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Abstract

During the past decades, Initial Public Offerings (IPOs) evolved into an irreplaceable tool

for companies to raise capital. Generally, IPOs describe the procedure of offering private

corporative shares to the primary market, thus attracting institutional and individual

investors to purchase them. Afterward, the securities become available in the secondary

market and are easily traded by individuals. Typically, whenU.S. firms go public, they follow

an explicit procedure. Specifically, the U.S. Securities and Exchange Commission (SEC)

requires the submission of the S-1 filing document (also referred to as IPO prospectus)

to the Electronic Data Gathering, Analysis, and Retrieval (EDGAR) system. This clause

ensures investors have prior knowledge of the issuing company’s valuation, potential

risks, or future business plans. Hence, IPO underpricing received considerable attention

through the years by triggering economists and financial experts. Overall, underpricing

denotes offering an IPO at a price lower than its entered value on the stock market after

the first trading day. The opposite scenario indicates IPO overpricing. To investigate these

phenomena, previous work applied conventional Machine Learning (ML) techniques that

use features retrieved from the S-1 fillings or specific financial indications to classify IPOs.

However, measuring the predictive power of the prospectuses becomes a complicated

task because of the imposition of processing limitations due to their large document size,

as they contain a considerably high number of words, making them hard to process and

analyze. Therefore, in this study, we go beyond previous approaches and investigate the

predictive power of IPOs by utilizing pre-trained Transformers. To detect underpricing, we

use textual information retrieved from S-1 fillings along with specific economic knowledge

coming from certain financial indicators. We introduce a collection of models that process

texts of up to 20,480 tokens, thus making them a reliable option for facing the needs of this

classification task. Finally, the findings indicate that our methods outperform previous ML

approaches in most experiments and encourage further investigation in this field.
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Περίληψη

Τις τελευταίες δεϰαετίες, οι Αρχιϰές ∆ηµόσιες Εγγραφές (Initial Public Offerings - IPOs)

εξελίχϑηϰαν σε ένα αναντιϰατάστατο εργαλείο για την άντληση µετοχιϰών ϰεφαλαίων.

Γενιϰά, τα IPO περιγράφουν τη διαδιϰασία προσφοράς ιδιωτιϰών εταιριϰών µετοχών

στην πρωτογενή αγορά, προσελϰύοντας επενδυτές για την αγορά τους. Στη συνέχεια,

οι τίτλοι ϰαϑίστανται διαϑέσιµοι στη δευτερογενή αγορά, όπου γίνονται εύϰολα αν-

τιϰείµενο διαπραγµάτευσης από ιδιώτες. Συνήϑως, όταν οι αµεριϰανιϰές επιχειρήσεις

εισέρχονται στο χρηµατιστήριο, αϰολουϑούν µια ρητή προϰαϑορισµένη διαδιϰασία. Συγ-

ϰεϰριµένα, η Επιτροπή Κεφαλαιαγοράς (SEC) απαιτεί την υποβολή του εγγράφου ϰατά-

ϑεσης S-1 στο σύστηµα EDGAR (Electronic Data Gathering, Analysis, and Retrieval),

διασφαλίζοντας πως οι επενδυτές έχουν εϰ των προτέρων γνώση της αποτίµησης, των

πιϑανών ϰινδύνων ή των µελλοντιϰών επιχειρηµατιϰών σχεδίων της εϰδότριας εταιρείας.

Ως εϰ τούτου, η υποτιµολόγηση (underpricing) των IPO τυγχάνει σηµαντιϰής προσο-

χής, προϰαλώντας το ενδιαφέρον οιϰονοµολόγων ϰαι χρηµατοοιϰονοµιϰών εµπειρογν-

ωµόνων. Υποτιµολόγηση έχουµε όταν η προσφερόµενη τιµή είναι µιϰρότερη από την

τιµή ϰλεισίµατος της µετοχής ϰατά την πρώτη ηµέρα διαπραγµάτευσης. Το αντίϑετο

σενάριο υποδηλώνει υπερτιµολόγηση (overpricing). Για τη διερεύνηση αυτών των φαιν-

οµένων, προηγούµενη βιβλιογραφία εφάρµοζε βασιϰές τεχνιϰές Μηχανιϰής Μάϑησης οι

οποίες χρησιµοποιούσαν χαραϰτηριστιϰά που αναϰτώνται από τα ίδια τα S-1, ή συγ-

ϰεϰριµένες χρηµατοοιϰονοµιϰές µεταβλητές για την ταξινόµηση των IPO. Ωστόσο, η

µέτρηση της ιϰανότητας των S-1 στης πρόβλεψη φαινοµένων υποτιµολόγησης ϰαϑίσ-

ταται µία περίπλοϰη διαδιϰασία, ϰαϑώς τίϑενται περιορισµοί στην επεξεργασία των

ϰειµένων λόγω του µεγάλου µεγέϑους τους, γεγονός που ϰαϑιστά δύσϰολη την επεξ-

εργασία ϰαι την ανάλυσή τους. Ως εϰ τούτου, στην παρούσα µελέτη, υπερβαίνουµε τις

προηγούµενες προσεγγίσεις Μηχανιϰής Μάϑησης, ϰαι διερευνούµε την προγνωστιϰή

δύναµη των IPO εφαρµόζοντας προ-εϰπαιδευµένους Transformers. Για να ανιχνεύσουµε

την υποτιµολόγηση, χρησιµοποιούµε πληροφορίες ϰειµένου που αναϰτώνται από τα ίδια

τα S-1 µαζί µε ειδιϰές γνώσεις που προέρχονται από ορισµένους χρηµατοοιϰονοµιϰούς

δείϰτες, παρουσιάζοντας µια συλλογή µοντέλων που επεξεργάζονται ϰείµενα µήϰους έως

ϰαι 20.480 λέξεων. Τέλος, τα ευρήµατα δείχνουν ότι οι µέϑοδοί µας υπερτερούν των προ-

ηγούµενων προσεγγίσεων στα περισσότερα πειράµατα ϰαι ενϑαρρύνουν την περαιτέρω

διερεύνηση σε αυτόν τον τοµέα.
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1Introduction

The development of each nation’s economy and trade heavily depends on its stock markets.

Exchanges also play a pivotal role in its corporate growth while controlling the principal

source of capital. At the same time, companies of private corporations raise money for

their operations by issuing shares to the public. First, the stocks enter the primary market

by attracting institutional and individual investors. This process describes an Initial Public

Offering (IPO). In the second phase, the shares reach the secondary market, where they

become easily traded by individuals. However, before raising capital, investors should

maintain knowledge such as valuation, potential risks, or future business plans from the

issuing firm. Thus, they rely on a document called S-1 filing (or IPO prospectus) published

by the U.S. Securities and Exchange Commission (SEC) to extract the information needed

to support their final decision. In the past decades, there has been advanced interest in

developing the ability to monitor stock price trends. Hence, predicting whether the offered

price for a specific share exceeds the entered price on the first trading day (underpricing)

or whether the price remains constant or drops (overpricing) becomes essential. There are

several benefits of studying the predictive power of the textual information originating

from the S-1 filings. For instance, it ensures investors’ profitability by leading them to

optimal investment decisions, prevents inefficient capital allocation (investors allocate

their capital to companies that face the potential to undervalue and have significant growth

potential), and supports market stability.

1.1 Contribution

In the previous paragraph, we clarified the importance of studying the predictive power of

textual information obtained from IPO prospectuses to detect underpricing or overpricing.

During the past years, numerous studies have attempted to approach this task by utilizing

ML techniques. Thus, in this thesis, we go beyond conventional ML approaches by intro-

ducing a collection of pre-trained Transformers able to handle large input sequences for up

to 20,480 tokens, overcoming the processing limitations imposed due to the prospectus’s

large document size. To experiment, we use variations considering pure textual features

extracted from the S-1 filings combined with financial indicators to -potentially- increase

the knowledge gain. The experimentation process considers various sections of the IPO

prospectuses, revealing that our variants outperform the baselines (Logistic Regression,

Multi-Layer Perceptrons) on several tests. Finally, we encourage further research on
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this topic to improve the predictive power of Transformers and further enhance their

performance so they can apply to similar financial Natural Language Processing (NLP)

tasks.

1.2 Thesis Structure

Chapter 2: Background & Related Work

Introduces essential background knowledge needed to follow the rest of the thesis. In

addition, this chapter further discusses work conducted by others with similar objectives

to ours.

Chapter 3: Dataset

Analyzes the key aspects of the dataset used to measure the efficiency of the experimental

methods.

Chapter 4: Implemented Methods and Systems

Describes the models and systems developed to approach the classification task.

Chapter 5: Experiments

Covers the experimental stage by reporting and analyzing the findings detected during

each test.

Chapter 6: Conclusions & Future Work

Summarises the findings of this thesis and suggests ideas for future work.

Chapter A: Appendix

Provides readers with additional material regarding the experiments.

2 Chapter 1 Introduction



2Background and Related Work

This chapter provides background knowledge characterizing our study. First, we introduce

essential background information needed to deeply understand the concept of Initial

Public Offerings. Furthermore, we investigate prior work trying to approach classification

problems that use pre-trained Transformers to categorize long sequences. This section

assumes readers have general ML background knowledge on topics covering linear models

(especially Logistic Regression), and Multi-Layer Perceptrons (MLPs).

2.1 Background

This section covers the underpricing of Initial Public Offerings and analyzes essential

financial background knowledge about the stock market.

2.1.1 Initial Public Offerings (IPOs)

In the realm of financial markets and corporate finance, Initial Public Offerings (IPOs) stand

as a pivotal juncture, marking the transition of a privately held company into the public

domain, and have received considerable attention over the last decades. Consequently,

this section embarks on a comprehensive exploration of the mechanisms that envelop this

transformative financial event.

More specifically, before the existence of IPOs, companies were considered private, and

they usually grew using a relatively small number of stakeholders. Nowadays, to make

smarter steps towards their growing process, companies first have to publicly share their

stocks or bonds into the primary markets to attract institutional and individual investors.

This process is characterized as the Initial Public Offering (IPO) of a specific set of shares.

Afterward, the securities become available in the secondary market (i.e. stock exchange),

where they can be easily traded by investors.

In general, there are various reasons supporting the statement that the pricing of an IPO

becomes a difficult task, as the issuing companies don’t have observable market prices

before the IPO, which combined with the lack of historical data, leads to high valuation

uncertainty for IPO firms. Typically, when U.S. firms go public, they have to follow the

procedure of submitting the IPO prospectus (or the filing document, commonly referred to

3



as S-1) on the EDGAR system
1
, required by SEC. This provision guarantees that investors

are adequately informed about the valuation of the issuing company, future business plans,

and potential risks (Ferris et al., 2013), making the IPO prospectuses the most valuable

publicly available source of information.

The phenomenon of underpricing in Initial Public Offerings (IPOs) has intrigued economists,

investors, and financial experts alike. The newly issued shares become publicly available

in the primary market and can afterward be purchased by individual and institutional

investors (Ljungqvist, 2007). Each IPO is underpriced when the closing price becomes

higher than the offer price and overpriced in the opposite case. The underlying reasons

explaining the phenomenon of underpricing are multifaceted. In addition, various studies

indicate that underpricing is persistent in the U.S. IPO market. According to Loughran,

Ritter (2004), underpricing in the United States has been averaging between 7% and 65%

over the past few decades. To explain this behavior, the authors examined the hypotheses

of changing risk composition (scenario in which riskier IPOs will be underpriced by

more than less-risky IPOs), realignment of incentives, and the issuer’s objective function

modification. According to the study, both realignment of incentives, and the issuer’s

objective function modification hypotheses assume that underwriters benefit from rent-

seeking behavior that occurs when there is excessive underpricing (Loughran, Ritter (2004)).

The extracted conclusions were solid, showing various factors determining whether IPOs

are underpriced, such as the winner’s curse problem (situation in which uneducated

investors get the whole supply of unattractive IPOs) and dynamic information acquisition

that happened specifically before the internet bubble (occurred before 2000s). Another

study performed by Ritter, Welch (2002) examined a sample consisting of 6,249 U.S. IPOs

collected from 1980 to 2001, reporting an average underpricing of 18.8%. Based on the

conclusions, the findings indicate a degree of variation in the level of underpricing across

time periods before and after the Internet rising era.

Finally, another essential determinant of IPO underpricing is the idea of information

asymmetry (Banerjee et al., 2011). Specifically, it revolves around the unequal distribution

of information between various market participants, most notably the issuing company’s

insiders and the general public. According to this model, knowledgeable investors only

purchase shares of enticing IPOs. Instead, uneducated investors get the whole supply of

unattractive IPOs, leading to the thriving of a situation called the "winner’s curse." Thus,

first-day returns for uninformed investors should be less or equal to zero (Ritter, Welch,

2002), leading them not to bid for any IPO, whereas underwriters aim to retain uninformed

investors in the market by constantly underpricing IPOs.

1
Please use the following link to access the EDGAR system: https://www.sec.gov/.
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2.1.2 IPO Prospectus Underpricing Detection

Understanding the factors that contribute to IPO underpricing, has been a subject of

keen interest in finance. Scientists have particularly focused in the textual information

contained within S-1 filings, submitted by companies seeking to publish their shares. As we

previously discussed, each filing provides a comprehensive view of a company’s financial

health, operations, and risk factors. Consequently, a growing body of research has aimed

to explore the predictive power of the textual content within prospectuses in explaining

the phenomenon of IPO underpricing. This section investigates the findings of several key

studies which perform a linguistic content analysis to predict whether the closing price of

the first trading day exceeds the offering price.

A recent study performed by Katsafados et al. (2023) proposes machine learning approaches

to predict the underpricing of IPOs using the textual information held inside the S-1

filings. The data sample consists of 2,481 U.S. IPOs collected from Thomson Financial

Securities Data (TFSD) during the period 1997 to 2016, excluding the ones having an

offer price of less than 5$. In addition, the dataset comes imbalanced, and consists of

576 IPOs with negative first-day returns and 1,905 IPOs with positive first-day returns,

respectively. To perform the classification task, the authors experimented using Support

Vector Machines (SVMs), Logistic Regression (LR), Random Forest (RF), and Multi-Layer

Perceptrons (MLPs). To categorize each IPO, they used TF-IDF features extracted from

each filing, specific numerical financial indicators, or combinations between the two. To

evaluate each model, the study considers scores such as the accuracy, or the Receiver

Operating Curve (ROC). The experimental results indicate that MLPs could effectively

predict underpricing when separately considering textual features or financial indicators,

on each section of the initial S-1 filing. Hence, this allows investors to properly value the

issuing firm. The study shows that the models achieve superior levels of performance when

using both textual data and financial variables as inputs thus leading to more accurate

estimates.

Furthermore, a study introduced by Brau et al. (2016), uses content analysis to measure

the impact derived from specific words observed in prospectuses to efficiently price IPOs.

According to the researchers, the data consists of 2,298 observations coming from the

Securities Data Corporation’s (SDC) database and collected between January 1996 and

December 2008, eliminating American Depositary Receipts (ADRs), Real Estate Invest-

ment Trusts (REITs), and closed-end mutual funds from the final sample. To successfully

experiment using the IPO prospectuses, the authors proposed the creation of word-lists

using a specific procedure described in their paper. In general, word-lists were created

as a measure to evaluate the content of each IPO prospectus in combination with some

custom-defined scores. Considering the creation of those content-analysis libraries (lists

of selected strategic words), the authors make the following conclusions. First, they find
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that an IPO document’s strategic tone correlates positively with the stock’s first-day re-

turn, as more frequently used positive words such as “innovative” or “sustainable”(or less

frequently used strategic negative words such as “rivals” or “obsolete”) lead to more IPO

underpricing. In addition, they discovered that the strategic tone extracted from each S-1

filing negatively correlates with the stock’s long-run return. Finally, these results suggest

that soft information in registration statements, is initially mispriced by investors.

2.2 Pre-Trained Language Models (LMs)

This section introduces pre-trained Language Models (LMs), a cornerstone solution across

various NLP applications. Initially, we describe the essential parts behind the Transformer

architecture, followed by the introduction of the BERT model. From the family of sparse-

attention sliding window approaches, we explain Longformer, a solution for reducing the

quadratic computational complexity introduced by BERT. Finally, we discuss variants such

as Unlimiformer, LongNET, CoLT5, and Mega for their ability to approach tasks similar to

ours.

2.2.1 Transformers

Transformers were formally launched in 2017 (Vaswani et al., 2017) with the intention of

extending the boundaries of the most advanced language models available at the time, such

as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) using

Long Short-Term Memory (LSTM) (Hochreiter, Schmidhuber, 1997) or Gated Recurrent

Unit (GRU) (Cho et al., 2014) cells. Their most significant contribution is the proposal of

the self-attention mechanism, a structure allowing them to differentially assign importance

to each token, while processing the sequence. In their full form, Transformers follow the

encoder-decoder structure. The encoder, consists of identically stacked layers that convert

an input sequence (x1, ..., xn) to a series of continuous representations (feature vectors)

(z1, ..., zn). The decoder then receives (z1, ..., zn) and produces a sequence of output

tokens (y1, ..., ym). There are numerous self-attention heads and feedforward neural

networks coupled in each encoder-decoder layer. However, a model doesn’t necessarily

need to consist of both encoder and decoder components, as various Transformer-based

architectures were previously introduced using individual elements.

Attention
The original study describes the attention functionality as the mapping of a query and a set

of key-value pairs to an output. The keys, values, and queries are matrices mathematically

combined to calculate attention. In the paper, the authors introduce two concepts of

attention mechanisms: Scaled Dot-Product, and Multi-Head Attention.
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The Basic-Attention mechanism, also known as Scaled Dot-Product Attention, uses a single

attention head to calculate the attention scores by measuring the dot product of the query

vector with each key vector. The following formula describes the computation, where Q

represents the matrix of queries, and K , V , the matrices of keys and values respectively.

In addition, dk represents the dimension of the K (keys) matrix.

Attention(Q, K, V ) = softmax(QKT

√
dk

) · V (2.1)

On the contrary, the concept of Multi-Head attention extends the mechanism described by

performing the scaled dot-product attention multiple times in parallel, with different sets of

learned parameters (weights). Each set of parameters is referred to as a separate attention

head. The following formula describes the calculations needed to perform Multi-Head

attention.

MultiHead(Q, K, V ) = Concat(head1, ..., headh) · W O
(2.2)

Where headi equals:

headi = Attention(QW Q
i , KW K

i , V W V
i ) (2.3)

And W Q
i ∈ Rdm·dk , W K

i ∈ Rdm·dk , W V
i ∈ Rdm·dv , W O ∈ Rhdv ·dm . The symbol h

represents the number of parallel attention heads, dv the dimension of the V (values)

matrix, and
dm
h = 64.

Finally, the authors mention a significant difference between Scaled Dot-Product and Multi-

Head Attention. Based on their indications, the use of a single attention head captures

limited patterns and relationships in the data, whereas the use of multiple attention heads

attends a wider range of information, thus making the model more expensive.

