augmented data. In this case, even using just the augmented data to pre-train
the model achieves the best DEV and TEST PRAUC scores (91.18 and 91.16 respectively).

10-fold cross-validation

10-fold cross-validation is a common method used in natural language processing (NLP) and
other fields to evaluate the performance of a machine learning model. It involves dividing
the dataset into 10 equal-sized folds or partitions. The process is repeated 10 times, with
each fold serving as the test set once and the training set of each repetition being the other 9
folds. The performance of the model is then averaged across all 10 iterations to give a final
evaluation score. Cross-validation helps to assess the model’s generalization ability, or how
well it performs on unseen data, and reduces the variance in the evaluation score by training
and evaluating the model on different subsets of the data.

In experiments conducted on BIOASQ 8 data we observe that all data augmentation
techniques improve the results of the model (Table A.5). In 10-fold cross-validation, the best
DEV PRAUC was achieved by increasing the context of the processed snippet (79.27 PRAUC).
For unseen data, however, the best score was once more achieved using WORD2VEC for data
augmentation (82.17). Further improvement could be achieved by combining the two best
data augmentation techniques, i.e. first increase the context with surrounding sentences and
then replace tokens using WORD2VEC on the augmented text.
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Method Setting data percentage + train ex. best ep. PRAUC (dev) F1 0.5 (dev) PRAUC (test) F1 0.5 (test)
No AUG N/A 20% (572) 0 46 84.93 39.28 82.22 35.37
No AUG N/A 40% (1,145) 0 48 88.60 52.91 83.41 49.24
No AUG N/A 60% (1,717) 0 42 89.62 53.18 83.34 49.63
No AUG N/A 80% (2,290) 0 26 89.42 52.22 83.13 49.01
No AUG N/A 100% (2,863) 0 19 89.49 48.60 83.49 45.37

BIOLM PRETRAIN 0 2,999 11 88.47 75.23 86.24 80.17
BIOLM PRETRAIN 0 6,052 13 89.36 79.64 88.53 81.94
BIOLM PRETRAIN 0 9,106 11 89.66 81.61 88.45 79.81
BIOLM PRETRAIN 0 11,736 10 90.58 81.56 88.67 75.82
BIOLM PRETRAIN 0 14,417 43 91.18 82.97 91.16 79.97
BIOLM FINETUNE 20% (572) 2,999 8 87.75 79.96 87.27 81.08
BIOLM FINETUNE 40% (1,145) 6,052 7 88.61 81.00 88.55 82.68
BIOLM FINETUNE 60% (1,717) 9,106 7 89.64 81.54 89.34 81.57
BIOLM FINETUNE 80% (2,290) 11,736 15 90.56 82.76 87.41 78.01
BIOLM FINETUNE 100% (2,863) 14,417 1 90.92 81.11 90.00 79.48
BIOLM COMB 20% (572) 2,999 10 88.62 77.04 86.24 80.17
BIOLM COMB 40% (1,145) 6,052 12 89.35 79.30 88.54 80.93
BIOLM COMB 60% (1,717) 9,106 23 90.24 83.02 89.77 81.78
BIOLM COMB 80% (2,290) 11,736 9 90.59 81.34 88.67 75.82
BIOLM COMB 100% (2,863) 14,417 7 90.38 78.18 87.02 78.13

Table A.4 results for BIOASQ-8 learning curve 2

A.1.2 COVIDQA additional experiments

We also applied 10-fold cross-validation to COVIDQA data and report the results in Table A.6.
Once again the replacement of tokens using a form of language model (in our experiments
we used BIOLM) seems to be the best method for data augmentation. Overall the DEV PRAUC

score is improved by 8 points (from 58.47 to 66.79). However, similarly to BIOASQ the best
method for unseen data seems to be the WORD2VEC technique, which achieves 61.74 TEST

PRAUC.
Further improvement can be observed when using the best performing model for the

BIOASQ dataset as a starting point and further fine-tuning the model using original and
augmented data from the COVIDQA dataset. Just using the best performing BIOASQ model
(Table A.7, 2nd row) achieves a DEV PRAUC score 67.97 and achieves the best overall TEST

PRAUC (45.60). Further fine-tuning of the model using augmented data from the COVIDQA

dataset improves performance on the development set, but the PRAUC score on unseen data
does not improve. Overall using the best BIOASQ model always improves the results on the
COVIDQA dataset. It might be the case that BIOASQ data are more diverse and allow more
generalization. Fine-tuning the BIOASQ model on COVIDQA data leads to indirect over-fitting
(through tuning hyper-parameters) of the model on development data.
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Method Setting PRAUC (dev) F1 0.5 (dev) PRAUC (test) F1 0.5 (test)
No AUG N/A 0.7462 0.3482 0.7719 0.3508

CONTEXT PRETRAIN 0.7927 0.6085 0.8117 0.6386
CONTEXT FINETUNE 0.7874 0.6634 0.8173 0.6775
CONTEXT COMB 0.7893 0.5440 0.8109 0.6367
BIOMRC PRETRAIN 0.7471 0.4432 0.7355 0.4387
BIOMRC FINETUNE 0.7697 0.5524 0.7985 0.5833
BIOMRC COMB 0.7724 0.5266 0.7913 0.5880

BTR PRETRAIN 0.7769 0.6234 0.7999 0.6692
BTR FINETUNE 0.7757 0.6429 0.8078 0.6796
BTR COMB 0.7751 0.6135 0.8083 0.6655

WORD2VEC PRETRAIN 0.7902 0.6006 0.8002 0.6175
WORD2VEC FINETUNE 0.7833 0.6530 0.8217 0.6681
WORD2VEC COMB 0.7903 0.6068 0.8041 0.6394

BIOLM PRETRAIN 0.7871 0.6282 0.8052 0.6800
BIOLM FINETUNE 0.7793 0.6449 0.8209 0.6912
BIOLM COMB 0.7861 0.6213 0.8075 0.6769

T5 PRETRAIN 0.7339 0.4442 0.7602 0.4503
T5 FINETUNE 0.7650 0.5660 0.7927 0.5982
T5 COMB 0.7562 0.5248 0.7731 0.5254

Table A.5 10-fold cross-validation results for BIOASQ-8 (2021).

Method Setting PRAUC (dev) F1 0.5 (dev) PRAUC (test) F1 0.5 (test)
No AUG N/A 0.5847 0.0647 0.5511 0.0682

CONTEXT PRETRAIN 0.6312 0.0869 0.5563 0.0862
CONTEXT FINETUNE 0.647 0.2797 0.6078 0.2715
CONTEXT COMB 0.6421 0.1324 0.562 0.0914
BIOMRC PRETRAIN 0.6161 0.1799 0.5526 0.1592
BIOMRC FINETUNE 0.6149 0.2169 0.5992 0.2215
BIOMRC COMB 0.6169 0.1714 0.5552 0.1538

WORD2VEC PRETRAIN 0.64 0.1915 0.5952 0.1667
WORD2VEC FINETUNE 0.651 0.2885 0.6101 0.2713
WORD2VEC COMB 0.6517 0.2229 0.6174 0.2056

BIOLM PRETRAIN 0.6644 0.3246 0.5976 0.2575
BIOLM FINETUNE 0.6509 0.3634 0.6085 0.2947
BIOLM COMB 0.6679 0.3064 0.5965 0.2535

Table A.6 10-fold cross-validation results for COVIDQA.
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Method Setting PRAUC (dev) F1 0.5 (dev) PRAUC (test) F1 0.5 (test)
No AUG N/A 0.5847 0.0647 0.5511 0.0682

BEST-BIOASQ N/A 0.6797 0.4614 0.6757 0.4560
BEST-BIOASQ + WORD2VEC PRETRAIN 0.6273 0.1975 0.6170 0.1961
BEST-BIOASQ + WORD2VEC FINETUNE 0.6627 0.3855 0.6197 0.3538
BEST-BIOASQ + WORD2VEC COMB 0.6474 0.2669 0.6422 0.2526