2.2.2 BERT

This section introduces Bidirectional Encoder Representations from Transformers (BERT),

a groundbreaking language representation model introduced in 2018 by Google that

revolutionized NLP. Unlike the work that had been announced before that year, BERT

jointly considers both the left and right context across each layer. This capability has

propelled BERT to various NLP tasks. In addition, BERT was trained on a large amount
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of data collected from the internet (i.e., scraped from Wikipedia), leading to a strong

knowledge of various topics.

According to the study (Devlin et al., 2019a), a multi-layer bidirectional Transformer en-

coder serves as the basis for the model’s architecture. Clearly, BERT uses bidirectional

self-attention to assign importance to each attended token, based on the equations previ-

ously described when introducing the Transformer architecture. Consequently, the input

consists of the concatenation between the positional, segment, and token embeddings.

Furthermore, BERT originally came with two variants, each having a 512-token context

window: The BERTBASE version contains 12 stacked Transformer blocks, 12 self-attention

heads, and the output embedding hidden size of 768, leading thus to 110million weights. On

the contrary, BERTLARGE contains 24 stacked Transformer blocks, 16 attention heads, and

comes with the output embedding hidden size of 1,024, leading thus to 340 million weights.

The following figure demonstrates the essential components creating the architecture of

BERTBASE.

CLS risk fact SEP

ECLS

EA

E0

Erisk

EA

E1

Efact

EA

E2

ESEP

EA

E3

Transformer Encoder Block #1

Transformer Encoder Block #12

is

Eis

EB

E4

SEP

ESEP

EB

E5

+ + + + + +

+ + + + + +

Token 
Embeddings

Segment 
Embeddings

Positional 
Embeddings

Input

…

OCLS Orisk Ofact OSEP Ois OSEP

Fig. 2.1.: Illustration of the essential components creating the BERTBASE architecture. As displayed,

the input consists of the concatenation between the token, positional, and segment

embeddings.

To evaluate the performance of BERT, the authors considered the Glue benchmark (Wang

et al., 2018) proposing a collection of diverse Natural Language Understanding tasks.

According to the observations presented in Devlin et al., 2019a, the authors conclude that

both BERTBASE and BERTLARGE outperform all systems by a substantial margin. In addition,

when a minor percentage of training data is used, the experiments show that BERTLARGE

significantly outperforms BERTBASE across all tasks. Finally, the authors conducted several

additional experiments using other datasets, such as the Stanford Question Answering

Dataset (SQuAD v1.1) (Rajpurkar et al., 2016). The results remained similar to the ones

observed when using Glue.
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2.2.3 Longformer

The self-attention mechanism initially proposed by BERT, imposes limitations regarding

the context window size due to its quadratic computational complexity of O(n2), as each
token attends to any potential one from the input sequence. To address the issue, Beltagy

et al. (2020) introduced the concept of sparse attention, which reduces the computational

complexity to linear while increasing the input sequence size. The first sparse-attention pre-

trained Transformer-based Language Model introduced was Longformer, an architectural

revolution increasing the processed input sequence length to 4,096 tokens.

More extensively, Longformer combines the ideas of window-based local-context self-

attention and global-attention. First, the authors introduce the attention pattern of sliding

window. Several stacked layers of windowed attention produce a huge receptive field

where the top layers have access to all input locations. Consequently, this action constructs

representations including data from all input places. The computational complexity is

O(n · w), where w represents the constant window size, as shown in the Figure 2.2. In

addition, the sliding window can be dilated to further enhance the receptive field while

maintaining the same linear complexity. To attend tokens globally, the study suggests the

addition of specific global attention tokens that can match with the whole sequence. The

complexity of the combined local and global attention remains O(n) due to the minimal

quantity of such tokens. An example explaining this concept could be the use of the CLS

token when considering classification tasks.

a) Self-attention b) Sliding window attention

c) Dilated sliding window d) Global + sliding window

Fig. 2.2.: Comparison between the four different types of attention. As shown in sub-parts b, c,

and d, linear complexity is maintained, whereas the concept of self-attention shown on a

achieves the computational cost of O(n2).

To evaluate the performance of Longformer, the authors experimented using the ext8 and

enwik8 datasets with sequences of length 32,256. The dataset split into overlapping series
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of size 32,256 with a step of size 512. To report the model’s performance, they used the last

512 tokens of the sequence. Based on the results presented in the paper, they demonstrate

the model’s effectiveness using the Bits Per Character (BPC) metric in combination with

sliding or dilated windows.

In addition, to further investigate Longformer’s sustainability for long document tasks, the

authors pre-trained the model on a document corpus with Mask Language Modeling (MLM)

and fine-tuned it for six different tasks. Since MLM is expensive, they decided to tackle this

restriction by continuing the training process from the last checkpoint released by RoBERTa

(Liu et al., 2019), while only making the minimal essential modifications to support the

Longformer’s attention mechanism. The results initially indicated improved efficiency in

handling long documents compared to RoBERTa, which often struggleswith long sequences

due to memory constraints. Furthermore, the study showed Longformer’s competitive

performance byminimizing the loss once fine-tuning Longformer for a specific task. Finally,

Longformer proves the effectiveness of its attention mechanism and adaptability across

various NLP tasks, thus making it a competitive choice between other suitable solutions.

2.2.4 Unlimiformer

A recent work performed by Bertsch et al. (2023) introduces Unlimiformer, a general

Transformer-based solution for processing sequences of unlimited length. Their technique

could be employed in any pre-trained encoder-decoder architecture. According to the

paper, the cross-attention computation is assigned to a k-nearest-neighbor index, which

could be kept in the computer’s memory, such as CPUs (i.e. RAM) or GPUs.

The motivation behind this study is similar to ours, as pre-trained Transformers restrict

their context window even though they have emerged as the prevailing structure for

approaching various NLP tasks (and more). As it was previously mentioned, BERT-based

models process sequences of 512 tokens. In addition, based on Lewis et al. (2020), a

Language Model developed and introduced by Facebook AI, commonly referred to as

Bidirectional and Auto-Regressive Transformers (BART) slightly increases the limit to

1,024, but it remains low compared to our expectations. Thus, we conclude that scaling

LMs to handle datasets containing large documents may not always lead to a solid solution,

as vanilla Transformers come with quadratic complexity.

To address the pre-defined restrictions, Unlimiformer constructs a k-nearest-neighbor

(kNN ) index over the hidden states of all input tokens when injected between any existing

encoder-decoder architecture. Afterward, each cross-attention head contained inside

the decoder queries the kNN index, thus considering the most important tokens from

the long sequence and attending only to those, and not to all of the encoder’s top-layer

hidden states. If the input sequence exceeds the length of the model’s context window, the
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authors suggest the document’s truncation and the creation of overlapping chunks from

the original input. The following figure demonstrates a simple use-case example using an

architecture consisting of a single encoder-decoder layer, a 2-token context-window, and a

sequence of 6 words.

Encoder

Index of one long input Retrieved hidden 
states

Query
Cross attention

Decoder layer

Input

Encoded 
chunks

kNN search

Fig. 2.3.: Architecture diagram example obtained from the original paper, which demonstrates the

use of Unlimiformer, given a 2-token context window and an input of six tokens.

When using Unlimiformer, the authors suggest the options for it to be applied at test time,

thus having the potential to obtain minor gains without further pre-training, or during the

training time to further increase the performance of the original model. To support their

statements, they additionally introduced various low-cost and long-range training options.

In addition, the authors stumble upon a remarkable conclusion to further validate their

conjectures regarding the need to query the encoded tokens, thus performing a selection

in terms of the ones they attend. According to findings reported by Shaham et al. (2022)

and Kedzie et al. (2018), they support the hypothesis that various datasets don’t require

long-scale modeling, since most of the needed information is concentrated at the beginning

of the input, or other parts, such as the middle, or the end of the sequence (Jiang, Bansal,

2019).

To evaluate their system during the experimental phasis, the authors experimented using

three sequence-to-sequence datasets containing large documents of different domains. As

their baselines, they chose the base version of BART (containing six stacked Transformer

encoder-decoder layers), PRIMERA (Xiao et al., 2022), and SLED (Ivgi et al., 2023). Their

results demonstrate the ability to attend unlimited inputs, thus achieving better Entity

Mention Recall (EntMent) scores compared to the baselines. Finally, from the observations

they presented, we conclude that Unlimiformer competes with specific existing encoder-

decoder architectures by efficiently achieving linear complexity, without adding any

additional weights.
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2.2.5 LongNET

Trading sequence length for improved performance imposes a critical dilemma in the

era of Language Models. To address this issue, Ding et al. (2023) introduces LongNET, a

Transformer-based variant able to scale sequence length to more than 1 billion tokens.

According to the authors, there are significant advantages observed by the use of LongNET.

First, LongNET comes with linear computation complexity because of the proposal of

dilated attention. The major challenge of this concept is to tackle the quadratic complexity

offered by the mechanism of self-attention, by implementing a specific version of a dilated

sliding window. Table 2.1 demonstrates the computation complexity among different

methods.

The overview of dilated attention is presented in Figure 2.4. The authors suggest that this

concept significantly reduces the computation cost compared to self-attention. According

to the study, this happens by splitting the input into fixed-sized segments which are then

sparsified along the sequence dimension by selecting the block rows (see Figure 2.4) with a

constant interval, and then fed into the attention in parallel, thus constructing the output.

Furthermore, LongNET additionally supports multi-head dilated attention where multiple

different patterns are introduced, and the outputs of those are concatenated into a final

state.

Segment Length: 4
Dilated Rate: 1

Segment Length: 8
Dilated Rate: 2

Fig. 2.4.: Dilated blocks attention example used in LongNET for modeling both short-range and

long-range dependencies.

The use of dilated attention by itself isn’t enough to scale the input sequence length to

more than 1 billion tokens. Consequently, LongNET parallelizes the training process

by partitioning the dimension of the sequence into multiple distributed devices while
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maintaining a constant linear computation cost as the number of GPUs grows. The

procedure is as follows.

The algorithm starts by splitting the inputs into chunks regarding the number of devices

in which the training will be distributed. Then, attention applies to each chunk (projecting

it into the queries, keys, and values on each of the corresponding devices). Afterward, the

procedure follows with the collection of the all-gather key-value pairs. Finally, the process

continues with the computation of the cross-attention with the local queries and the global

key values and the concatenation of the outputs. Generally, to display a more detailed

explanation of the process (including equations and a related figure), readers should refer

to the 3d chapter of the original study (Ding et al., 2023).

To evaluate the performance of LongNET, the authors used the Stack dataset (Kocetkov et

al., 2022), a 300-programming language source code collection. The comparison considered

between vanilla and sparse Transformers using the perplexity evaluationmetric. All models

were tested with different sequence lengths, ranging from 2,000 to 32,000 tokens. Finally,

the results demonstrated in the paper, showed LongNET consistently outperforming each

model, thus proving its effectiveness in modeling both long and short sequences while

reducing the computation complexity from quadratic to linear.

2.2.6 CoLT5

Long input sequences are advantageous for various Natural Language Processing tasks.

However, processing lengthy documents using Transformers is computationally expen-

sive. Consequently, Ainslie et al. (2023) proposed Conditional LongT5 (CoLT5), a study

conducted by Google Research introducing a model building its intuition by employing con-

ditional computation (devotion of more resources to the most essential tokens). Moreover,

CoLT5 efficiently handles inputs of length up to 64k tokens.

One of the limitations imposed by the self-attention mechanism CoLT5 attempts to over-

come is the application of feedforward and projection layers, which are applied to each

token making up the majority of the attention cost, which then scales quadratically. There-

fore, CoLT5 bases its design on the intuition that some tokens are more important than

others, and thus, they deserve more computations. Routing modules, conditional feedfor-

ward layers, and conditional attention layers construct the CoLT5 conditional computation

method. In addition, standard, lightweight attention, and feedforward layers process the

tokens of the input sequence. Figure 2.5 demonstrates the essentials behind the CoLT5

architecture.

Observing the components creating a CoLT5 Transformer encoder, the authors claim the

use of significantly fewer flops compared to LongT5 (Guo et al., 2022), which is the model
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Fig. 2.5.: The architecture of a CoLT5 Transformer encoder layer demonstrates the routing, condi-

tional computation, and conditional attention mechanisms.

most closely related to CoLT5, attending tokens using a local window, in combination

with a mean-pooled summary. Table 2.1 presents the exact number of flops needed per

model to support this hypothesis.

Model Encoder Layer Flops

T5 12nd2 + 2n2d

LongT5 12nd2 + n2

8 d

CoLT5
7
4nd2 + n2

84 d

Tab. 2.1.: Comparison between T5, LongT5, and CoLT5 considering the number of flops they use.

As shown, CoLT5 uses significantly fewer flops compared to the other models.

To separately filter the important tokens from each input sequence on each layer, the

authors introduce the model’s routing mechanism. The function is as follows: First,

the inputs are multiplied with an embedding learned during training to collect routing

scores. Second, the inputs are normalized, and finally, the algorithm selects the top-k ones

achieving the highest scores.

If we consider Xi as the representation of the ith token and u as the d-dimensional

learned embedding, the computation of the first step (routing scores obtainment) has as

following:

si = Xi · u (2.4)
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As illustrated in Figure 2.5, the top-k selected tokens are subject to an extra high-capacity

feedforward layer via the CoLT5 conditional feedforward layer. The difference between

the light and heavy feedforward branches is their hidden dimensions, with the light

branches having a smaller hidden dimension than the typical T5 feedforward layer and the

heavy branches larger. Furthermore, CoLT5 adds a second, high-capacity attention layer

that attends from selected query tokens to selected key-value tokens, called conditional

attention. This mechanism has two variations similar to the ones described in conditional

feedforward, as the number of heads varies between the light and heavy branches, with

the light one attending just to a local context window, while the heavy branch to all the

routed key-value tokens.

To prove the effectiveness of CoLT5, the study conducts five different experiments. First, the

results compare LongT5 and CoLT5 on a collection of long datasets containing 16k inputs

and even longer ones with input sequences of up to 64k tokens. In addition, the authors

investigate the performance modifications as the input size increases, perform certain

ablations to understand the effect of the model’s components, and examine empirical

routing patterns. During the experimental phasis, they used TriviaQA (Joshi et al., 2017),

arXiv (Cohan et al., 2018), and the SCROLLS (Shaham et al., 2022) benchmarks containing

several question-answering and summarization datasets. Considering the timing results,

it seems that CoLT5 outperforms LongT5. When scaling to extremely long inputs, the

results indicate that CoLT5 achieves higher performance and faster inference speed at

all input lengths. Finally, the report also proves the effectiveness of the model’s routing

mechanisms, as they successfully select the information to attend, thus leading to minor

performance loss at all inputs while maintaining a constant computational cost.

2.2.7 Mega

Having successfully exposed the units composing the Transformer attention mechanism,

which limits its application for long sequence modeling due to the quadratic computational

complexity, Ma et al. (2022) introduce Mega, a new simple and effective gated atten-

tion mechanism to capture long dependencies. The authors initially leverage the classic

Exponential Moving Average (EMA) approach to tackle the weakness of self-attention

(quadratic computational complexity, inductive biases). In detail, EMA is a general approach

for modeling sequential data used to smooth out short-term fluctuations and highlight

long-term trends. Formally, it is recursively applied given an input series X = x1, ..., xn

using the following formula.

yt = α ⊙ xt + (1 − α) ⊙ yt−1, (2.5)

2.2 Pre-Trained Language Models (LMs) 15



The authors apply EMA in their study to benefit from its strong inductive bias property

and maintenance ability to catch strong informative patterns across the input sequence. In

addition, they further modify EMA by relaxing the weights of the token’s previous and

current observations with the perspective to produce robust dependency modeling. The

following formula displays the modification described.

yt = α ⊙ xt + (1 − α ⊙ δ) ⊙ yt−1 (2.6)

Where δ ∈ (0, 1)d
is the damping factor, and α ∈ (0, 1)d

is the EMA coefficient. Figure 2.6

demonstrates an overview of the EMA mechanism.

α(1-
α)2

α(1-α) α
X3X2X1 X4

Fig. 2.6.: Example using four tokens, which describes the functionality of the EMA mechanism.

The authors furthermore introduced a multi-dimensional variant of EMA to improve

its expressiveness. Consequently, they individually expand each dimension of the input

sequence X into h dimensions, following the following formula,

u
(j)
t = βj · xt,j (2.7)

where βj ∈ Rh
is the j−th row of the expansion matrix β ∈ Rd·h

, and u
(j)
t ∈ Rh

is the

expanded h-dimensional vector for the j-th dimension at time-step t. For each dimension

j, they apply the damped EMA to the h-dimensional hidden space, as shown below,

h
(j)
t = αj ⊙ u

(j)
t + (1 − αj ⊙ δj) ⊙ h

(j)
t−1 (2.8)
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where h
(j)
t ∈ Rh

represents the EMA hidden state for the j-th dimension at time-step t.

The single dimensional output yt,j ∈ R, comes from the following equation,

yt,j = ηT
t · h

(j)
t (2.9)

where η ∈ Rd·h
represents the projection matrix to map the h-dimensional hidden state,

and thus ηj ∈ Rh
.

Replacing the classic self-attention mechanism with EMA was preciously proved to intro-

duce stronger inductive bias (stronger ability to catch relationships between elements of

the input sequence which are not uniformly distributed) into the attention mechanism.

However, EMA still maintains quadratic computational complexity. To address this issue,

the authors proposed Mega-Chunk, a variant of Mega achieving linear complexity, thus

making it a sustainable long-sequence modeling option. Specifically, the input sequence

splits into chunks of fixed length c, applying the EMA attention calculations to each part,

as shown in Figure 2.7. However, this mechanism imposes the limitation of losing critical

information contained in multiple chunks of the original sequence.

Input Embedding

Mega Layer

Norm

Feedforward

Add & Norm

Fig. 2.7.: The essential components which construct the architecture of each Mega block.

To evaluate the performance of Mega and Mega-chunk, the study experiments on five

benchmark sequence modeling tasks of various data types, comparing with current state-

of-the-art models on each task. First, the authors tested Mega on long-context sequence

modeling using the Long Range Arena benchmark introduced by Tay et al. (2021) on six

different tasks. According to the results, Mega considerably outperformed all the baselines

on the accuracy score, whereas Mega-chunk performed well specifically on three language

tasks. Furthermore, the models were tested in speech classification by classifying raw
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speech using the SC10 subset of the Speech Commands dataset, performing a comparison

to the state-of-the-art S4 model (Gu et al., 2022). Finally, Mega and Mega-chunk were

additionally evaluated on auto-regressive language modeling (using WikiText-103 by

Merity et al., 2017), neural machine translation (from English to German and vice-versa),

and image classification (on the Imagenet-1k by Deng et al., 2009 dataset), again showing

improvements over a variety of Transformer-based baselines.
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3Dataset

In this chapter, we to introduce the dataset used to measure the computational effectiveness

and efficiency of the experimented models.

3.1 Introduction

As described in Section 2.1.1, the S-1 are large documents describing the interest of firms

to publicly invest their shares in the stock market. For the purposes of our analysis, we

extract four major sections from each filing. According to Katsafados et al. (2023), the

sections are named as follows: (1) Summary, (2) Risk Factors, (3) Use of Proceeds, and (4)

Management Discussion and Analysis. The following table provides short descriptions for

each section.

Section Description
Summary Describes the S-1 filing’s essential components.

Risk Factors Explains the firm’s potential major risks.

Use of Proceeds Explains how the firm plans to use the funds raised.

Management Discussion and Analysis
Explains how management plans to raise the share

price and enhance future sales, as well as revenues.

Tab. 3.1.: Brief explanation of each section used in the dataset.

3.2 Statistics

IPO is a binary classification task. The first class (alternatively named class 0) represents the

case of detecting underpricing at the end of the first trading day, whereas the second class

(alternatively named class 1) describes the opposite scenario, thus meaning the observation

of overpricing. In general, our dataset consists of 2,481 U.S. IPOs, all collected during

the period 1997 to 2016. According to Katsafados et al. (2023), stock price information

regarding the end of the first trading day is obtained from the Center for Research in

Security Prices (CRSP).
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In addition, our dataset initially comes in an imbalanced format, because from the total

number of 2,481 filings, 1,905 of them are characterized as underpriced, and 576 as over-

priced. For transitioning into the experimental phasis, we split the initial datasets into

three partitions: The training, development (or validation), and test sets, consisting of 70%,

15%, and 15% of the initial collection respectively. To resolve potential dataset balancing

issues, we balanced (undersampling) the training split concerning the minority class. The

following table shows the total number of IPOs contained by each split.

Underpriced IPOs (Class 0) Overpriced IPOs (Class 1) Total

All 1,905 576 2,481

Balanced Training Set 356 356 712

Imbalanced Training Set 1,380 356 1,736

Development Set 270 102 372

Test Set 255 118 373

Tab. 3.2.: Demonstration of dataset splits, and the total number of filings per class.

Moreover, it is critical to refer to the minimum, average, and maximum number of tokens

contained per text for each of the four filing sections we introduced earlier. This is an

essential issue to consider, as various limitations are being imposed because of the different

capacities of the models we will experiment with in later sections. Thus, Table 3.3 displays

statistics referring to the number of tokens contained per text across all IPO sections.

Min. Tokens Avg. Tokens Max. Tokens

Summary 446 3,299 23,016

Risk Factors 112 10,419 41,755

Use of Proceeds 24 369 2,274

Management Discussion and Analysis 764 8,278 57,500

Tab. 3.3.: Minimum, average, and maximum number of tokens/text per filing section.

At this stage, it becomes necessary to clarify the differences between the concepts of

token tokenization. The previously displayed statistics were measured by splitting the text

based on the space character. Generally, when introducing Transformer-based models, the

tokenization process becomes a complicated task, as the Tokenizers handling the procedure

produce sub-tokens, (or sub-word tokens), which are smaller units often used to break

down words into more manageable pieces. Thus, the observations introduced in Table 3

may slightly differ, as various tokenizers would produce distinct results.
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Finally, Table 3.3 presents sample texts obtained from each section of IPO filings.

Section Example

Summary

Prospectus summary the following summary is

qualified in its entirety by the more detailed

information and financial statements and notes

thereto appearing elsewhere in this prospectus.

Investors should carefully consider the risk

factors related [. . . ], identifies important factors

that could cause such differences.

Risk Factors

Risk factors in evaluating the offering ,

prospective investors should carefully

consider all of the information contained in this

prospectus and, in particular, the following risk

factors relating to the company and to the

common stock. [. . . ], investors purchasing shares

of common stock in the offering will incur immediate,

substantial dilution.

Use of Proceeds

Use of proceeds the net proceeds to the

company from the sale of the 2,000,000 shares

of common stock offered hereby, assuming an

initial public offering price of $10.50 per share

[. . . ], certificates of deposit of major banks,

money market mutual funds or investment-grade

commercial paper.

Management Discussion and Analysis

Management’s discussion and analysis of

financial condition and results of operations

the following discussion should be read in

conjunction with , and is qualified in its entirety

by, the financial statements and the notes

thereto and selected financial data included,

[. . . ], there is no assurance that the company\’s

business will not be affected by inflation in the future.

Tab. 3.4.: Example texts sampled from each filing section.
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3.3 Financial Indicators

Despite the information obtained from analyzing S-1 documents, we additionally focus on

evaluating certain variables containing vital financial information regarding the IPO firms’

valuation. The following table presents all the indicators considered in this thesis, along

with a short description explaining each ones meaning.

Financial Indicator Description

Sales
Logarithm of firm annual sales in the

12 months prior to the IPO.

Positive EPS

Dummy variable which equals to 1 if

the IPO has positive earnings per share

in the year before going public, and 0

otherwise.

Share overhung
Number of shares retained divided by

the number of shares in the IPO.

Venture capital

Dummy variable which equals 1 if the

IPO is backed by venture capital, and

0 otherwise.

Prior Nasdaq 15-day returns
Buy and hold returns of the Nasdaq

index 15 trading days before IPO date.

Up-revision

Percentage upward revision from the

mid-point of the filing range, if the offer

price is higher than mid-point, and

0 otherwise.

Top-tier

Dummy variable which equals to 1 if

at least one underwriter has been

classified as top-tier according to the

rankings of Carter and Manaster (1990),

and 0 otherwise.

Days between S-1 and 1st-trading day
Natural logarithm of days between

S-1 filing date and first-trading day.

Tab. 3.5.: All the financial indicators considered in this thesis, with a short description explaining

the meaning of each one of them. The descriptions are from Katsafados et al. (2023).

.
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4Implemented Methods and
Systems

This chapter extensively describes the methods we experimented with in this thesis, both

as background attempts and for the main contributions themselves. We provide the

information needed for any reader to understand the ideas behind each concept in detail.

4.1 Baselines

This section describes models evaluated on the IPO dataset (using textual and financial

features) as baselines. In our research, we concluded that adopting Logistic Regression

with all the financial features described in Section 3.3 performs best along with the other

approaches, as we will report in the next chapter of this thesis.

4.1.1 Logistic Regression

From the family of linear models, we chose to experiment with various Logistic Regression

versions. At first, we preserved the default settings of the skit-learn implementation but

also attempted to tune a few of its parameters
1
to monitor the changes in the evaluated

performance. Table 4.1 describes the tuning strategy followed, by mentioning the hyper-

parameters we chose to tune along with their default values.

Parameter Default Value Tuning Range

penalty l2 L1, L2, Elastic-Net, None

C 1 10 evenly distributed values from 0.01 to 100.0

solver lbfgs lbfgs, liblinear, newton-cg, newton-cholesky, sag, saga

Tab. 4.1.: Hyper-parameters tuned, along with their default values and the tuning range.

Finally, a 5-fold cross-validation approach was used to evaluate the performance of each

iteration. To fulfill this task, we considered the Precision-Recall Area Under Curve (AUC)

1
For the official documentation, please visit https://scikit-learn.org.

23

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html


score for each of the two classes, and afterward performed macro averaging. In addition,

Table 4.2 describes the meaning of each tuning hyper-parameter we used in our strategy.

Parameter Description

penalty Specifies which regularization term to use.

C Regularization strength (used to avoid overfitting).

solver Algorithm to use in the optimization problem.

Tab. 4.2.: Hyper-parameters tuned, along with a short description of their meaning.

Textual Indicators
To perform our experiments when choosing to use the textual information the dataset

offers, we compute the Term Frequency - Inverse Document Frequency (TF-IDF) features

across all documents. In addition, we state that the TF-IDF approach achieves better

results during the experimental phase compared to TF, since a lower score is assigned to

commonly presented words, thus making the classifiers use only the essential part of the

information obtained from each document. According to the original study (Katsafados

et al., 2023), the formula used to calculate the features is the following:

TF-IDF(tij ) = −TF(tij ) · [log2
ni

N
] (4.1)

Where TF(tij ) is the the number of times a word i appears in a particular document j,

divided with the total number of words contained in the same document j. The term

N represents the total number of documents contained, which in our case equals 2,481.

Furthermore, ni is the total number of documents including at least one occurrence of

the word i. Finally, we utilize Truncated Singular Value Decomposition (Truncated SVD)

to reduce the dimensionality of the original data into less features, while maintaining

the most significant information patterns. We chose the size of 8, so we have a good

comparison measure with the equivalent financial variables.

Financial Indicators
When only using financial indicators to classify each document, we feed the algorithm

with the features analyzed in Section 3.3, which mainly describe essential configurations

of each firm, thus leading to the detection of underpricing or overpricing.

Concatenation of Textual & Financial Indicators
In this case, we concatenate the financial indicators with the TF-IDF features obtained from

the documents. In PyTorch, both come in the form of tensors. To perform the concatenation,

the tensors must have the same shape except in the concatenating dimension. Furthermore,
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we additionally apply an intermediate Truncated SVD step prior to the concatenation to

further reduce the dimension of the tensor (i.e., to keep the most important features). In

this scenario, we experimented with SVD reduction size of 8. Accordingly, the number of

financial indicators used to perform the concatenation remains constant (equals eight), as

explained in Section 3.3.

The following figure provides a visual explanation of a concatenation scenario when the

TF-IDF features are reduced to 8 after the truncated SVD step.

#1 #2 #3 #4 #5 #6 #7 #8

0.1 1 0.3 0 0.5 0.6 1 0.8

… … … … … … … …

#1 #2 #3 #4 #5 #6 #7 #8

2.1 1.6 0.6 0.9 2.11 7.78 6.41 9.9

… … … … … … … …

#1 #2 #3 #4 #5 #6 #7 #8

0.1 1 0.3 0 0.5 0.6 1 0.8

… … … … … … … …

#1 #2 #3 #4 #5 #6 #7 #8

2.1 1.6 0.6 0.9 2.11 7.78 6.41 9.9

… … … … … … … …

Financial Indicators
(n x 8)

TF-IDF Features
(n x 8)

Concatenated Embedding
(n x 16)

| | 
(Concatenation)

Fig. 4.1.: Example case demonstrating the embedding dimensional change due to the concatenation

between the financial indicators and TF-IDF features.

4.1.2 Multi-Layer Perceptrons (MLPs)

As a non-linear baseline option, we experiment withMulti-Layer Perceptrons (MLPs). From

a technical perspective, we implement our experiments using the TensorFlow
2
framework.

Generally, MLPs consist of 3 main components: Input, hidden, and output layers. As for

us, the input layers could receive one of the following three feature combinations and the

output class is predicted by applying a sigmoid function to the last neuron.

Textual Indicators
When choosing to perform our experiments using MLPs with textual indicators as their

inputs, we obtain TF-IDF features from each document and then apply Truncated SVD in

a similar manner when using Logistic Regression, as clarified in Section 4.1.1.

2
For additional information, please refer to the the official TensorFlow page (https://www.tensorflow.org/).
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Financial Indicators
There is also the alternative to employ the financial indicators described in Section 3.3 as

inputs to each MLP.

Concatenation of Textual & Financial Indicators
Assuming the need to combine the financial knowledge obtained from the relevant in-

dications and the information given from the texts, we chose to concatenate those two

embeddings as mentioned in Section 4.1.1.

To tune our models, we imply a tuning strategy choosing to optimize the learning rate, the

number of hidden layers, the number of neurons involved in each hidden layer, and the

dropout rate used to avoid overfitting. For effectively scanning the available search space,

we use the Bayesian Optimization (Z. Wang et al., 2023) algorithm using 15 trials. The

following table illustrates the hyper-parameters described, and the range values considered.

Hyper-parameter Tuning Range

Number of hidden layers Selected from range [1, 3].

Neurons per layer Selected from range [32, 128].

Dropout rate per layer Selected from range [0.3, 0.5].

Learning rate Selected from distinct values 0.01, 0.001, or 0.0001.

Tab. 4.3.: Hyperparameters which are tuned for MLP baseline models, along with their tuning

range.

4.2 Transformer-based Classifiers

With their ability to extract dependencies and contextual information from text, Transformer-

based architectures transformed the NLP community and became the foundation of several

cutting-edge models. In this section, we’ll examine the fundamental ideas behind the

Transformer-based models created to tackle our classification assignment in this part, as

well as their variations and differences.

4.2.1 Naming Conventions

Due to the high number of model combinations and settings, we’ll use the following

naming conventions to uniquely identify our models. Each name is strictly going to follow

the following format.
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model-features-pooling-length

At first, the model prefix defines the actual model whose architecture was used as a basis

for developing the current method. Some of the potential distinct values of the model

prefixes are the following.

• bert

• hierarchical-bert

• ipo-longformer

• ipo-longformer-extra-global

The features segment refers to the type of classification. There are two potential outcomes

to explain. First, tx indicates that only textual features (in our case tokens or sub-word

tokens) are used to assign classes to each document, whereas txff signifies that we use both

textual and financial indicators described in Section 3.3 to conduct the text classification.

Furthermore, the pooling part refers to the decision made in terms of the embedding we

use to classify each filing as underpriced, or overpriced. In the bert-based architectures,

we could choose between two options. Max-pooled embeddings, or CLS-pooled ones.

In addition, we mention that max-pooling is not supported in the Hierarchical-BERT or

Longformer variants. Of course, we are going to elucidate the features and classification

concepts in more detail later in this section.

Last but not least, the length suffix defines the model’s capabilities, in terms of the

maximum number of tokens (or sub-word tokens) it can process. Despite the fact that

most filing sections contain a significantly large number of words (see Section 3.2), the

largest model developed can process up to 20,480 tokens per document.

Demonstrating an example of usage, we consider the scenario that the name bert-txff-
max-512 is provided. This means that the current experiment refers to a Bert model

receiving textual inputs (tokens or sub-word tokens), additionally concatenating the finan-

cial indicators to ideally achieve a better classification, using a max-pooled embedding to

perform the classification, and having the capacity to process up to 512 tokens per each

document.

Having explained this specific example case as a baseline, we state that the rest of the

models demonstrated in the following part of this section, are all going to follow the same

naming conventions.
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4.2.2 BERT Approaches

Starting our contribution from the lowest -in terms of the length of the processed input

sequence- family of models, we introduce the BERT variants, a group able to process up to

512 tokens from each document. Generally, the Deep Learning (DL) community has been

completely transformed by this revolutionary Natural Language Processing model known

as BERT, or Bidirectional Encoder Representations from Transformers (Devlin et al., 2019b).

Its main innovation is to grasp the contextual intricacies of language through bidirectional

word analysis, considering both the left and right context of a sentence. As mentioned,

its processing capabilities come up to 512 tokens (or sub-word tokens, depending on the

tokenizer used to tokenize the text) per text, including the special tokens CLS and SEP,

inserted at the beginning, and at the end of the series respectively. The sequence after the

512th token is always truncated and thus not considered in the prediction. Depending on

the tokenizer used to tokenize the documents, the term tokens may become confusing, as

according to the official documentation (Vaswani et al., 2017), it won’t refer to individual

words of the text, as larger words may be truncated and split into multiple tokens.

Considering the limitations offered by choosing this variant of models, and concurrently

considering the constraints analyzed in Chapter 3 regarding the length of each filing, we

conclude that the majority of sections won’t fit into the input, and thus, the excess tokens

will be ignored. We observed that the Summary, Risk Factors, and Management sections

contain on average 3,299, 10,419, and 8,278 tokens per text, which obviously exceeds the

limit of 512 tokens, whereas the Use of Proceeds section only holds 369 of those, making it

a potential candidate for the average case. More details and comparisons between each

model’s capabilities for each filing section are briefly analyzed later in this Chapter.

Finally, we mention that we apply the nlpaueb/sec-bert-base (Loukas et al., 2022) for
our experiments, as according to the study was originally pretrained on 260,773 10-K

filings from 1993-2019, publicly available at U.S. Securities and Exchange Commission

(SEC), meaning that its knowledge originates from the financial domain and tends to assist

our research. The base version is used, meaning that 12 Transformer encoder layers are

stacked inside the actual model, and all the weights come unfrozen, meaning that they are

all updated during the fine-tuning process.

Architectures
Our study offers two unique concepts to experiment with using BERT. Firstly, we offer

the option to use the plain textual information provided by the filings, leading to the

architecture demonstrated in the following figure.
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Fig. 4.2.: Figure illustrating the architecture diagram of BERT-based models when only textual

information is used.

Analyzing the architecture described above, we conclude that the tokenized text is inserted

into the model, which then produces the output sentence embeddings. We chose the CLS

output sentence embedding across the available options, which is then reduced from a

final dense layer. Moreover, we additionally support the selection of a max-pooled output

embedding instead of the CLS output embedding, meaning that we use the max-over-time

of the contextualized embeddings of all words in a single sentence (or sequence). After

the embedding selection, the output of the last neuron is transformed using the Sigmoid

function to match the probability distribution. To evaluate our prediction, we use the

Binary Cross Entropy with Logits Loss offered by the PyTorch framework, which also

combines a Sigmoid layer and the Binary Cross Entropy Loss in one single class. If the

predicted probability exceeds the threshold, we consider this filing as overpriced, otherwise,

it is classified as underpriced. The threshold hyper-parameter is tuned. We will display

the whole set of hyperparameters that are selected to be tuned later in this section.

Furthermore, our study additionally supports the combination of the information obtained

by the documents themselves, and the financial indicators analyzed in Section 3.3, offering

thus the potential to possibly increase the overall knowledge and boost the ability of the

model to learn and thus determine whether each firm becomes underpriced of overpriced.

The following figure demonstrates the architecture of this approach.
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Fig. 4.3.: Figure illustrating the architecture diagram of BERT-based models when textual and

financial information is used.

The architecture displayed above, initially inserts text into the model, followed by its

reduction into output sentence embeddings. Again, we could choose between the output

CLS embedding, or use the max-over-time of the contextualized embeddings of all words in

a single sentence (max-pooled embedding). After the embedding selection, we concatenate

the financial indicators vector described in Section 3.3 with the vector produced after

parsing the model output selection embedding from a dense layer, the output dimension of

which (on the figure it is referred to as n), is tuned. This action demonstrates the way the

textual information is combined with the pre-defined financial indicators to achieve better

knowledge, and potentially increase the model’s generalization ability. Likewise, the flow

follows as described in the figure, further reducing the dimension of the vector, and finally

using the Binary Cross Entropy with Logits Loss to evaluate the class selection.

4.2.3 Hierarchical-BERT Approaches

Financial documents tend to require a higher number of words (i.e., thousands of words)

compared to other types of literature considered across NLP tasks. In the previous section,

we introduced BERT, referred to its potential, and affirmed the differences between its

variants. However, utilizing BERT as a language model to approach our task, imposes

limitations regarding the size of the sequence we’re able to process, and thus extract

information from. Consequently, for this particular case, we modify the Hierarchical-BERT

variants introduced by Chalkidis et al. (2021).