BEST-BIOASQ + BIOLM PRETRAIN 0.6775 0.3986 0.6604 0.3754
BEST-BIOASQ + BIOLM FINETUNE 0.6570 0.3662 0.6581 0.3577
BEST-BIOASQ + BIOLM COMB 0.6838 0.4001 0.6567 0.3787

Table A.7 10-fold cross-validation results for COVIDQA.
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Appendix B

Dense Retrieval

The present appendix represents an extension of the work described in Section 4.6.1. Our
aim is to extend the study by directly indexing sentence embeddings in order to retrieve
sentences, rather than first retrieving documents and then retrieving sentences within the
documents. This line of work is an extension of the SEMISER study (Section 4.6.1), however,
further exploration was not pursued as it resulted in poor results in the BIOASQ 7.

B.1 Introduction

Sentence Retrieval on huge corpora is a difficult task. The most common way to detect
relevant sentences inside a huge set of documents consists of mainly three steps:

1. retrieve and rank relevant documents,

2. retrieve and rank relevant paragraphs,

3. retrieve and rank relevant sentences.

These steps suffer from the cumulative error which is added through steps 1 to 3. Even
when the output of step 2 is a set of truly relevant paragraphs, only a small portion of the
contained sentences is usually relevant.

Dense Retrieval involves using neural networks to retrieve relevant documents given a
query. The approach seeks to embed both the query and the document into a dense vector
representation, which is then compared to determine the relevance of the document. The
importance of Dense Retrieval using neural networks in the NLP field lies in its ability
to handle large-scale datasets, as well as its ability to capture and exploit more nuanced
relationships between queries and documents. Unlike traditional retrieval engines such as
BM25, which rely on simple heuristics to rank documents, Dense Retrieval using neural
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networks is able to learn more sophisticated ranking functions from the data. In addition,
Dense Retrieval can be fine-tuned to different domains and datasets, making it highly flexible
and adaptable to a wide range of use cases.

In this chapter, we propose new methods for dense retrieval using sentence and query
embeddings. Our deep learning models are trained so that the embedding of a question and the
embeddings of sentences that answer the question are similar. We focus on creating a neural
network-based index of sentence embeddings where millions of pre-computed sentence
embeddings are stored, therefore cross-attention mechanisms between a sentence and a
question cannot be applied. When a query is submitted our model extracts the embedding of
the question and detects the most similar embeddings that are pre-calculated and indexed in
our database.

The models’ inputs are word vector representations that can also be pre-trained on larger
corpora (as when using GloVe [148] or Word2Vec [118]). We create sentence embeddings
in a way that sentences containing the same n-grams should have similar vectors in the
embedding space. Finally, we extract the data to train our model in an unsupervised way
so that we could create an unlimited amount of training instances given some texts. The
extracted sentence embeddings can be indexed in a database so that a simple similarity
function (e.g. cosine similarity) applied to pairs of a vector representation of a sentence and
a vector representation of a query could return relevant sentences. The retrieval can be fast
and the required memory can be adjusted by adjusting the sentence embeddings’ size. Our
training instances do not depend on sequences of sentences and our sentence embeddings
do not depend on neighboring sentences, making it easy to create embeddings for sentences
without a context, which allows our approach to be used on shorter text spans.

We create our sentence embeddings for retrieval trying to solve an auxiliary task that is
trivial for humans and can be solved by simple computations, i.e. given a sentence embedding
and an n-gram embedding the model must decide whether the n-gram can be found in the
sentence or not. Even though this task is trivial for humans and not very challenging for
deep learning methods, it has the potential to create really useful sentence embeddings as
a byproduct given that the representations of sentences with similar meaning should have
representations with high cosine similarity. For example given the two sentences: ‘a major
breakthrough in AI .’ and ‘an innovation in artificial intelligence .’ we would expect the
embeddings of these two sentences to be close in the semantic space. Furthermore, we would
like a mechanism that given the n-gram ‘artificial intelligence’ as a query would return both
sentences in the results even if the n-gram cannot be found in the first sentence.