Typically, the way the hierarchical variants operate is by using the corresponding pre-

trained financial literature BERT model described in the previous section (nlpaueb/sec-
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bert-base) to encode separate fixed-length segments of the text independently and obtain

the top-level representation of the initial text. Afterward, two Transformer encoder layers

are stacked to make the segments context-aware, meaning to combine the knowledge

of all the surrounding parts. Finally, a max-pooling process is initialized to obtain the

max-pooled embedding representation, and thus feed it into the classification head to

perform the final decision.

Architectures
After mentioning the parts needed to understand the essentials behind the Hierarchical-

BERT architecture, accordingly with the BERT variants, we additionally support the use of

textual information individually, or the combination of the textual information obtained

from the model with the financial indicators introduced in Section 3.3, with the perspective

of achieving better generalization knowledge during the experimental phases. Firstly,

we introduce the variant using plain textual information, the architecture of which, is

demonstrated in the following figure.

E1 E2 EN

BERT BERT BERT

S1: [W11, W12, …, W1128] S2: [W21, W22, …, W2128] SN: [W641, W642, …, WN128]

2X Transformer Blocks

Max-pooling
E’1 E’2 E’3 E’N

D

Segment of 128 tokens

…

Fig. 4.4.: Figure illustrating the architecture diagram of Hierarchical-BERT-based models when

only textual information is used.

Observing the key aspects behind the architecture displayed, we verify that several fixed-

length text segments encode the initial text. Each segment can process a constant number

of tokens, which in our case equals 128 (we could modify this constant in future work).

The total number of segments we decide to use, defines the model’s length, meaning the

total number of tokens (or sub-word tokens) the model can process, and thus make its

predictions. In this study, we mainly experimented with 64 and 160 segments, thus leading

to a significant increase in the total process ability to 8,192 and 20,480 tokens respectively

compared to the original BERT version. To evaluate the model’s decisions, we likewise use

the Binary Cross Entropy with Logits Loss, as we approach a binary classification task.
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In addition, as mentioned, our study also supports the combination of the textual informa-

tion along with the dataset’s financial indicators, leading to the creation of a new variant

of the initial model. The main components behind its architecture are presented in the

following figure.
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+

E1

Financial Indicators (FI)

Fig. 4.5.: Figure illustrating the architecture diagram of Hierarchical-BERT-based models when

textual and financial information is used.

The main concepts of the architecture displayed above, don’t differ from the ideas described

in the equivalent part of the BERT section, combined with the assumption that we now

use the Hierarchical-BERT variant. After we encode and collect the representation of the

whole text depending on the limit of tokens we would like to process, instead of classifying,

we concatenate the dataset’s financial indicators vector to the one returned by the actual

model itself. Again, our model’s output dimension size is a hyper-parameter which is tuned.

The embedding reduction and the evaluation procedures follow as they were previously

mentioned.

4.2.4 Longformer Approaches

Considering the study’s objective to approach large documents, we introduce variants that

use Longformer as their basis, a relatively simple sparse-attention Transformer option

for supporting longer sequences. According to the original research (Beltagy et al., 2020),

the original Longformer uses a combination of local (window-based) attention and global

(dilated) attention that reduces the computational complexity of the initial model, making

it thus deployable for larger documents such as the ones described in our dataset (see

Chapter 3). The original version can process sequences up to 4,096 tokens long. Instead,

the concept behind our variants relies on the logic that was previously introduced by

(Mamakas et al., 2022). Based on their research, we introduce ipo-longformer, a variant
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warm-started from the previously mentioned model nlpaueb/sec-bert-base which is already

pre-trained on financial corpora. In this case, we copy the positional embeddings of the

nlpaueb/sec-bert-base N times, to achieve the desired capacity. For example, assuming that

the goal is to reach 8,192 tokens, we should copy the equivalent positional embeddings 16

times, whereas for reaching 20,480 tokens, we should copy them 40 times. In our research,

we experimented with the lengths of 8,192 and 20,480, leading to the creation of 64 and

160 text segments respectively. In addition, we introduce the ipo-longformer-extra-global

variant, which differs from the previously described model as we furthermore add a special

SEP global token at the end of each segment.

Architectures
Having understood the essentials behind this family of models, we support the options of

using textual information, or the combination of the textual representation created by our

models in combination with the dataset’s financial indicators.

12x Transformer Blocks

Word + Positional Embeddings

WCLS WSEP

Attention window of 128 tokens

… WCLS WSEP

Segment N

Fig. 4.6.: Figure illustrating the architecture diagram of Longformer-based models when only

textual information is used.

Observing the key aspects behind the architecture displayed, we conclude that several

fixed-length (constant which equals 128) segments encode the initial text, and 12 stacked

Transformer encoder blocks create the final document’s representation. Similarly, with

BERT and Hierarchical-BERT, we evaluate the model’s decisions by using the Binary Cross

Entropy with Logits Loss.
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Fig. 4.7.: Figure illustrating the architecture diagram of Longformer-based models when textual

and financial information is used.

When choosing to combine the textual information created by our model with the dataset’s

financial indicators described in Section 3.3, the logic behind the architecture introduced

above, doesn’t differ from the previously presented equivalent concepts.

4.2.5 Chat-GPT for Enhanced Model Performance

In addition to developing our ownmodels, we attempted to explore the innovative potential

of GPT-3.5 Turbo, an advanced language model created by OpenAI
3
. The utilization of

Chat-GPT not only diversifies our approach, but also opens doors to enhanced model

performance, offering a promising avenue for future extension of our work.

To tackle our research challenges with GPT-3.5 Turbo, we explored the concept of prompts.

Prompts are pre-defined instructions or queries fed to the model to generate text. They have

emerged as a groundbreaking innovation, thus enabling more interactive and dynamic

interactions with language models. During our experimentation, we applied various

prompting approaches to optimize our model’s performance. To select the most effective

strategy, we evaluated using the development set. The final model’s performance was

obviously evaluated on the test set.

Additionally, we state that a noteworthy aspect of GPT-3.5 Turbo is its 4,000-token context

window. However, to confront the model’s processing limitations, we utilize texts from

Management Discussion and Analysis section truncated to 500 tokens. Thus, we use two

random examples obtained from the training set and append them to the prompt (among

3
For additional information, please refer to the official OpenAI page (https://openai.com/).
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with their corresponding category), so the model understands how to categorize future

texts.

Last but not least, it is essential to emphasize the need to employ a well-written prompt,

as we consider the model’s lack of exclusive financial knowledge on determining firm

underpricing (or overpricing). According to the study conducted by Lopez-Lira, Tang

(2023), the use of LLMs in financial economics remains a relatively uncharted territory.

Consequently, their study relies on optimizing the information contained in the prompt,

thus allowing the model to adapt to specific contexts and generate responses individualized

to the task’s needs. Having Lopez-Lira, Tang (2023) as a reference, we specifically designed

given essential financial knowledge and told ChatGPT to answer ‘Overpricing’ when firm

overpricing is detected, or ‘Underpricing’ in the opposite case. The prompts considered

for our experiments, are shown below.

1st Prompt
You are a financial expert in stock market and specialist in the corporate finance. Initial Public
Offerings play an important role in the corporate finance, because through this procedure,
private companies publicly share their shares or bonds, for the first time, into the primary
markets, to attract professional investors and in general to obtain the ability to raise capital.
You should take into consideration the IPO underpricing, which is estimated as the percentage
difference between the offer price and the closing price at the end of the first-trading day.
When the closing price is higher than the offer price, the IPO is considered to have been
underpriced, otherwise, it is considered to have been overpriced. It is crucial to remember that
there are several reasons for IPO underpricing, like market demand meaning that investment
banks underwriting the IPO set their price lower to attract more investor interest, creating
the sense of bargain. Popularity indicates that companies with a well-known brand can
undergo the underpricing fact because of the high demand of their shares. Finally, the general
market conditions can affect the IPO level price. Especially, in bullish markets, investors are
more willing to pay a premium for IPO shares. In addition, there are some severe signals for
IPO underpricing, like investor demand that measured by the over-subscription rate which
indicates the number of shares investors will buy in comparison with the number of shares
available in the IPO. A high over-subscription rate can be thought as an important signal of
potential underpricing. Another signal of underpricing is the upward price range revision at
the begging or prior to the IPO. Also, other signals are the presence of anchor investors who
can afford to purchase large number of the IPO shares, a high retail demand may set a lower
IPO price in order to address to smaller investors. Considering that the aforementioned reasons
and signals can be emerged through the textual analysis of financial statements, you are about
to examine the predictive power of textual information from S-1 filings in explaining Initial
Public Offerings underpricing behaviors. Answer “Underpricing” if you predict underpricing
(closing Price > offering Price) or “Overpricing” (closing Price < offering Price) if you otherwise
predict overpricing, in the first line. You can use the following examples to understand as a
reference
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2nd Prompt
Suppose you are an small investor and you want to create an portfolio of 25 stocks. Your
portfolio strategy is the active management and your goal is to purchase stocks that bring high
short-term returns. Surely, there are many strategies to select stocks that fit in your portfolio,
but one of them is to focus on IPOs underpricing, as it will a bargain for you, because in this
condition the closing price is higher than the offer price. To achieve your goal, you should
analyze financial texts in order to examine the predictive power of textual information from S-
1 filings in explaining Initial Public Offerings underpricing behaviors. Answer “Underpricing”
if you predict underpricing (closing Price > offering Price) or “Overpricing” (closing Price <
offering Price) if you otherwise predict overpricing, in the first line. You can use the following
examples to understand as a reference.

4.3 Comparative Analysis of Sequence Length
Limitations

After introducing a variety of options to approach our classification problem, and after

analyzing each variant’s capabilities, it is essential to perform a comparison of each model’s

processing capabilities.

We initially start by displaying the document token distribution histogram for all sections

combined (we individually consider each filing). From the observations, we conclude that

the minimum number of words a filing could potentially include approximately equals

10,000, whereas the equivalent maximum number of words exceeds the number of 70,000

words. Showing the processing capabilities of the BERT family of models (the least capable

models) and the longest-created Hierarchical-BERT or Longformer (the most capable

models), we conclude that applying BERT when choosing to experiment using the whole

document may become a restrictive option, as BERT-based models could process up to 512

tokens, leading thus to a constrained knowledge obtainment. In the opposite direction,

we observe that the longest-created Hierarchical BERT or Longformer families fit the

documents on the average case, and don’t seem to truncate as much text as BERT did,

leading thus to the ambition they could process a higher amount of information before

they make their final decision.
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Fig. 4.8.: Histogram displaying the token distribution across all documents (filings) included in the

dataset. Starting from the left, the dashed line displays the limit for the BERT models. In

the middle, the dash-dot line shows the limit for the first-level creation of the Hierarchical-

BERT and Longformermodels, whereas the straight vertical line on the right demonstrates

the limit of their extended version.

Proceeding, we display the document token distribution histogram for the Summary

section. Analyzing the figure’s sightings, we conclude that applying BERT-based models

could potentially process a small number of words from the original text, while in the

opposite case, almost the whole section fits.
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Fig. 4.9.: Histogram displaying the token distribution across the Summary section of all documents

(filings) included in the dataset. Starting from the left, the dashed line displays the limit

for the BERT models. In the middle, the dash-dot line shows the limit for the first-level

creation of the Hierarchical-BERT and Longformer models, whereas the straight vertical

line on the right demonstrates the limit of their extended version.
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Furthermore, we should mention that similar conclusions could be extracted once analyzing

the document token distribution histograms of the Risk Factors, as well as the Management

Discussion and Analysis section.
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Fig. 4.10.: Histogram displaying the token distribution across the Risk Factors section of all docu-

ments (filings) included in the dataset. Starting from the left, the dashed line displays

the limit for the BERT models. In the middle, the dash-dot line shows the limit for

the first-level creation of the Hierarchical-BERT and Longformer models, whereas the

straight vertical line on the right demonstrates the limit of their extended version.
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Fig. 4.11.: Histogram displaying the token distribution across the Management Discussion and

Analysis section of all documents (filings) included in the dataset. Starting from the left,

the dashed line displays the limit for the BERT models. In the middle, the dash-dot line

shows the limit for the first-level creation of the Hierarchical-BERT and Longformer

models, whereas the straight vertical line on the right demonstrates the limit of their

extended version.
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Finally, by analyzing the histograms created for the Use of Proceeds section, we conclude

that even the BERT variants could process a significant number of tokens or all of them

on the average case, leading to a high information gain, which is then used to perform the

classification.

5K 10K 15K 20K 25K
Number of tokens per text

0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f t
ex

ts
Document Token Distribution (Use of Proceeds Section)

Fig. 4.12.: Histogram displaying the token distribution across the Use of Proceeds section of all

documents (filings) included in the dataset. Starting from the left, the dashed line

displays the limit for the BERT models. In the middle, the dash-dot line shows the limit

for the first-level creation of the Hierarchical-BERT and Longformer models, whereas

the straight vertical line on the right demonstrates the limit of their extended version.

4.4 Hyper-parameter Tuning

Before proceedingwith the introduction of the experimental phases, it is essential to analyze

the hyper-parameter tuning process for choosing the optimal values across the available

search space. More specifically, we select to tune the batch size, learning rate, threshold, and

output embedding dimension n, which was previously mentioned in the variants combining

the knowledge obtained from each document itself, and the pre-defined dataset’s financial

indicators. Each one of those settings is tuned and thus optimized across all models. For

the tuning process, we use Optuna, an open-source Python module designed to automate

and optimize the hyper-parameter tuning process across various Deep Learning models.

From the variety of offered algorithms, we chose the TPESampler, an independent-based

sampling method used for our objective, as according to the official documentation it

operates efficiently when applying a float, integer, or categorical parameter search space.

Finally, we state that the range values of the hyper-parameters chosen to be tuned differ

across each family of models.
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Starting from BERT and its 512-token process capability, we present the hyper-parameter

along with its tuning value ranges in the following table. Formulating our final selection

regarding each range, we prior-experimented using random pre-defined constants and

observed the scopes where the prices converge. In addition, we set the number of 10

training epochs and used Optuna to perform 500 trials on each experiment. We considered

the development set to evaluate each trial, thus saving the optimal achieving the lowest

validation loss score.

Hyper-parameter Tuning Range

Batch Size Selected from range [24, 32].

Learning Rate Selected from range [1e-6, 1e-4].

Threshold Selected from range [0.45, 0.65].

Embedding Reduction Dimension n Selected from range [8, 16].

Tab. 4.4.: Table presenting the hyper-parameters tuned, along with their tuning value ranges for

BERT-based models processing up to 512 tokens. The last hyper-parameter n, obviously
refers to the architectures where the combination of textual information and financial

indicators is combined.

Moving on into the minimal version of the Hierarchical-BERT and Longformer variants

having an 8,192-token process capability, we present the set of hyper-parameters along

with their tuning value ranges in the following table. Compared to the previous statements,

we notice some variations. In detail, we decreased the range values of the batch size as the

model’s capacity increased, and we furthermore reduced the number of training epochs to

5, as well as the optimization trials to 100. Again, we considered the one achieving the

lowest validation loss score across the development set as the optimal solution.

Hyper-parameter Tuning Range

Batch Size Selected from range [1, 4].

Learning Rate Selected from range [1e-6, 1e-4].

Threshold Selected from range [0.45, 0.65].

Embedding Reduction Dimension n Selected from range [8, 16].

Tab. 4.5.: Table presenting the hyper-parameters tuned, along with their tuning value ranges for

Hierarchical-BERT-, and Longformer-based models processing up to 8,192 tokens. The

last hyper-parameter n, obviously refers to the architectures where the combination of

textual information and financial indicators is combined.

Finally, the extended version of the Hierarchical-BERT and Longformer variants coming

with a 20,480-token process capability, doesn’t significantly differ from the previous vari-
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ants. We only modify the batch size and constantly set it to 1, so the experiments fit in

the hardware used to execute them. The number of training epochs remained at 5, and

the optimization trials at 100. The run achieving the lowest validation score across the

development set was considered as the optimal solution.

Hyper-parameter Tuning Range

Batch Size Equals to 1.

Learning Rate Selected from range [1e-6, 1e-4].

Threshold Selected from range [0.45, 0.65].

Embedding Reduction Dimension n Selected from range [8, 16].

Tab. 4.6.: Table presenting the hyper-parameters tuned, along with their tuning value ranges for

Hierarchical-BERT-, and Longformer-based models processing up to 20,480 tokens. The

last hyper-parameter n, obviously refers to the architectures where the combination of

textual information and financial indicators is combined.
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5Experiments

This chapter refers to the experiments conducted to support the statements of this thesis.

Consequently, our objective is to outline the performance of all the models introduced in

Chapter 4 and analyze their generalization ability in using specific features to predict IPO

underpricing (or overpricing).

5.1 Experimental Set-up

In particular, we provide information about the experimental operation in order to make

the following results easily replicable and verifiable by other researchers.

5.1.1 Evaluation and Classification Metrics

We use the following metrics to evaluate our models: Precision, Recall, Precision Recall-

Area Under Curve (PR-AUC), and f1-score per class, along with macro-averaging. During

the evaluation process, we mainly consider PR-AUC as our primary comparison score, as it

emphasizes both precision and recall trade-offs and mostly applies for binary classification

tasks (like ours). In a Precision–Recall curve, precision represents the accuracy of positive

predictions, while recall quantifies the model’s ability to capture all relevant positive

instances. Finally, we additionally provide learning curves whenever needed to explain

and further prove specific situations, such as the absence of overfitting across our models.

5.1.2 Hardware Resources for Experimentation

The hardware resources selected for our experiments are equipped with Graphics Pro-

cessing Units (GPUs) to expedite training and inference. Specifically, there were two

servers used during our experimentation. Table 5.1 describes the characteristics of the first

machine, which was mainly used to execute our baselines due to its hardware limitations,

as it comes with two single GeForce cards of 11GB each.

The second server, whose features are presented in Table 5.2, was themainmachine we used

to experiment with the Transformer architectures as it offers higher processing capabilities.
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Component Details
CPU 12 x Intel Core I7-8700 (3.20GHz)

GPU 2 x Nvidia GeForce GTX 1080 Ti (11GB)

RAM 64GB

OS Ubuntu 18.04.4 LTS

SSD 1TB

HDD -

Tab. 5.1.: Overview of the essential hardware components of the first server employed in our

experiments and used to execute experiments regarding the baselines.

Component Details
CPU 64 x AMD EPYC 7502 32-Core (3.35GHz)

GPU 8 x Nvidia GeForce A6000 (24GB)

RAM 256GB

OS Ubuntu 18.04 LTS

SSD Samsung 870 QVO (MZ-77Q2T0BW) - 2.5" SATA III - 2TB

HDD WD Red NAS 3.5" 4TB WD40EFAX

Tab. 5.2.: Overview of the essential hardware components of the second server employed in our

experiments and used to run the Transformer-based models introduced in Chapter 4.

5.1.3 Experimentation Details

In this section, we discuss some critical background details characterizing the experimental

phase. First, we note that for each experiment (excluding the baselines), we run five seeds,

and we evaluate the performance of each model by choosing the seed that achieves the

best PR-AUC score in the development set. In addition, we balance the training set (using

undersampling) considering the minority class (overpriced IPOs) as mentioned in Section

3.2 and perform experiments using balanced or imbalanced training sets. In the following

tables, we won’t display both versions of each experiment for simplicity reasons, and we

will only show the best models created, clarifying whether a balanced or an imbalanced

training set was used. Specific modifications regarding targeted particular model families

will also be discussed in the corresponding sections of the Appendix A.
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5.2 Experimental Results - Baselines

This section dives deep into the baseline models used to compare with the Transformer

architectures. As previously discussed, we experimentwith various Logistic Regression (LR)

and MLP variants. First, we attempt to measure the performance of our models by only

using the financial indicators to train them. Finally, we repeat the process with textual

inputs and the combination of both financial and textual sequences, track the results, and

discuss the capabilities or potential limitations behind each method.

5.2.1 Financial Indicators

First, we experiment using all the financial indicators described in Section 3.2. As our

baselines, we chose Logistic Regression (LR) from the family of linear models and Multi-

Layer Perceptrons (MLPs) as a non-linear model. For each experiment, we tested both

balanced and imbalanced (which maintain the original class data ratio) training set versions.

Furthermore, we tuned our models based on the strategy described in Section 4.1.1. Table

5.3 displays the results of the methods created, which both use a balanced training set. If

interested, readers could refer to Tables A.1 and A.1 to see the optimal hyper-parameters

selected for each experiment.

LR MLP
Train Test Train Test

Precision (Class 0) 72.47% 76.31% 70.48% 77.54%

Recall (Class 0) 65.19% 71.06% 79.21% 74.21%

Precision (Class 1) 68.37% 41.28% 76.27% 44.79%

Recall (Class 1) 75.23% 47.97% 66.82% 49.32%

PR-AUC (Class 0) 72.15% 75.17% 69.76% 75.91%

PR-AUC (Class 1) 75.60% 39.22% 79.84% 43.98%

F1 (Class 0) 68.63% 73.59% 74.59% 75.84%

F1 (Class 1) 71.64% 44.38% 71.23% 46.95%

Macro-avg. Precision 70.42% 58.79% 73.37% 61.17%

Macro-avg. Recall 70.21% 59.52% 73.01% 61.77%

Macro-avg. PR-AUC 73.87% 57.19% 74.80% 59.94%
Macro-avg. F1 70.13% 58.98% 72.91% 61.39%

Tab. 5.3.: Experimental results for Logistic Regression (LR) and Multi-Layer Perceptrons (MLPs)

when using a balanced training set combined with financial indicators.

The results presented in Table 5.3 reveal the better performance of MLPs compared to

the LR across all scores, specifically on the macro-averaged PR-AUC, which is our metric

of reference. However, although the use of a balanced training set seems promising, the

signs show a lack of generalization ability, specifically observed in the minority class (i.e.,
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the overpriced IPOs), as it achieves a significantly lower PR-AUC score of 43.98% on the

prediction set, compared to the 75.91% noticed for underpriced IPOs.

5.2.2 Textual Indicators

After investigating the prediction capability when employing financial variables to detect

underpriced (or overpriced) IPOs, we repeat the experiments using features obtained from

the texts. First, we individually preprocess each document by applying the same techniques

described in the study of Katsafados et al. (2023). Secondly, we use a TF-IDF vectorizer

to collect 20,000 features from each document’s section, such as unigrams and bigrams.

Finally, after applying Truncated SVD as explained in Section 4.1, we normalize each

TF-IDF feature to achieve a mean of 0 and a standard deviation of 1. Tables 5.4 and 5.5 show

the results obtained using Logistic Regression and Multi-Layer Perceptrons equivalently.

Management Risk Proceeds Summary
Train Test Train Test Train Test Train Test

Precision (Class 0) 61.63% 74.54% 58.97% 73.26% 57.83% 73.10% 56.32% 78.03%

Recall (Class 0) 63.79% 46.13% 59.11% 36.10% 56.07% 60.74% 66.59% 29.51%

Precision (Class 1) 62.47% 33.10% 59.02% 31.38% 57.37% 33.82% 59.14% 32.60%

Recall (Class 1) 60.28% 62.84% 58.88% 68.92% 59.11% 47.30% 48.36% 80.41%

PR-AUC (Class 0) 60.82% 74.90% 60.70% 74.22% 67.87% 76.07% 57.53% 63.31%

PR-AUC (Class 1) 62.49% 36.57% 60.14% 28.36% 64.32% 30.49% 60.34% 30.70%

F1 (Class 0) 62.69% 56.99% 59.04% 48.37% 56.94% 66.35% 61.03% 42.83%

F1 (Class 1) 61.36% 43.36% 58.95% 43.13% 58.23% 39.44% 53.21% 46.39%

Macro-avg. Precision 62.05% 53.82% 59.00% 52.32% 57.60% 53.46% 57.73% 55.32%

Macro-avg. Recall 62.03% 54.48% 59.00% 52.51% 57.59% 54.02% 57.48% 54.96%

Macro-avg. PR-AUC 61.66% 55.74% 60.42% 51.29% 66.10% 53.28% 58.94% 47.01%

Macro-avg. F1 62.02% 50.17% 59.00% 45.75% 57.58% 52.90% 57.12% 44.61%

Tab. 5.4.: Experimental results for Logistic Regression (LR) when using a balanced training set and

textual indicators.
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Management Risk Proceeds Summary
Train Test Train Test Train Test Train Test

Precision (Class 0) 62.19% 74.87% 62.34% 75.00% 53.64% 74.81% 61.70% 76.59%

Recall (Class 0) 64.95% 40.11% 67.29% 53.30% 94.63% 56.16% 76.40% 44.99%

Precision (Class 1) 63.33% 32.58% 64.47% 34.54% 77.23% 34.89% 69.02% 34.25%

Recall (Class 1) 60.51% 68.24% 59.35% 58.11% 18.22% 55.41% 52.57% 67.57%

PR-AUC (Class 0) 66.89% 72.63% 65.84% 75.94% 67.29% 80.00% 66.60% 73.54%

PR-AUC (Class 1) 67.85% 34.43% 63.49% 38.59% 66.59% 31.68% 69.17% 33.36%

F1 (Class 0) 63.54% 52.24% 64.72% 62.31% 68.47% 64.16% 68.27% 56.68%

F1 (Class 1) 61.89% 44.10% 61.80% 43.32% 29.49% 42.82% 59.68% 45.45%

Macro-avg. Precision 62.76% 53.72% 63.40% 54.77% 65.44% 54.85% 65.36% 55.42%

Macro-avg. Recall 62.73% 54.18% 63.32% 55.70% 56.43% 55.78% 64.49% 56.28%

Macro-avg. PR-AUC 67.37% 53.53% 64.67% 57.27% 66.94% 55.84% 67.88% 53.45%

Macro-avg. F1 62.72% 48.17% 63.26% 52.82% 48.98% 53.49% 63.97% 51.07%

Tab. 5.5.: Experimental results for Multi-Layer Perceptrons (MLPs) when using a balanced training

set and textual indicators.

From the results presented, we conclude that Logistic Regression achieves the highest

macro-averaged PR-AUC score. Multi-Layer Perceptrons also perform acceptably well, as

they differ by only 3.47 percentage points compared to Logistic Regression. In addition,

we also observe the struggle of predicting overpriced IPOs on both of the models, as they

both maintain relatively low levels of PR-AUC and F1-scores for the 1
st
class. Finally, we

show that both methods achieve the optimal scores in different sections of the S-1 filing.

5.2.3 Financial & Textual Indicators

After separately utilizing financial variables and TF-IDF features to predict IPO underpric-

ing, we combine the knowledge by concatenating both financial and textual indicators and

feeding them as inputs to our methods. We follow the same procedure discussed in the

previous section to preprocess the documents, collect, and normalize the TF-IDF features.

The following table displays the experimental results for Logistic Regression when using a

balanced training set.
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Management Risk Proceeds Summary
Train Test Train Test Train Test Train Test

Precision (Class 0) 73.76% 75.82% 72.29% 74.64% 72.14% 75.14% 72.21% 75.22%

Recall (Class 0) 69.63% 79.94% 67.06% 74.21% 64.72% 76.22% 64.95% 73.93%

Precision (Class 1) 71.24% 45.74% 69.28% 40.00% 68.01% 41.96% 68.15% 40.91%

Recall (Class 1) 75.23% 39.86% 74.30% 40.54% 75.00% 40.54% 75.00% 42.57%

PR-AUC (Class 0) 72.42% 65.42% 72.81% 69.59% 73.03% 73.88% 71.57% 72.68%

PR-AUC (Class 1) 75.82% 38.71% 75.34% 38.63% 76.74% 39.46% 75.15% 39.02%

F1 (Class 0) 71.63% 77.82% 69.58% 74.43% 68.23% 75.68% 68.39% 74.57%

F1 (Class 1) 73.18% 42.60% 71.70% 40.27% 71.33% 41.24% 71.41% 41.72%

Macro-avg. Precision 72.50% 60.78% 70.79% 57.32% 70.07% 58.55% 70.18% 58.06%

Macro-avg. Recall 72.43% 59.90% 70.68% 57.38% 69.86% 58.38% 69.98% 58.25%

Macro-avg. PR-AUC 74.12% 52.06% 74.08% 54.11% 74.88% 56.67% 73.36% 55.85%

Macro-avg. F1 72.41% 60.21% 70.64% 57.35% 69.78% 58.46% 69.90% 58.14%

Tab. 5.6.: Experimental results for Logistic Regression (LR) when using a balanced training set and

the concatenation of textual and financial indicators.

From the numbers displayed, we observe that Logistic Regression achieves the optimal

score on the Use of Proceeds section when the input sequence considers both financial and

textual data. Summary, Risk Factors, and Management Discussion and Analysis sections

also performed well in the experiments, sharing the common fact of struggling to predict

overpriced IPOs. The hyper-parameters selected for each experiment, can be found in

Table A.5 of the appendix.

Management Risk Proceeds Summary
Train Test Train Test Train Test Train Test

Precision (Class 0) 78.96% 75.15% 77.42% 75.60% 72.14% 74.63% 71.10% 77.56%

Recall (Class 0) 81.54% 72.78% 78.50% 71.92% 70.79% 72.49% 72.43% 67.34%

Precision (Class 1) 80.92% 40.25% 78.20% 40.61% 71.33% 39.24% 71.90% 41.24%

Recall (Class 1) 78.27% 43.24% 77.10% 45.27% 72.66% 41.89% 70.56% 54.05%

PR-AUC (Class 0) 77.01% 70.71% 77.49% 73.72% 77.60% 76.81% 78.08% 77.23%

PR-AUC (Class 1) 77.15% 36.34% 77.71% 36.82% 76.38% 37.48% 78.40% 40.02%

F1 (Class 0) 80.23% 73.94% 77.96% 73.72% 71.46% 73.55% 71.76% 72.09%

F1 (Class 1) 79.57% 41.69% 77.65% 42.81% 71.99% 40.52% 71.23% 46.78%

Macro-avg. Precision 79.94% 57.70% 77.81% 58.10% 71.74% 56.94% 71.50% 59.40%

Macro-avg. Recall 79.91% 58.01% 77.80% 58.60% 71.73% 57.19% 71.50% 60.69%

Macro-avg. PR-AUC 77.08% 53.53% 77.60% 55.27% 76.99% 57.14% 78.24% 58.62%
Macro-avg. F1 79.90% 57.82% 77.80% 58.26% 71.73% 57.03% 71.49% 59.43%

Tab. 5.7.: Experimental results for Multi-Layer Perceptrons (MLPs) when using a balanced training

set and the concatenation of textual and financial indicators.

Analyzing the results observed once using Multi-Layer Perceptrons, we surprisingly con-

clude that the Summary section achieves the highest macro-averaged PR-AUC score. In

fact, those methods outperform the ones introduced in the Table 5.6 across all sections.

Again, the hyper-parameters selected for each experiment are displayed in Table A.6.

48 Chapter 5 Experiments



Finally, to measure the effect of the TF-IDF vector dimensionality change, we addition-

ally experiment using larger embedding dimensions on the Management Discussion and

Analysis section of the S-1 filing, an essential part of the document exposing management

plans to raise the share price and enhance future sales, as well as revenues (Katsafados

et al., 2023). Table 5.8 presents the experimental results across three different dimensions

while still maintaining the balanced version of the training set.

50 Dim. 100 Dim. 200 Dim.
Train Test Train Test Train Test

Precision (Class 0) 88.26% 79.31% 88.20% 80.16% 100.00% 78.97%

Recall (Class 0) 87.85% 65.90% 92.52% 56.73% 99.77% 57.02%

Precision (Class 1) 87.91% 42.51% 92.14% 39.60% 99.77% 38.78%

Recall (Class 1) 88.32% 59.46% 87.62% 66.89% 100.00% 64.19%

PR-AUC (Class 0) 81.53% 71.31% 81.27% 69.91% 52.69% 59.23%

PR-AUC (Class 1) 77.74% 36.28% 77.90% 34.49% 98.01% 37.40%

F1 (Class 0) 88.06% 71.99% 90.31% 66.44% 99.88% 66.22%

F1 (Class 1) 88.11% 49.58% 89.82% 49.75% 99.88% 48.35%

Macro-avg. Precision 88.08% 60.91% 90.17% 59.88% 99.88% 58.87%

Macro-avg. Recall 88.08% 62.68% 90.07% 61.81% 99.88% 60.60%

Macro-avg. PR-AUC 79.64% 53.79% 79.58% 52.20% 75.35% 48.31%

Macro-avg. F1 88.08% 60.78% 90.06% 58.10% 99.88% 57.28%

Tab. 5.8.: Experimental results for Multi-Layer Perceptrons (MLPs) when using a balanced training

set, the concatenation of textual and financial indicators, and larger dimensions for the

TF-IDF features.

The results show a significant performance loss as the TF-IDF embedding dimension grows,

specifically when we experimented with 200 features. From this statement we conclude

that only the essential textual information is needed to accurately classify the IPOs, while

the addition of potentially irrelevant data may lead to notable decreases in the model’s

effectiveness.

5.2.4 Summary

Summarizing, we present the best three model variations in Table 5.9. The left part

shows the best-ever baseline by only considering financial indicators. The middle column

displays the best baseline using pure TF-IDF features, whereas the right column introduces

the optimal baseline utilizing the concatenation of financial and textual indicators. By

analyzing the numbers, we conclude that the optimal generalization ability is achieved

while the input consists of pure financial indicators.

5.2 Experimental Results - Baselines 49



Financial Textual Concatenation
Train Test Train Test Train Test

Precision (Class 0) 70.48% 77.54% 61.43% 74.54% 71.10% 77.56%

Recall (Class 0) 79.21% 74.21% 63.79% 46.13% 72.43% 67.34%

Precision (Class 1) 76.27% 44.79% 62.47% 33.10% 71.90% 41.24%

Recall (Class 1) 66.82% 49.32% 60.28% 62.84% 70.56% 54.05%

PR-AUC (Class 0) 69.76% 75.91% 60.82% 74.90% 78.08% 77.23%

PR-AUC (Class 1) 79.84% 43.98% 62.49% 36.57% 78.40% 40.02%

F1 (Class 0) 74.59% 75.84% 62.69% 56.99% 71.76% 72.09%

F1 (Class 1) 71.23% 46.95% 61.36% 43.36% 71.23% 46.78%

Macro-avg. Precision 73.37% 61.17% 62.05% 53.82% 71.50% 59.40%

Macro-avg. Recall 73.01% 61.77% 62.03% 54.48% 71.50% 60.69%

Macro-avg. PR-AUC 74.80% 59.94% 61.66% 55.74% 78.24% 58.62%

Macro-avg. F1 72.91% 61.39% 62.02% 50.17% 71.49% 59.43%

Tab. 5.9.: Summary table demonstrating the best three baseline models created. In the left column,

we show the best-ever baseline only considering financial indicators. In the middle

column, we display the best baseline using pure TF-IDF features, whereas, in the right

column, we introduce the optimal baseline utilizing the concatenation of financial and

textual indicators.

Finally, we display the loss curve for the baselineMLPmodel, which considers both financial

and TF-IDF features as inputs in Figure 5.1, as it achieves a relatively high macro-averaged

PR-AUC score (placing it in the second place). Overfitting occurs approximately after

the 10th epoch, as we observe a significant difference between training and development

performance. However, we select the final epoch by monitoring the macro-averaged

PR-AUC with early stopping and patience on the development set (which was created by

applying cross-validation to the initial training set).
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Fig. 5.1.: Loss curve for an MLP model (Summary section) which uses financial and TF-IDF inputs.
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5.3 Experimental Results - Transformers

In this section, we present the results of the Transformer-based architectures. First, we

evaluate the performance of the BERT-based models, followed by the Hierarchical-BERT

variants. Second, we discuss the results of the Longformer methods, and finally, we

leverage prompting-based approaches to further test their capabilities in predicting IPO

underpricing.

5.3.1 BERT

We begin our experimentation with the BERT-based models. In Section 4.2.2, we described

the essential components behind the BERT-based variations, including their architectures

and their hyper-parameter tuning strategy. Consequently, our analysis starts with the mod-

els considering the CLS classification token, named bert-tx-cls-512 and bert-txff-cls-512,
for considering pure textual, and combined (textual and financial) indicators equivalently.

The following table presents the results for bert-tx-cls-512.

Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 93.73% 77.04% 79.67% 72.69% 75.08% 80.77% 87.99% 73.08%

Recall (Class 0) 83.99% 40.78% 93.54% 70.98% 63.48% 8.24% 94.66% 59.61%

Precision (Class 1) 85.50% 36.55% 92.18% 40.32% 68.37% 32.56% 94.22% 37.58%

Recall (Class 1) 94.38% 73.73% 76.12% 42.37% 78.93% 95.76% 87.08% 52.54%

PR-AUC (Class 0) 95.40% 74.74% 93.20% 72.64% 79.90% 71.22% 84.98% 72.11%

PR-AUC (Class 1) 93.32% 33.24% 94.23% 35.29% 74.76% 32.17% 96.10% 39.85%

F1 (Class 0) 88.59% 53.33% 86.05% 71.83% 68.80% 14.95% 91.20% 65.66%

F1 (Class 1) 89.72% 48.88% 83.38% 41.32% 73.27% 48.60% 90.51% 43.82%

Macro-avg. Precision 89.61% 56.80% 85.92% 56.51% 71.73% 56.67% 91.11% 55.33%

Macro-avg. Recall 89.19% 57.26% 84.83% 56.68% 71.21% 52.00% 90.87% 56.08%

Macro-avg. PR-AUC 94.36% 53.99% 93.72% 53.96% 77.33% 51.70% 90.54% 55.98%
Macro-avg. F1 89.16% 51.10% 84.72% 56.57% 71.04% 31.77% 90.86% 54.74%

Tab. 5.10.: Experimental results for bert-tx-cls-512 using a balanced training set.