To understand the intuition behind our models we present the following sentences as an
example:
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■ S1: Machine learning is generating new opportunities for innovative research in energy
economics and finance.

■ S2: Machine learning

■ S3: Deep learning is generating new opportunities for innovative research in energy
economics and finance.

■ S4: Therefore, machine learning is a powerful tool for economists.

■ S5: Machine learning is generating new opportunities for innovative research in energy
economics and finance, therefore, machine learning is a powerful tool for economists.

We can develop a model that creates vector representations for each sentence. We can
also assume that the model only assigns zeros and ones to the vector representation like the
multi-hot vector representations of sentences presented in Figure B.1. Similarly, a traditional
database creates an inverted index with vectors as big as the vocabulary. Given a text, an
analyzer creates a vector representation as big as the length of the vocabulary. Then it creates
the text’s multi-hot vector representation.

Given a vocabulary set V = w1,w2, ...,wn, where n is the size of the vocabulary, and
a document d = wd1,wd2 , ...,wdm , where m is the number of words in the document, the
multi-hot vector representation of d is a binary vector x of length n, where each element xi

represents the presence or absence of the word wi in the document d.
Mathematically, the multi-hot vector representation of d can be defined as:

xi =


1 if wi ∈ d

0 otherwise
(B.1)

Traditional databases however cannot automatically detect similar entities in the sentences
(like ‘machine learning’ and ‘deep learning’ in the examples). Ideally, we could train a deep
learning model that would detect similar entities (or concepts) in sentences and assign the
value 1 to the multi-hot vector if an entity (or concept) is present in the sentence. These
models would create vectors that comply with the following rules:

1. ∥Vec(S2)∥< ∥Vec(S1)∥, if S2 is a part of S1.

2. ∥Vec(S1)−Vec(S3)∥ ≃ 0,
since the concept of ‘deep learning’ is close to the concept of ‘machine learning’ and
the rest of the sentence remains the same.
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3. ∥Vec(S2)−Vec(S1)∥< ∥Vec(S1)−Vec(Srand)∥,
if S2 is a part of S1 and Srand is a random sentence.

4. ∥Vec(S2)−Vec(S1)∥< ∥Vec(S2)−Vec(Srand)∥,
if S2 is a part of S1 and Srand is a random sentence.

5. ∥Vec(S5)∥ ≃ ∥Vec(S1)+Vec(S4)∥,
if and only if S5 is the concatenation of S1 and S4.

6. ∥(Vec(S1) ·Vec(S2))−Vec(S2)∥ ≃ 0,
if S2 ⊆ S1 and the vectors include only zeros and ones

In our proposed models we only try to enforce rules 1, 3, and 4 and remove the constraint
of assigning only 0 and 1 values to the vector dimensions. Our proposed models given
a text create vector representations of a fixed length and assign values between 0 and 1
to the vector dimensions. We do not enforce rule 2 since we need to have a long list of
biomedical synonyms and similar concepts for all documents used to train the model (In
our case PUBMED titles and abstracts). We also do not enforce rules 5 and 6 because in our
experiments we do not use multi-hot vector representations but assign a value between 0 and
1 to each dimension.

B.2 Related Work

Djenouri et al. [46] introduced a cluster-based information retrieval approach that utilizes
frequent and high-utility pattern mining to extract relevant patterns from a collection of
objects. Two strategies, WTC and SPC, were proposed for ranking clusters based on user
queries. The proposed approach was evaluated on benchmark document and tweet collections,
and the results demonstrated that it improved the quality of returned objects compared to
state-of-the-art information retrieval approaches, while maintaining competitive runtime
performance, particularly when handling a high volume of queries.