Furthermore, Table 5.11 displays the results for bert-tx-cls-512, which considers features

obtained from the text of each section of the S-1 filing, along with the financial variables

introduced in Section 3.3.
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Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 92.96% 74.50% 83.33% 72.37% 82.28% 80.00% 77.78% 74.67%

Recall (Class 0) 92.70% 43.53% 88.48% 43.14% 73.03% 4.71% 84.55% 43.92%

Precision (Class 1) 92.72% 35.71% 87.72% 34.39% 75.76% 32.12% 83.08% 35.87%

Recall (Class 1) 92.98% 67.80% 82.30% 64.41% 84.27% 97.46% 75.84% 67.80%

PR-AUC (Class 0) 48.30% 56.55% 44.55% 55.62% 47.88% 72.57% 42.75% 56.50%

PR-AUC (Class 1) 48.11% 22.95% 48.29% 22.82% 41.81% 16.46% 47.58% 23.03%

F1 (Class 0) 92.83% 54.95% 85.83% 54.05% 77.38% 8.89% 81.02% 55.31%

F1 (Class 1) 92.85% 46.78% 84.93% 44.84% 79.79% 48.32% 79.30% 46.92%

Macro-avg. Precision 92.84% 55.11% 85.53% 53.38% 79.02% 56.06% 80.43% 55.27%

Macro-avg. Recall 92.84% 55.66% 85.39% 53.77% 78.65% 51.08% 80.20% 55.86%

Macro-avg. PR-AUC 48.21% 39.75% 46.42% 39.22% 44.85% 44.52% 45.16% 39.77%

Macro-avg. F1 92.84% 50.87% 85.38% 49.45% 78.58% 28.60% 80.16% 51.11%

Tab. 5.11.: Experimental results for bert-txff-cls-512 using a balanced training set.

By closely examining the numbers observed across those two tables, we conclude that the

model processing pure text performs significantly better compared to the variant which

uses both financial and textual indicators. In the first case, the Summary section achieves

the highest macro-averaged PR-AUC score. However, the struggle to predict overpriced

IPOs remains visible by analyzing the numbers behind PR-AUC, and F1 scores of the 1
st

class. In the second case, the additional use of the financial variables doesn’t seem to

benefit the model. In fact, we observe a significant performance drop specifically on the

macro-averaged PR-AUC scores, and not on the F1 measurements.

In addition, as mentioned in Section 4.2.2, BERT comes with a 512-token context window,

meaning that it processes the first 512 tokens of each document and then truncates the rest

of the sequence. Consequently, it would be interesting to investigate whether the results

significantly differ in the scenario of the 512-token collection coming from the middle, or

the final parts of each document. Therefore, we performed minor modifications on the

original dataset, and we report the effects for bert-tx-cls-512 in the following table.
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Management Risk
Middle End Middle End

Dev Test Train Test Train Test Train Test
Precision (Class 0) 93.31% 76.92% 85.24% 76.67% 93.77% 72.85% 84.91% 70.33%

Recall (Class 0) 78.37% 35.29% 94.10% 27.06% 97.19% 43.14% 93.26% 57.65%

Precision (Class 1) 81.36% 35.55% 93.42% 34.28% 97.08% 34.68% 92.52% 34.15%

Recall (Class 1) 94.38% 77.12% 83.71% 82.20% 93.54% 65.25% 83.43% 47.46%

PR-AUC (Class 0) 92.55% 73.68% 96.54% 73.78% 74.66% 72.26% 94.23% 66.54%

PR-AUC (Class 1) 88.22% 40.00% 95.56% 31.44% 97.06% 38.60% 92.56% 31.48%

F1 (Class 0) 85.19% 48.39% 89.45% 40.00% 95.45% 54.19% 88.89% 63.36%

F1 (Class 1) 87.39% 48.66% 88.30% 48.38% 95.28% 45.29% 87.74% 39.72%

Macro-avg. Precision 87.33% 56.23% 89.33% 55.47% 95.43% 53.77% 88.72% 52.24%

Macro-avg. Recall 86.38% 56.21% 88.90% 54.63% 95.37% 54.20% 88.34% 52.55%

Macro-avg. PR-AUC 90.39% 56.84% 96.05% 52.61% 85.86% 55.43% 93.39% 49.01%

Macro-avg. F1 86.29% 48.53% 88.87% 44.19% 95.36% 49.74% 88.31% 51.54%

Tab. 5.12.: Experimental results for bert-tx-cls-512 using a balanced training set and inputs from

various parts of the filing documents.

We initially analyze the part of the table which refers to the Management Discussion and

Analysis section. Comparing the results found in the equivalent part of Table 5.10, we

conclude that selecting inputs from the middle of the S-1 filings achieves higher macro-

averaged PR-AUC scores, rather than selecting from the beginning. On the other hand,

feeding the last 512 tokens of the sequence into BERT doesn’t seem to improve anything

at all, thus leading to the conclusion that the S-1 filings contain the essential part of

information from the beginning to approximately the middle of each document. The same

discovery is extracted by observing and comparing the measurements found in Table 5.10

about Risk Factors. We won’t repeat the process with the rest of the sections, as they

contain a relatively lower number of words compared to the ones already analyzed. Table

5.13 reports the effects of the same dataset modifications on bert-txff-cls-512.

Management Risk
Middle End Middle End

Dev Test Train Test Train Test Train Test
Precision (Class 0) 88.83% 76.47% 93.29% 78.57% 81.79% 74.29% 92.12% 68.67%

Recall (Class 0) 89.33% 25.49% 89.89% 25.88% 87.08% 40.78% 85.39% 40.39%

Precision (Class 1) 89.27% 34.03% 90.24% 34.60% 86.19% 35.19% 86.39% 31.84%

Recall (Class 1) 88.76% 83.05% 93.54% 84.75% 80.62% 69.49% 92.70% 60.17%

PR-AUC (Class 0) 47.08% 63.70% 49.18% 64.62% 44.13% 57.38% 49.71% 54.71%

PR-AUC (Class 1) 47.44% 19.69% 46.74% 19.71% 47.94% 22.42% 45.02% 22.22%

F1 (Class 0) 89.08% 38.24% 91.56% 38.94% 84.35% 52.66% 88.63% 50.86%

F1 (Class 1) 89.01% 48.28% 91.86% 49.14% 83.31% 46.72% 89.43% 41.64%

Macro-avg. Precision 89.05% 55.25% 91.77% 56.59% 83.99% 54.74% 89.25% 50.25%

Macro-avg. Recall 89.04% 54.27% 91.71% 55.31% 83.85% 55.14% 89.04% 50.28%

Macro-avg. PR-AUC 47.26% 41.70% 47.96% 42.17% 46.03% 39.90% 47.37% 38.46%

Macro-avg. F1 89.04% 43.26% 91.71% 44.04% 83.83% 49.69% 89.03% 46.25%

Tab. 5.13.: Experimental results for bert-txff-cls-512 using a balanced training set and inputs

from various parts of the filing documents.
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Again, we first analyze the part that refers to the Management Discussion and Analysis

section. Comparing with Table 5.11, we notice that adding financial indicators improves

the macro-averaged PR-AUC score when considering tokens from both the middle and the

end of the S-1 filings. On the contrary, we observe a significant loss in the F1 scores for

both underpriced and overpriced IPOs. Moving to the Risk Factors section, we verify that

selecting tokens from the middle of the sequence performs slightly better compared to the

results demonstrated in Table 5.11, and slightly worse in the case we feed the last 512 ones.

This behavior further proves our hypothesis that the essential part of the information

required by the classifiers to detect underpricing is potentially detected until the middle of

each document.

Next, we further proceed into our experimentation by testing the variants that compute

a max-pooled embedding from the list of the output token embeddings returned from

the final Transformer encoder layer. Table 5.14 displays the results for bert-tx-max-512,
which only considers features coming from the texts. The hyper-parameters configured by

the tuner for each of the experiments referring to bert-tx-max-512 are described in Table

A.10 of the Appendix.

Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 65.93% 70.85% 77.43% 75.29% 78.30% 74.36% 84.78% 72.60%

Recall (Class 0) 100.00% 68.63% 91.57% 51.37% 98.31% 45.49% 90.73% 41.57%

Precision (Class 1) 100.00% 36.51% 89.69% 37.69% 97.74% 35.94% 90.03% 34.36%

Recall (Class 1) 48.31% 38.98% 73.31% 63.56% 72.75% 66.10% 83.71% 66.10%

PR-AUC (Class 0) 96.14% 74.00% 91.93% 75.16% 91.51% 72.15% 93.82% 71.34%

PR-AUC (Class 1) 97.06% 34.63% 88.80% 44.40% 92.74% 35.69% 93.37% 42.71%

F1 (Class 0) 79.46% 69.72% 83.91% 61.07% 87.17% 56.45% 87.65% 52.87%

F1 (Class 1) 65.15% 37.70% 80.68% 47.32% 83.41% 46.57% 86.75% 45.22%

Macro-avg. Precision 82.96% 53.68% 83.56% 56.49% 88.02% 55.15% 87.40% 53.48%

Macro-avg. Recall 74.16% 53.81% 82.44% 57.47% 85.53% 55.80% 87.22% 53.84%

Macro-avg. PR-AUC 96.60% 54.32% 90.36% 59.78% 92.13% 53.92% 93.59% 57.03%

Macro-avg. F1 72.31% 53.71% 82.30% 54.20% 85.29% 51.51% 87.20% 49.04%

Tab. 5.14.: Experimental results for bert-tx-max-512 using a balanced training set.

At this stage, our investigation reveals that bert-tx-max-512 outperforms all the previous

BERT variants, and more specifically, the experiment conducted using the Risk Factors

section achieves the highest macro-averaged PR-AUC score we’ve seen so far (at this sec-

tion). Without a doubt, this paves the way for the conclusion that max-pooled embeddings

carry more significant parts of information compared to the CLS ones, leading to a better

generalization ability for both underpriced and overpriced IPOs. Moreover, by observation

of the results presented in Table 5.14, we come across an interesting finding revealing that

the test scores are much lower than those observed in the development set, thus indicating

the existence of a potential overfitting scenario. Furthermore, to measure the effect of

appending additional knowledge obtained from the financial variables, we present the
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results of bert-txff-max-512 in the following table.

Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 100.00% 100.00% 100.00% 100.00% 50.00% 68.36% 77.27% 100.00%

Recall (Class 0) 3.37% 0.78% 0.56% 0.39% 100.00% 100.00% 4.78% 2.35%

Precision (Class 1) 50.86% 31.81% 50.14% 31.72% 0.00% 0.00% 50.87% 32.15%

Recall (Class 1) 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 98.60% 100.00%

PR-AUC (Class 0) 74.16% 83.91% 74.86% 84.05% 74.93% 84.05% 62.44% 83.38%

PR-AUC (Class 1) 25.43% 15.90% 25.07% 15.86% 25.04% 15.86% 25.79% 16.08%

F1 (Class 0) 6.52% 1.56% 1.12% 0.78% 66.67% 81.21% 8.99% 4.60%

F1 (Class 1) 67.42% 48.26% 66.79% 48.16% 0.00% 0.00% 67.11% 48.66%

Macro-avg. Precision 75.43% 65.90% 75.07% 65.86% 25.00% 34.18% 64.07% 66.08%

Macro-avg. Recall 51.69% 50.39% 50.28% 50.20% 50.00% 50.00% 51.69% 51.18%

Macro-avg. PR-AUC 49.79% 49.91% 49.96% 49.95% 49.98% 49.95% 44.11% 49.73%

Macro-avg. F1 36.97% 24.91% 33.95% 24.47% 33.33% 40.61% 38.05% 26.63%

Tab. 5.15.: Experimental results for bert-txff-max-512 using a balanced training set.

The use of financial variables doesn’t seem to improve the performance of bert-tx-max-
512 in any of the filing sections. In fact, we observe a significant loss of performance

across all the experiments, meaning that when utilizing Transformers, the use of financial

indicators seems to overwhelm the classifier. However, bert-txff-max-512 still outper-

forms bert-txff-cls-512, indicating the importance of using a max-pooled embedding fed

into the classification head.

Finally, it is critical to refer to the issue of the training time needed across our models.

Specifically, from the family of BERT variants, we consider bert-tx-max-512, the Trans-
former method achieved the best performance so far, and we present statistics referring to

its processing capabilities in the following table.

Management Risk Proceeds Summary
Train Runtime (sec.) 165.58 167.21 167.81 170.83

Train Samples/sec. 43.00 42.58 42.43 41.68

Train Steps/sec. 1.75 1.73 1.73 1.70

Tab. 5.16.: Performance insights for bert-tx-cls-512.

By analyzing the numbers, we conclude that BERT-based variants become a computa-

tionally cheap training option, as they require approximately 2.8 minutes of training, and

process a large number of samples per second due to their limited 512-token context

window.
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5.3.2 Hierarchical-BERT

The experimentation process continues with the analysis of the hierarchical-BERT-based

variants. In this section, we delve into the level of extending the size of the input sequence

across our methods. First, we investigate the results of the models achieving an 8192-token

context window. The following table demonstrates the performance of hierbert-tx-cls-
512 across all the filing sections.

Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 64.76% 69.07% 66.74% 76.03% 86.00% 100.00% 82.07% 77.70%

Recall (Class 0) 82.58% 26.27% 80.62% 36.08% 36.24% 0.78% 91.29% 45.10%

Precision (Class 1) 75.97% 31.88% 75.53% 35.32% 59.61% 31.81% 90.19% 37.78%

Recall (Class 1) 55.06% 74.58% 59.83% 75.42% 94.10% 100.00% 80.06% 72.03%

PR-AUC (Class 0) 69.79% 71.47% 65.36% 72.22% 80.45% 73.86% 86.65% 74.25%

PR-AUC (Class 1) 77.05% 42.30% 79.21% 38.23% 76.08% 31.33% 88.73% 39.86%

F1 (Class 0) 72.59% 38.07% 73.03% 48.94% 50.99% 1.56% 86.44% 57.07%

F1 (Class 1) 63.84% 44.67% 66.77% 48.11% 72.98% 48.26% 84.82% 49.56%

Macro-avg. Precision 70.36% 50.48% 71.14% 55.68% 72.80% 65.90% 86.13% 57.74%

Macro-avg. Recall 68.82% 50.43% 70.22% 55.75% 65.17% 50.39% 85.67% 58.57%

Macro-avg. PR-AUC 73.42% 56.88% 72.29% 55.23% 78.26% 52.60% 87.69% 57.06%
Macro-avg. F1 68.22% 41.37% 69.90% 48.52% 61.99% 24.91% 85.63% 53.32%

Tab. 5.17.: Experimental results for hierbert-tx-cls-8192 using a balanced training set.

In addition, Table 5.18 demonstrates the performance of hierbert-txff-cls-512, a model

that considers specific financial information obtained from specific variables and textual

knowledge coming from the inputs.

Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 62.80% 75.78% 65.08% 76.06% 65.10% 75.48% 64.29% 75.68%

Recall (Class 0) 66.85% 66.27% 65.45% 63.53% 62.36% 61.57% 65.73% 65.88%

Precision (Class 1) 64.56% 42.67% 65.25% 41.88% 63.88% 40.61% 64.94% 42.38%

Recall (Class 1) 60.39% 54.24% 64.89% 56.78% 66.57% 56.78% 63.48% 54.24%

PR-AUC (Class 0) 67.88% 77.05% 67.78% 77.49% 68.04% 77.04% 68.57% 76.78%

PR-AUC (Class 1) 62.99% 34.31% 63.16% 34.32% 62.93% 33.97% 62.81% 34.14%

F1 (Class 0) 64.76% 70.71% 65.27% 69.23% 63.70% 67.82% 65.00% 70.44%

F1 (Class 1) 62.41% 47.76% 65.07% 48.20% 65.20% 47.35% 64.20% 47.58%

Macro-avg. Precision 63.68% 59.23% 65.17% 58.97% 64.49% 58.04% 64.61% 59.03%

Macro-avg. Recall 63.62% 60.26% 65.17% 60.15% 64.47% 59.17% 64.61% 60.06%

Macro-avg. PR-AUC 65.43% 55.68% 65.47% 55.90% 65.48% 55.51% 65.69% 55.46%

Macro-avg. F1 63.59% 59.24% 65.17% 58.72% 64.45% 57.58% 64.60% 59.01%

Tab. 5.18.: Experimental results for hierbert-txff-cls-8192 using a balanced training set.

56 Chapter 5 Experiments



After a close examination of the results, we conclude that specific experiments improve

after using financial indicators. In detail, we notice a significant increase in the F1 and the

PR-AUC scores when utilizing Risk Factors and Use of Proceeds on hierbert-txff-cls-512
(see Table 5.18). However, the optimal experiment (shown in Table 5.17 when using the

Summary section) does not outperform the equivalent baseline shown in Table 5.7 and

remains relatively low (in terms of macro averaged PR-AUC score) compared to the best

baseline ever created (shown in Table 5.3).

The experimentation process continues by repeating the same tests while extending the

model’s processing capabilities to a significantly higher number of 20,480 tokens. The

following tables track the results for hierbert-tx-cls-20480 and hierbert-txff-cls-20480.

Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 50.00% 68.36% 74.19% 0.00% 84.62% 100.00% 91.46% 70.00%

Recall (Class 0) 100.00% 100.00% 6.46% 0.00% 3.09% 0.39% 81.18% 27.45%

Precision (Class 1) 0.00% 0.00% 51.10% 31.64% 50.64% 31.72% 83.08% 32.23%

Recall (Class 1) 0.00% 0.00% 97.75% 100.00% 99.44% 100.00% 92.42% 74.58%

PR-AUC (Class 0) 39.80% 83.27% 58.49% 71.27% 65.76% 73.90% 52.64% 62.41%

PR-AUC (Class 1) 65.40% 27.00% 56.71% 28.25% 60.77% 27.31% 83.07% 36.91%

F1 (Class 0) 66.67% 81.21% 11.89% 0.00% 5.96% 0.78% 86.01% 39.44%

F1 (Class 1) 0.00% 0.00% 67.12% 48.07% 67.11% 48.16% 87.50% 45.01%

Macro-avg. Precision 25.00% 34.18% 62.65% 15.82% 67.63% 65.86% 87.27% 51.12%

Macro-avg. Recall 50.00% 50.00% 52.11% 50.00% 51.26% 50.20% 86.80% 51.01%

Macro-avg. PR-AUC 52.60% 55.13% 57.60% 49.76% 63.27% 50.61% 67.86% 49.66%

Macro-avg. F1 33.33% 40.61% 39.50% 24.03% 36.54% 24.47% 86.76% 42.22%

Tab. 5.19.: Experimental results for hierbert-tx-cls-20480 using a balanced training set.

Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 70.67% 72.94% 64.01% 71.43% 70.63% 71.43% 51.89% 69.13%

Recall (Class 0) 71.07% 24.31% 51.97% 5.88% 85.11% 43.14% 96.63% 80.78%

Precision (Class 1) 70.90% 32.99% 59.57% 31.82% 81.27% 33.79% 75.51% 34.67%

Recall (Class 1) 70.51% 80.51% 70.79% 94.92% 64.61% 62.71% 10.39% 22.03%

PR-AUC (Class 0) 66.85% 72.17% 54.28% 70.81% 43.92% 76.14% 26.79% 81.39%

PR-AUC (Class 1) 77.71% 37.37% 72.18% 48.08% 81.43% 34.40% 60.16% 29.70%

F1 (Class 0) 70.87% 36.47% 57.36% 10.87% 77.20% 53.79% 67.52% 74.50%

F1 (Class 1) 70.70% 46.80% 64.70% 47.66% 71.99% 43.92% 18.27% 26.94%

Macro-avg. Precision 70.79% 52.96% 61.79% 51.62% 75.95% 52.61% 63.70% 51.90%

Macro-avg. Recall 70.79% 52.41% 61.38% 50.40% 74.86% 52.92% 53.51% 51.41%

Macro-avg. PR-AUC 72.28% 54.77% 63.23% 59.45% 62.67% 55.27% 43.47% 55.54%

Macro-avg. F1 70.79% 41.63% 61.03% 29.26% 74.59% 48.85% 42.89% 50.72%

Tab. 5.20.: Experimental results for hierbert-txff-cls-20480 using a balanced training set.

The results displayed in Tables 5.19 and 5.20 reveal a significant performance improvement

when utilizing financial indicators. Moreover, hierbert-tx-cls-20480 does not appear

to be a promising option in the detection of IPO underpricing, as the numbers indicate
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low generalization performance. However, hierbert-txff-cls-20480 resolves this issue

by increasing the results on PR-AUC and F1 and achieving 59.45% on macro-averaged

PR-AUC in the Risk section, thus outperforming the equivalent baselines which use text

and financial indicators (shown in Tables 5.6 and 5.7), but not surpassing the best baseline

so far which utilizes pure financial indicators (shown in Table 5.3). Nevertheless, the F1

score reaches considerably low levels in this specific experiment (Risk section shown in

Table 5.20), which is concerning.

When it comes to the model’s capacities, we show the train runtime, samples per second,

and steps per second for hierbert-txff-cls-8192 and hierbert-txff-cls-20480 in Tables

5.21 and 5.22.

Management Risk Proceeds Summary
Train Runtime (sec.) 1546.78 1541.21 1587.38 1598.84

Train Samples/sec. 4.60 4.62 4.49 4.45

Train Steps/sec. 1.15 1.16 1.12 1.11

Tab. 5.21.: Performance insights for hierbert-txff-cls-8192.

Management Risk Proceeds Summary
Train Runtime (sec.) 3945.89 3968.82 4086.57 4111.61

Train Samples/sec. 1.80 1.79 1.74 1.73

Train Steps/sec. 1.80 1.79 1.74 1.73

Tab. 5.22.: Performance insights for hierbert-txff-cls-20480.

The insights obtained show a significant use of computational resources when the input

extends to 20,480 tokens. Specifically, when an 8,192-token context window is utilized, the

model approximately requires 25 minutes to train, whereas the opposite case (utilization of

20,480-token input) needs 65 minutes on average. Furthermore, the lighter variants process

up to 4 times more samples per second, which is 40 times less than the ones handled by

BERT variants. Thus, we conclude that hierarchical-BERT models may slightly improve

the performance of BERT on the macro-averaged PR-AUC scores, but at the same time,

they require heavier computational resources and more time to train, introducing the

performance-time trade-off dilemma.
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5.3.3 Longformer

This section quotes the part of the experimentation that refers to the Longformer vari-

ants. Specifically, we start by showing the results for ipo-longformer-tx-cls-8192 and

ipo-longformer-txff-cls-9182, two Longformer-based models warm-started from sec-

bert-base without adding the extra global SEP token to boost their attention (see Section

4.2.4).

Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 69.69% 69.74% 75.84% 77.23% 70.40% 68.25% 66.93% 74.72%

Recall (Class 0) 69.10% 20.78% 75.84% 30.59% 93.54% 33.73% 95.51% 52.16%

Precision (Class 1) 69.36% 31.99% 75.84% 34.93% 90.38% 31.58% 92.16% 37.44%

Recall (Class 1) 69.94% 80.51% 75.84% 80.51% 60.67% 66.10% 52.81% 61.86%

PR-AUC (Class 0) 76.38% 67.57% 51.46% 65.51% 57.15% 71.91% 62.93% 69.89%

PR-AUC (Class 1) 72.56% 41.66% 76.88% 38.52% 72.50% 25.85% 80.54% 31.04%

F1 (Class 0) 69.39% 32.02% 75.84% 43.82% 80.34% 45.14% 78.70% 61.43%

F1 (Class 1) 69.65% 45.78% 75.84% 48.72% 72.61% 42.74% 67.14% 46.65%

Macro-avg. Precision 69.52% 50.86% 75.84% 56.08% 80.39% 49.92% 79.54% 56.08%

Macro-avg. Recall 69.52% 50.65% 75.84% 55.55% 77.11% 49.91% 74.16% 57.01%

Macro-avg. PR-AUC 74.47% 54.62% 64.17% 52.02% 64.83% 48.88% 71.74% 50.47%

Macro-avg. F1 69.52% 38.90% 75.84% 46.27% 76.47% 43.94% 72.92% 54.04%

Tab. 5.23.: Experimental results for ipo-longformer-tx-cls-8192 using a balanced training set.

Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 57.83% 80.56% 78.60% 79.29% 78.17% 69.57% 71.81% 74.81%

Recall (Class 0) 13.48% 34.12% 94.94% 43.53% 86.52% 31.37% 75.84% 38.43%

Precision (Class 1) 51.03% 36.60% 93.62% 38.20% 84.91% 32.17% 74.40% 35.12%

Recall (Class 1) 90.17% 82.20% 74.16% 75.42% 75.84% 70.34% 70.22% 72.03%

PR-AUC (Class 0) 72.08% 69.60% 82.34% 79.93% 70.04% 67.72% 62.26% 69.50%

PR-AUC (Class 1) 58.41% 32.09% 90.45% 44.54% 86.63% 55.15% 73.62% 52.43%

F1 (Class 0) 21.87% 47.93% 86.01% 56.20% 82.13% 43.24% 73.77% 50.78%

F1 (Class 1) 65.18% 50.65% 82.76% 50.71% 80.12% 44.15% 72.25% 47.22%

Macro-avg. Precision 54.43% 58.58% 86.11% 58.74% 81.54% 50.87% 73.11% 54.97%

Macro-avg. Recall 51.83% 58.16% 84.55% 59.48% 81.18% 50.86% 73.03% 55.23%

Macro-avg. PR-AUC 65.24% 50.84% 86.40% 62.23% 78.34% 61.44% 67.94% 60.96%

Macro-avg. F1 43.52% 49.29% 84.38% 53.46% 81.13% 43.70% 73.01% 49.00%

Tab. 5.24.: Experimental results for ipo-longformer-txff-cls-8192 using a balanced training set.

The analysis of the numbers presented in Tables 5.23 and 5.24 shows a significant increase

in performance when utilizing Longformer. Specifically, some experiments considerably

outperformed the baselines by at least two percentage points when achieving macro-

averaged PR-AUC scores such as 61.44% (Use of Proceeds section), 60.96% (Summary

section) and 62.23% (Risk Factors section). Also, the indications presented in Table 5.24

show a significant increase in each experiment by the application of the financial indi-
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cators. Consequently, we proceed with the experimentation by manifesting the results

for ipo-longformer-extra-global-tx-cls-8192 and ipo-longformer-extra-global-txff-
cls-8192, meaning the addition of the extra global SEP token to -potentially- improve the

attention.

Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 60.85% 67.48% 70.19% 76.32% 63.90% 68.25% 62.27% 72.85%

Recall (Class 0) 88.20% 43.14% 91.29% 56.86% 92.98% 16.86% 95.51% 63.14%

Precision (Class 1) 78.57% 30.95% 87.55% 39.89% 87.11% 31.61% 90.36% 38.16%

Recall (Class 1) 43.26% 55.08% 61.24% 61.86% 47.47% 83.05% 42.13% 49.15%

PR-AUC (Class 0) 70.62% 71.52% 74.04% 72.63% 83.25% 66.46% 84.18% 74.62%

PR-AUC (Class 1) 65.36% 26.82% 84.37% 48.11% 86.34% 39.14% 81.79% 32.40%

F1 (Class 0) 72.02% 52.63% 79.37% 65.17% 75.74% 27.04% 75.39% 67.65%

F1 (Class 1) 55.80% 39.63% 72.07% 48.50% 61.45% 45.79% 57.47% 42.96%

Macro-avg. Precision 69.71% 49.22% 78.87% 58.10% 75.51% 49.93% 76.32% 55.50%

Macro-avg. Recall 65.73% 49.11% 76.26% 59.36% 70.22% 49.96% 68.82% 56.14%

Macro-avg. PR-AUC 67.99% 49.17% 79.20% 60.37% 84.80% 52.80% 82.98% 53.51%

Macro-avg. F1 63.91% 46.13% 75.72% 56.84% 68.60% 36.42% 66.43% 55.31%

Tab. 5.25.: Experimental results for ipo-longformer-extra-global-tx-cls-8192 using a balanced

training set.

Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 75.92% 72.31% 64.17% 75.56% 70.32% 73.47% 60.08% 70.59%

Recall (Class 0) 75.28% 18.43% 79.49% 40.00% 86.52% 28.24% 40.17% 32.94%

Precision (Class 1) 75.49% 32.47% 73.06% 35.71% 82.48% 33.45% 55.06% 32.68%

Recall (Class 1) 76.12% 84.75% 55.62% 72.03% 63.48% 77.97% 73.31% 70.34%

PR-AUC (Class 0) 82.93% 68.69% 66.53% 74.31% 78.60% 67.36% 73.64% 78.56%

PR-AUC (Class 1) 53.07% 37.29% 71.15% 49.93% 82.25% 39.37% 59.81% 31.43%

F1 (Class 0) 75.60% 29.38% 71.02% 52.31% 77.58% 40.79% 48.15% 44.92%

F1 (Class 1) 75.80% 46.95% 63.16% 47.75% 71.75% 46.82% 62.89% 44.62%

Macro-avg. Precision 75.70% 52.39% 68.62% 55.63% 76.40% 53.46% 57.57% 51.63%

Macro-avg. Recall 75.70% 51.59% 67.56% 56.02% 75.00% 53.10% 56.74% 51.64%

Macro-avg. PR-AUC 68.00% 52.99% 68.84% 62.12% 80.43% 53.37% 66.73% 54.99%

Macro-avg. F1 75.70% 38.16% 67.09% 50.03% 74.66% 43.81% 55.52% 44.77%

Tab. 5.26.: Experimental results for ipo-longformer-extra-global-txff-cls-8192 using a balanced
training set.

By observing the two tables above (Tables 5.25 and 5.26), we conclude that the addition

of the extra global SEP token does not impose further improvements compared to the

previous experimentations (Tables 5.23 and 5.24), even though we detected specific cases

that perform relatively well (ex. Risk Factors section for ipo-longformer-extra-global-
txff-cls-8192). Additionally, the comparison between Tables 5.25 and 5.23 for the test

set of the Risk Factors section shows substantial improvements when adding the extra

global SEP token. In the next phase, we repeat this experimentation cycle by increasing

the model’s size from 8,192 to 20,480 tokens (or sub-word tokens). The following tables
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show the results for ipo-longformer-extra-global-tx-cls-20480 and ipo-longformer-
extra-global-txff-cls-20480.

Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 63.75% 70.90% 60.53% 78.57% 54.27% 70.55% 53.78% 73.76%

Recall (Class 0) 71.63% 37.25% 71.07% 38.82% 85.67% 40.39% 89.89% 58.43%

Precision (Class 1) 67.63% 33.05% 64.97% 36.84% 66.00% 33.04% 69.23% 38.01%

Recall (Class 1) 59.27% 66.95% 53.65% 77.12% 27.81% 63.56% 22.75% 55.08%

PR-AUC (Class 0) 60.65% 80.83% 56.98% 78.77% 51.15% 70.10% 75.26% 76.00%

PR-AUC (Class 1) 61.78% 30.58% 58.99% 31.17% 64.14% 38.20% 64.78% 30.19%

F1 (Class 0) 67.46% 48.84% 65.37% 51.97% 66.45% 51.37% 67.30% 65.21%

F1 (Class 1) 63.17% 44.26% 58.77% 49.86% 39.13% 43.48% 34.25% 44.98%

Macro-avg. Precision 65.69% 51.97% 62.75% 57.71% 60.14% 51.79% 61.51% 55.89%

Macro-avg. Recall 65.45% 52.10% 62.36% 57.97% 56.74% 51.98% 56.32% 56.76%

Macro-avg. PR-AUC 61.22% 55.70% 57.98% 54.97% 57.65% 54.15% 70.02% 53.09%

Macro-avg. F1 65.32% 46.55% 62.07% 50.92% 52.79% 47.42% 50.77% 55.10%

Tab. 5.27.: Experimental results for ipo-longformer-tx-cls-20480 using a balanced training set.

Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 51.81% 68.75% 0.00% 0.00% 52.71% 69.75% 52.80% 69.42%

Recall (Class 0) 96.63% 81.96% 0.00% 0.00% 92.98% 76.86% 95.22% 79.22%

Precision (Class 1) 75.00% 33.33% 50.00% 31.64% 70.24% 35.87% 75.71% 35.37%

Recall (Class 1) 10.11% 19.49% 100.00% 100.00% 16.57% 27.97% 14.89% 24.58%

PR-AUC (Class 0) 55.52% 74.64% 61.60% 74.43% 60.73% 76.70% 58.32% 77.66%

PR-AUC (Class 1) 61.46% 35.01% 58.29% 31.26% 57.77% 32.37% 61.96% 35.25%

F1 (Class 0) 67.45% 74.78% 0.00% 0.00% 67.28% 73.13% 67.94% 73.99%

F1 (Class 1) 17.82% 24.60% 66.67% 48.07% 26.82% 31.43% 24.88% 29.00%

Macro-avg. Precision 63.40% 51.04% 25.00% 15.82% 61.47% 52.81% 64.26% 52.39%

Macro-avg. Recall 53.37% 50.73% 50.00% 50.00% 54.78% 52.41% 55.06% 51.90%

Macro-avg. PR-AUC 58.49% 54.82% 59.94% 52.85% 59.25% 54.53% 60.14% 56.46%
Macro-avg. F1 42.64% 49.69% 33.33% 24.03% 47.05% 52.28% 46.41% 51.50%

Tab. 5.28.: Experimental results for ipo-longformer-txff-cls-20480 using a balanced training

set.

Tables 5.27 and 5.28 indicate a minor performance loss once the context window size

increases. Using financial indicators doesn’t improve the model’s effectiveness, except in

the scenario we use the Summary section. Finally, we again add the extra global SEP token

into the architectures and report the results in the following tables.
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Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 66.11% 63.33% 73.88% 77.03% 53.34% 70.47% 63.07% 77.04%

Recall (Class 0) 55.34% 14.90% 73.88% 22.35% 91.85% 41.18% 77.25% 40.78%

Precision (Class 1) 61.59% 30.67% 73.88% 33.78% 70.71% 33.04% 70.65% 36.55%

Recall (Class 1) 71.63% 81.36% 73.88% 85.59% 19.66% 62.71% 54.78% 73.73%

PR-AUC (Class 0) 69.45% 68.85% 53.66% 71.14% 64.59% 82.72% 50.46% 67.68%

PR-AUC (Class 1) 73.10% 57.00% 75.42% 32.77% 75.01% 32.21% 63.34% 31.12%

F1 (Class 0) 60.24% 24.13% 73.88% 34.65% 67.49% 51.98% 69.44% 53.33%

F1 (Class 1) 66.23% 44.55% 73.88% 48.44% 30.77% 43.27% 61.71% 48.88%

Macro-avg. Precision 63.85% 47.00% 73.88% 55.40% 62.03% 51.75% 66.86% 56.80%

Macro-avg. Recall 63.48% 48.13% 73.88% 53.97% 55.76% 51.94% 66.01% 57.26%

Macro-avg. PR-AUC 71.28% 62.93% 64.54% 51.95% 69.80% 57.47% 56.90% 49.40%

Macro-avg. F1 63.24% 34.34% 73.88% 41.55% 49.13% 47.63% 65.58% 51.10%

Tab. 5.29.: Experimental results for ipo-longformer-extra-global-tx-cls-20480 using a balanced
training set.

Management Risk Proceeds Summary
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 51.81% 68.75% 52.80% 69.69% 51.81% 68.87% 52.89% 69.31%

Recall (Class 0) 96.63% 81.96% 95.22% 78.43% 96.63% 81.57% 95.22% 78.82%

Precision (Class 1) 75.00% 33.33% 75.71% 36.05% 75.00% 33.80% 76.06% 34.94%

Recall (Class 1) 10.11% 19.49% 14.89% 26.27% 10.11% 20.34% 15.17% 24.58%

PR-AUC (Class 0) 59.37% 73.22% 59.91% 78.06% 62.12% 78.33% 60.39% 77.26%

PR-AUC (Class 1) 62.14% 37.49% 62.99% 38.01% 63.28% 36.74% 58.79% 32.37%

F1 (Class 0) 67.45% 74.78% 67.94% 73.80% 67.45% 74.69% 68.00% 73.76%

F1 (Class 1) 17.82% 24.60% 24.88% 30.39% 17.82% 25.40% 25.29% 28.86%

Macro-avg. Precision 63.40% 51.04% 64.26% 52.87% 63.40% 51.34% 64.47% 52.13%

Macro-avg. Recall 53.37% 50.73% 55.06% 52.35% 53.37% 50.95% 55.20% 51.70%

Macro-avg. PR-AUC 60.76% 55.36% 61.45% 58.03% 62.70% 57.53% 59.59% 54.82%

Macro-avg. F1 42.64% 49.69% 46.41% 52.10% 42.64% 50.04% 46.65% 51.31%

Tab. 5.30.: Experimental results for ipo-longformer-extra-global-txff-cls-20480 using a bal-

anced training set.