The most similar work to our own is the work of Zamani et al. [217]. They introduced a
standalone neural ranking model (SNRM) that uses an inverted index to efficiently retrieve
documents from large collections. The model is optimized for information retrieval and learns
a high-dimensional sparse representation for queries and documents. This representation is
used to construct an inverted index, which allows the model to quickly retrieve documents
at query time. The model was tested on ad-hoc retrieval tasks using newswire and web
collections and was found to perform similarly to state-of-the-art neural models that rely on
dense representations. The authors also demonstrated that using pseudo-relevance feedback
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in the learned latent space significantly improved performance compared to competitive
baselines.

Boytsov et al. [21] present a method for replacing traditional term-based retrieval with
k-NN search using a non-metric, non-symmetric similarity function combining BM25 scores
and IBM Model 1 log-scores. An approximate k-NN search algorithm is introduced that
is significantly faster than an exact brute-force k-NN search, while still maintaining high
accuracy. The proposed method is tested on a retrieval pipeline using the Stack Overflow
collection and found to be both faster and more accurate than a term-based Lucene pipeline
in some cases. This is the first successful application of a generic k-NN search algorithm
to a combination of BM25 and IBM Model 1, and the results suggest that the method is
effective for addressing semantic and syntactic mismatch in retrieval tasks. The software and
derivative data used in the study are available online.

B.3 Methods

B.3.1 Semantic Indexing for Sentence Retrieval (SEMISER)

SEMISER is described in detail in Section 4.6.1 as it has been trained and used for retrieval
in the BIOASQ competition. The rest of the models in this chapter have been evaluated on
artificial data only.

B.3.2 Sentence Embedding Model for Indexing and Retrieval using Re-
current Neural Networks (SEMIR-RNN)

The input of our model is a sentence and an n-gram while the output is a probability estimate
of whether the n-gram could or could not be found in the sentence. For each token, we used
a GloVe or Word2Vec pre-trained vector. When we met an out-of-vocabulary word we used
the ‘UNKN’ token and a random embedding was assigned to it.

The structure of our model can be seen in Figure B.2. We used a bidirectional GRU
[163, 166] to encode the word embeddings of the sentence. An attention mechanism (see
Section B.3.4) was applied across the biGRU states creating a sentence embedding (in the
simplest case the state of the last timestep was used). We used the same process using a
different biGRU for the n-gram creating an n-gram embedding. The concatenation of the
n-gram and sentence embeddings is then passed through an MLP which decides whether the
n-gram can be found inside the sentence or not. To simplify the model and minimize the
computations we also used the cosine similarity of the embeddings instead of the MLP.
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Fig. B.2 SEMIR Model using RNN and MLP.

B.3.3 Sentence Embedding Model for Indexing and Retrieval using
Convolutional Neural Networks (SEMIR-CNN)

We also experimented with convolutional layers [93] instead of RNNs. The structure of our
model can be seen in figure B.3. Given the token embeddings of the sentence, we apply
multiple bigram and trigram filters and then apply an attention mechanism (see Section B.3.4)
creating a sentence embedding. In the same way, using different filters we created an n-gram
embedding. Just like in the former model we apply an MLP (or a cosine similarity function)
to the concatenation of the two embeddings.
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Fig. B.3 SEMIR Model using CNN and MLP.

B.3.4 Attention on SEMIR

We experimented with several attention mechanisms that we apply to the states of the biGRU
and the feature maps of the convolutions. For all k vectors in a set of vectors named V we
apply:

• Last state (biGRU only),

• Min Pooling over each dimension,

representation =

〈
min

∀v∈V1..k
v0, ..., min

∀v∈V1..k
vn

〉
• Max Pooling over each dimension,

representation =

〈
max

∀v∈V1..k
v0, ..., max

∀v∈V1..k
vn

〉
• Average Pooling over each dimension,

representation =

〈
∑

∀v∈V1..k
v0

k , ...,
∑

∀v∈V1..k
vn

k

〉
• IDF Pooling.

representation =

〈
∑

∀v∈Vj=1..k
v0∗IDFj

k , ...,

∑
∀v∈Vj=1..k

vn∗IDFj

k

〉
When applying IDF pooling we use pre-computed IDF scores as weights to multiply with

the contextual embeddings extracted from the biGRU and the convolutions.
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B.4 Experiments, Results & Analysis

B.4.1 Datasets

We apply our models described in Section B.3 to two datasets. The first dataset is the SQUAD

Dataset (see Section 3.3). We detected sentences inside the paragraphs that contain the
answer to the SQUAD questions and transformed the dataset so that it would be suitable for
our experiments i.e., every sentence containing an answer was labeled as relevant. We also
used the data of the BIOASQ competition (see Section 3.2) as an attempt to apply our models
to the biomedical domain.

As SEMIR models aim to create a new unsupervised way of indexing sentences, we
had to use sentences that were not included in the two datasets, to avoid fitting our models
specifically to these datasets and tasks. For the BIOASQ auxiliary task we randomly selected
100k sentences from abstracts of the MEDLINE database, that were not included in the
BioASQ dataset. For the SQUAD auxiliary task, we had to crawl and clean all of the
Wikipedia articles and selected 100k random sentences from these articles. Once again we
made sure that the randomly selected sentences were not included in the SQUAD dataset.

B.4.2 Baselines

We compare our results to three baselines pre-trained on the same data used to train our
models:

- The first baseline is a biGRU Language Model (biGRU LM). Instead of trying to
predict the next token of the input using negative sampling, we exploit the fact that we use
pre-trained word embeddings so in each timestep the biGRU LM has to emit an embedding
which is close to the embedding of the next token. The loss function that we try to minimize
is the average L2 loss of all embeddings. In order to create the sentence embedding we feed
the token embeddings in the biGRU and extract the concatenation of the last timesteps of the
forward GRU and the backward GRU as the sentence representation.

- The second baseline we apply is the SENT2VEC model [136]. SENT2VEC tries to
create word embeddings in such a way that when removing a token from the sentence, the
average of the remaining tokens’ embeddings can predict the missing word. SENT2VEC’s
main disadvantage is the need of many examples for each word in the vocabulary. When the
vocabulary is huge then an abundance of data is needed in order to train the embeddings.
Nevertheless, the fact that SENT2VEC learns the embeddings of the words from scratch and
trains many more parameters, makes it suitable for a strong baseline. In that case, the average
of the token embeddings is used as a sentence embedding.
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- The third baseline we apply is using the inverted document frequency (IDF) of each
word of the sentence to create embeddings. This approach resembles a multi-hot vector but
instead of using zeros and ones we use the IDF score of the word if the word is present inside
the sentence. For each token, we computed its IDF in the entirety of the MEDLINE dataset. In
the most memory-consuming approach where we keep the entire vocabulary, a vector of size
V would be created (where V is the size of the vocabulary). In our experiments, we set an
embedding size of E which is much smaller than the vocabulary size. This approach would
only take into account the first E words of the vocabulary therefore we used a hash function
that creates E buckets. For each token, we computed a hash key and added the word’s IDF to
the corresponding bucket. Therefore, using a sentence we create an embedding that includes
in dimension i the sum of the IDF scores of the tokens with a hash key value i. In all of our
experiments with our models and the baselines, we set the same embedding size (E is the
same embedding size in all experiments) so that the approaches are comparable.

In our models, we operate on pre-trained word embeddings that were trained on billions
of training instances but we keep them frozen during the training of our models. If a word
that was not encountered in the training set is found in the test set, we can use its pre-trained
word embedding. If a token could not be found in the pre-trained embeddings a random one
was assigned. To be fair comparing against sent2vec, when training on the auxiliary task, we
selected only sentences that contained the same vocabulary as BioASQ and SQuAD so that
sent2vec would have no unknown tokens in the context to better train its embeddings. We
made sure that the auxiliary task and the actual sentence retrieval tasks had no sentences in
common, but that sentences shared the same vocabulary.

Given a question and a set of sentences, we compute the cosine similarity between the
question’s embedding and each sentence embedding. We use a ReLU1 function to extract
a value between zero and one from the cosine similarity score. This score is handled as a
probability score for the sentence to be relevant to the question. We use these scores and
measure the Area Under the ROC Curve (AUC [23]) score using the Scikit Learn toolkit
[147].

B.4.3 Settings

We test our models in three settings:

1. Measuring AUC across the sentences of all the paragraphs which are annotated as
relevant to the question. Each time we apply the Softmax function on the emissions of
the model, separately for each paragraph.

1https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
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2. Measuring AUC across the sentences of the paragraph where the answer is present (this
only applies to SQuAD). Each time we apply the Softmax function to the emissions of
the model.

3. Measuring AUC across the sentences of all the paragraphs relevant to the question.
Each time we apply the Softmax function on the emissions of the model. This approach
is different than the first approach where the Softmax function is applied across all the
sentences of each particular paragraph.

B.4.4 Results

Several experiments where conducted and the results can be seen in Table B.1 for the SQuAD
dataset and Table B.2 for the BioASQ dataset.

We experimented with several architectures of the models (using different distance
measures, different pooling mechanisms, biGRU or CNN). The model yielding the best
development results for the SQuAD dataset computes the question embedding and the
sentences embeddings using the max of each dimension across all the emissions of the
bidirectional GRU (biGRU + Max pooling) that encodes the sentence of the auxiliary task.
We also had to use residuals (i.e. in each timestep of the biGRU we add the input embedding
to the output of the biGRU) and compute the cosine similarity as the output layer. We barely
outperform the Sent2Vec model for the first setting and fail to surpass it in setting 3. However,
as we mentioned above, sent2vec trains all the embeddings of the words therefore it can train
many more parameters. Additionally, we had to specifically select the data of the auxiliary
task so that the auxiliary and the actual task shared the same vocabulary.

Once again we experimented with several architectures of the models for the BioASQ
dataset as well. The model yielding the best development results for the BioASQ dataset
computes the question embedding and the sentences embeddings using the average of each
dimension across all the emissions of the bigram and trigram convolutions (CNN + Average
Pooling). We also had to use residuals (i.e. in each timestep of the biGRU we add the input
embedding to the output of the biGRU) and compute the cosine similarity as the output layer.
We outperform all baselines by a wide margin for all three settings in the BioASQ dataset.
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AUC results on SQuAD sentence retrieval
Model setting 1 setting 2 setting 3

IDF embeddings 0.5009 N/A 0.6246
biGRU LM 0.4664 N/A 0.6238
Sent2Vec 0.7367 N/A 0.7088

biGRU + max + residuals + cosine 0.7374 N/A 0.6997
Table B.1 AUC results on the SQuAD dataset. In this general domain dataset, we observe
that our model competes in equal terms to the Sent2Vec model.

AUC results on BioASQ sentence retrieval
Model setting 1 setting 2 setting 3

IDF embeddings 0.4848 0.5857 0.5819
biGRU LM 0.5356 0.5947 0.5882
Sent2Vec 0.584 0.6091 0.5993

CNN + average + residuals + cosine 0.7111 0.6434 0.6185
Table B.2 AUC results on the BIOASQ dataset. Our model seems to surpass all other methods
by a wide margin, especially for the first setting.

B.5 Summary of Contributions

In this chapter, we present a preliminary work on dense retrieval for sentences. We evaluated
new deep learning models for sentence embeddings for the task of dense retrieval. The
models were trained specifically for the task of dense retrieval, which involves finding the
most relevant passages in a large document for a given query. The models were trained using
a combination of supervised and unsupervised learning techniques, and their performance
was evaluated on two widely-used datasets, SQUAD and BIOASQ. We compared our models
against three strong baselines. In our comparison against the strong baselines, our models
consistently outperformed all of the other methods, demonstrating their effectiveness in the
task of dense retrieval.

Unfortunately, when tested on batches of BIOASQ 7 against deep learning models for
information retrieval that use attention, our dense retrieval models were outperformed by
the competition and our JPDRMM model (see also Section 4.5.1). In future work, one could
xplore the use of transformer-based deep neural networks for dense retrieval, with the goal of
further improving the performance of these models.
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