The analysis of Tables 5.29 and 5.30 reveals an increased performance of ipo-longformer-
extra-global-txff-cls-20480 compared to ipo-longformer-extra-global-tx-cls-20480
across all experiments, even though ipo-longformer-extra-global-tx-cls-20480 has a higher

macro-averaged PR-AUC score in the Management Discussion and Analysis section. The

use of financial variables stabilizes the macro-averaged F1 levels to over 50%, but the

models still struggle to generalize, specifically overpriced IPOs, indicating the feeding

of potentially irrelevant textual information as the context window size increases to a

significantly high number.
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Management Risk Proceeds Summary
Train Runtime (sec.) 3104.44 3122.91 3159.05 3147.37

Train Samples/sec. 2.29 2.28 2.25 2.26

Train Steps/sec. 0.77 0.76 0.75 0.76

Tab. 5.31.: Performance insights for ipo-longformer-extra-global-txff-cls-8192.

Management Risk Proceeds Summary
Train Runtime (sec.) 7734.44 7731.01 7854.38 7922.79

Train Samples/sec. 0.92 0.92 0.91 0.90

Train Steps/sec. 0.92 0.92 0.91 0.90

Tab. 5.32.: Performance insights for ipo-longformer-extra-global-txff-cls-20480.

Finally, we analyze the computational resources required per each method in Tables 5.31

and 5.32. First, for the case we experiment with the 8,192-token variations, we verify that

Longformer requires approximately 52 minutes to train. On the other hand, the training

time dramatically increases to 130 minutes when the context window reaches 20,480 tokens,

and those methods process up to 3 times fewer samples per second compared to the lighter

versions of Longformer created.

5.3.4 GPT-3.5 Turbo

To explore the world of prompting-based models, we experiment with GPT-3.5 Turbo

created by OpenAI. In Section 4.2.5, we briefly introduced the essential ideas behind

prompting and provided our strategy among the two prompts to test. The first approach

considers the model having financial knowledge by being a specialist in corporate finance.

Additionally, it attempts to explain the essential ideas behind IPO underpricing (and

overpricing) by providing demo signals and examples in a context of less than 500 words.

The second approach slightly modifies the message and supposes the model adopts an

investor’s mindset with a short portfolio of stocks. Next, it describes a strategy, the goal

of which is to purchase stocks, followed by the definition of IPOs. The second prompt

purposely contains a smaller number of words, so we verify the importance of providing

detailed explanations as inputs to the model. Table 5.33 shows the results achieved on the

development set.

In addition, we denote that the computation of PR-AUC scores is not possible in this

method, as the model’s architecture doesn’t classify IPOs by computing probabilities

(and thus using a threshold to determine the predicted class of specific instances), and

instead, attempts to directly predict the proper class by responding with “Underpricing”

or “Overpricing” (see Section 4.2.5) to each prompt.
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1st Prompt 2nd Prompt
Precision (Class 0) 68.90% 67.54%

Precision (Class 1) 60.00% 30.00%

Recall (Class 0) 97.61% 91.66%

Recall (Class 1) 07.50% 07.50%

F1 (Class 0) 80.78% 77.77%

F1 (Class 1) 13.33% 12.00%

Macro-avg Precision 64.45% 48.77%

Macro-avg Recall 52.55% 49.58%

Macro-avg F1 47.06% 44.88%

Tab. 5.33.: Experimental results for GPT-3.5 Turbo of both prompts across the development set.

The numbers displayed in Table 5.33 show that the first approach outperforms the second

on all scores across the development set. Consequently, we adopt the first prompt and

present the final results of GPT-3.5 Turbo (in the test set) in Table 5.34.

Management Discussion and Analysis
Precision (Class 0) 71.42%

Precision (Class 1) 100.00%

Recall (Class 0) 100.00%

Recall (Class 1) 06.66%

F1 (Class 0) 83.33%

F1 (Class 1) 12.50%

Macro-avg Precision 85.71%

Macro-avg Recall 53.33%

Macro-avg F1 47.91%

Tab. 5.34.: Experimental results for GPT-3.5 Turbo atManagement Discussion and Analysis section.

By examining the performance of GPT-3.5, we conclude that prompts should be composed

of detailed explanations explaining IPO underpricing. Like the Transformer architectures

analyzed in previous sections, we notice that this method struggles to predict IPO over-

pricing. However, the results on class 0 (underpriced IPOs) indicate better performance on

the F1 score, compared to the models we created, thus revealing the potential for further

improvements in prompting-based methods.

5.3.5 Summary

We summarize the insights taken from this section by demonstrating the best experiments

from each family of models in the following table, including the optimal baseline (MLP)

considering both financial and textual inputs.
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Baseline BERT Hier-BERT Longformer
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 71.10% 77.56% 77.43% 75.29% 82.07% 77.70% 78.60% 79.29%

Recall (Class 0) 72.43% 67.34% 91.57% 51.37% 91.29% 45.10% 94.94% 43.53%

Precision (Class 1) 71.90% 41.24% 89.69% 37.69% 90.19% 37.78% 93.62% 38.20%

Recall (Class 1) 70.56% 54.05% 73.31% 63.56% 80.06% 72.03% 74.16% 75.42%

PR-AUC (Class 0) 78.08% 77.23% 91.93% 75.16% 86.65% 74.25% 82.34% 79.93%

PR-AUC (Class 1) 78.40% 40.02% 88.80% 44.40% 88.73% 39.86% 90.45% 44.54%

F1 (Class 0) 71.76% 72.09% 83.91% 61.07% 86.44% 57.07% 86.01% 56.20%

F1 (Class 1) 71.23% 46.78% 80.68% 47.32% 84.82% 49.56% 82.76% 50.71%

Macro-avg. Precision 71.50% 59.40% 83.56% 56.49% 86.13% 57.74% 86.11% 58.74%

Macro-avg. Recall 71.50% 60.69% 82.44% 57.47% 85.67% 58.57% 84.55% 59.48%

Macro-avg. PR-AUC 78.24% 58.62% 90.36% 59.78% 87.69% 57.06% 86.40% 62.23%
Macro-avg. F1 71.49% 59.43% 82.30% 54.20% 85.63% 53.32% 84.38% 53.46%

Tab. 5.35.: Summarization of the experimental results taken for the optimal (in terms of macro-

averaged PR-AUC) variants of each method. The left column refers to the optimal

baseline created using financial and textual inputs, and achieved a macro-averaged

PR-AUC score of 58.62%.

Moreover, Table 5.36 compares the best experiments from each family of models with the

optimal baseline which uses pure financial indicators to classify IPOs (and achieved the

highest macro-averaged PR-AUC score across all the baseline section).

Baseline BERT Hier-BERT Longformer
Dev Test Dev Test Dev Test Dev Test

Precision (Class 0) 70.48% 77.54% 77.43% 75.29% 82.07% 77.70% 78.60% 79.29%

Recall (Class 0) 79.21% 74.21% 91.57% 51.37% 91.29% 45.10% 94.94% 43.53%

Precision (Class 1) 76.27% 44.79% 89.69% 37.69% 90.19% 37.78% 93.62% 38.20%

Recall (Class 1) 66.82% 49.32% 73.31% 63.56% 80.06% 72.03% 74.16% 75.42%

PR-AUC (Class 0) 69.76% 75.91% 91.93% 75.16% 86.65% 74.25% 82.34% 79.93%

PR-AUC (Class 1) 79.84% 43.98% 88.80% 44.40% 88.73% 39.86% 90.45% 44.54%

F1 (Class 0) 74.59% 75.84% 83.91% 61.07% 86.44% 57.07% 86.01% 56.20%

F1 (Class 1) 71.23% 46.95% 80.68% 47.32% 84.82% 49.56% 82.76% 50.71%

Macro-avg. Precision 73.37% 61.17% 83.56% 56.49% 86.13% 57.74% 86.11% 58.74%

Macro-avg. Recall 73.01% 61.77% 82.44% 57.47% 85.67% 58.57% 84.55% 59.48%

Macro-avg. PR-AUC 74.80% 59.94% 90.36% 59.78% 87.69% 57.06% 86.40% 62.23%
Macro-avg. F1 72.91% 61.39% 82.30% 54.20% 85.63% 53.32% 84.38% 53.46%

Tab. 5.36.: Summarization of the experimental results taken for the optimal (in terms of macro-

averaged PR-AUC) variants of each method. The left column refers to the optimal

baseline created using pure financial inputs, and achieved a macro-averaged PR-AUC

score of 59.94%.

By observing the results displayed in Tables 5.35 and 5.36, we conclude that the optimal

experiment performed using Longformer variants outperforms all the baselines in the

macro-averaged PR-AUC score. Generally, the Longformer variants achieved the optimal

macro-averaged PR-AUC from the family of the Transformer-based models, with scores

exceeding 60.00%. Lastly, we denote that most variants reached their optimal performance

in the Risk Factors section.
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Moreover, Figure 5.2 summarizes the insights extracted from Table 5.35 by only considering

the macro-averaged PR-AUC and F1 scores.
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Fig. 5.2.: Comparison of the optimal examined models (in terms of their macro-averaged PR-AUC

score), also concerning their macro-averaged F1 score.

Furthermore, we refer to the training requirements by displaying the training runtime,

samples per second, and steps per second in the following table. However, we exclude two

measurements for the baseline model, as they were not counted during the experimentation

process.

Baseline BERT Hier-BERT Longformer
Train Runtime (sec.) 26 165.58 1541.21 3104.44

Train Samples/sec. - 43.00 4.62 2.29

Train Steps/sec. - 1.75 1.16 0.77

Tab. 5.37.: Summarization of the performance insights taken for the optimal (in terms of train

runtime) variants of each method.

Please note that we display the optimal performance insights obtained from each family

of models, meaning that several variants achieve even higher training runtime compared

to the ones viewed in Table 5.36. Also, Figure 5.3 extends Figure 5.2 by showing the best

models concerning their training runtimes.
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Fig. 5.3.: Comparison of the optimal examined models (in terms of their macro-averaged PR-AUC

score), also concerning their train runtime.

Finally, Figure 5.4 compares the optimal models considering their macro-averaged F1

score with their train runtime (in seconds). From the family of BERT models, the optimal

macro-averaged F1 score equals 56.57% (see Table 5.10) and was achieved in the Risk

section. Similarly, from the family of Hierarchical-BERT models, the score increased to

59.24% (see Table 5.18) in the Management Discussion and Analysis section. Lastly, the

score for the Longformer-based models equals 56.84% (see Table 5.25), and again, like most

of the experiments, we observe that it was achieved on the Risk Factors section of the S-1

filings.
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Fig. 5.4.: Comparison of the optimal examined models (in terms of their macro-averaged F1 score),

also concerning their train runtime.

5.3 Experimental Results - Transformers 67





6Conclusions and Future Work

In this chapter, we summarize the main findings of our research by mentioning the key

ideas expressed through this thesis and highlighting the strengths/limitations of our models.

Beyond the retrospective analysis, we will also provide ideas that could extend our work

in the future.

6.1 Key Takeaways

Through this thesis, we dived into the revolving realm of financial markets by measuring

the predictive power of S-1 filings when utilizing pre-trained Transformers combined with

specific financial indicators to detect IPO underpricing (or overpricing). In the preceding

chapters, we delved into the theoretical underpinnings of IPOs, explored the fundamentals

behind Transformer architectures, and combined the two to develop models capable of

forecasting the pricing trends of IPOs. Our methods support the needs of large financial

documents and overcome the limitations imposed by processing input sequences for up

to 20,480 tokens. Although the previous bibliography utilized traditional ML techniques

to analyze the predictive power of the text contained in S-1 filings, our experimentation

process revealed a significant improvement by applying Transformers in a noticeable

number of experiments. Specifically, considering the macro-averaged PR-AUC (metric

of reference), the best baseline achieved 59.94%, whereas the optimal Transformer-based

variant reached 62.23% (increased at 2.29 percentage points, or 3.82%). Also, we prove the

existence of various experiments exceeding the threshold of 59.94% set by the optimal

baseline. Thus, we create a new perspective to develop tools to assist investors, financial

analysts, and market regulators.

6.2 Future Work

We can expand and enhance our work in several ways. First, data augmentation will

improve the dataset’s balance by further producing additional instances required by the

classifiers to strengthen their generalization capacity (particularly necessary for overpriced

IPOs). Secondly, we propose to further optimize the hyper-parameter tuning strategies

by employing the macro-averaged PR-AUC score (rather than validation loss), and by

conducting additional trials to discover more combinations of hyper-parameters. In ad-
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dition, we could potentially pre-train the Longformer variants (a few of which seemed

to obtain an impressive performance using pure input texts) on financial corpora instead

of warm-starting them from nlpaueb/sec-bert-base. Finally, we strongly advocate for the

further application of prompting-based techniques, like Chain-of-Thought prompting (Wei

et al., 2022).
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AAppendix

In this chapter, we provide a comprehensive overview of the hyper-parameters selected

to execute each test, accompanied by a collection of figures analyzing the loss curves

for specific experiments of interest. We ensure that those details become available for

researchers wanting to verify the findings, replicate the tests with specific methods of

their choice, and build their future ideas upon the work outlined in the thesis.

A.1 Baseline Experimental Settings

This section displays a collection of tables showing the configurations selected for each

baseline experiment. For the Logistic Regression variants, we present the penalty, c,

and solver hyper-parameters, whereas, for the Multi-Layer Perceptrons, we indicate the

experiment’s learning rate, number of hidden layers, number of neurons per hidden layers,

and dropout rates per hidden layer. For any reason, to review further details about the

tuning strategy followed for the baselines, readers should refer to Section 4.1.

A.1.1 Financial Indicators

First, we display the hyper-parameters selected by Logistic Regression and Multi-Layer

Perceptrons when experimenting with pure financial variables. Based on the findings

shown in Table A.1, we verify that the tuner selected a high number of constant c, indicat-

ing high regularization.

Logistic Regression
Penalty l2

C 100

Solver lbfgs

Tab. A.1.: Hyper-parameters selected for the Logistic Regression (LR) baseline model when using

financial indicators.

Next, we proceed with Multi-Layer Perceptrons and Table A.2, showing the selection of

three hidden layers containing 32, 128, and 128 neurons respectively, and a relatively small
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learning rate.

Multi-Layer Perceptron
Learning Rate 0.001

Hidden Layers 3

Neurons per Hidden Layer 32, 128, 128

Dropout per Hidden Layer 0.3, 0.3, 0.4

Tab. A.2.: Hyper-parameters selected for the Multi-Layer Perceptron (MLP) baseline model when

using financial indicators.

A.1.2 Textual Indicators

This part refers to the experiments analyzed in Section 5.2.2, which only use TF-IDF fea-

tures obtained from the S-1 filings to classify IPOs. Table A.3 shows the configurations for

Logistic Regression across all text sections.

Management Risk Proceeds Summary
Penalty l1 l1 l1 l1

C 0.2154 0.2154 0.0278 0.2154

Solver liblinear liblinear saga saga

Tab. A.3.: Hyper-parameters selected for the Logistic Regression (LR) baseline models when using

textual indicators.

From the observations presented above, we verify that the penalty parameter remained

constant across all four sections, while c and solver took two distinct values. Table A.4

shows the configurations for Multi-Layer Perceptrons.

Management Risk Proceeds Summary
Learning Rate 0.001 0.01 0.01 0.001

Hidden Layers 3 3 3 3

Neurons per Hidden Layer 128, 128, 64 64, 32, 128 128, 96, 96 96, 32, 128

Dropout per Hidden Layer 0.4, 0.3, 0.4 0.4, 0.3, 0.3 0.3, 0.3, 0.5 0.3, 0.4, 0.3

Tab. A.4.: Hyper-parameters selected for the Multi-Layer Perceptron (MLP) baseline models when

using textual indicators.
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A.1.3 Financial & Textual Indicators

When we combine the textual knowledge with information collected from the financial

variables introduced in Section 3.3, the best baseline performance was reached (see Section

5.2.3). Specifically, for Logistic Regression, we have the hyper-parameters presented in the

following table.

Management Risk Proceeds Summary
Penalty l1 l1 l1 none

C 4.6415 0.5994 0.2154 0.01

Solver liblinear saga saga lbfgs

Tab. A.5.: Hyper-parameters selected for the Logistic Regression (LR) baseline models when using

financial and textual indicators.

The same experiments were repeated, but this time by utilizing Multi-Layer Perceptrons.

The training set remained balanced, and the number of TF-IDF features after the SVD

reduction was 8 (similarly with the number of financial indicators). Table A.6 shows the

configurations of these four tests.

Management Risk Proceeds Summary
Learning Rate 0.0001 0.001 0.001 0.001

Hidden Layers 3 3 3 3

Neurons per Hidden Layer 96, 96, 32 64, 32, 96 32, 96, 32 128, 32, 128

Dropout per Hidden Layer 0.3, 0.4, 0.3 0.5, 0.3, 0.3 0.3, 0.5, 0.5 0.3, 0.3, 0.4

Tab. A.6.: Hyper-parameters selected for the Multi-Layer Perceptron (MLP) baseline models when

using textual and financial indicators.

Finally, we further extended the experimentation process for the baselines by choosing

the Management Discussion and Analysis section to measure the impact of larger TF-IDF

embedding dimensions. Table A.7 displays the hyper-parameters for those three extra tests.

50 Dim. 100 Dim. 200 Dim.
Learning Rate 0.001 0.01 0.001

Hidden Layers 3 3 3

Neurons per Hidden Layer 64, 128, 128 128, 128, 32 96, 128, 96

Dropout per Hidden Layer 0.5, 0.4, 0.4 03, 0.4, 0.3 0.4, 0.4, 0.4

Tab. A.7.: Hyper-parameters selected for the Multi-Layer Perceptron (MLP) baseline models when

using textual and financial indicators, and experimenting with larger TF-IDF dimensions.
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A.2 Transformer Experimental Settings

After introducing the baseline investigations, in this part, we extend the table collection

by adding the configurations for each experiment conducted with Transformer-based

models. Specifically, we suggest readers review the tuning strategies described in Section

4.4, which focus on the learning rate, batch size, classification threshold, and embedding

output dimension n (only when the financial model variations are considered). In addition,

please note that to replicate the experiments, researchers need to acquire approximately

the same or heavier hardware resources compared to the ones displayed in Table 5.2.

A.2.1 Hyper-parameters for BERT

First, we begin with the family of BERT models. Tables A.8 and A.9 show the hyper-

parameters when evaluating using the output CLS embedding to feed the classification

head with pure textual, or combined features respectively.

Management Risk Proceeds Summary
Learning Rate 1e-5 1e-5 1e-5 1e-5

Batch Size 25 25 25 25

Threshold 0.5 0.5 0.5 0.5

Tab. A.8.: Hyper-parameters selected for bert-tx-cls-512.

Management Risk Proceeds Summary
Learning Rate 1e-5 1e-5 1e-5 1e-5

Batch Size 25 25 25 25

Threshold 0.5 0.5 0.5 0.5

Embedding Output Dimension n 12 12 12 12

Tab. A.9.: Hyper-parameters selected for bert-txff-cls-512.

Next, we display the hyper-parameters for the experiments that use a max-pooled embed-

ding to feed the classification head. Tables A.10 and A.11 serve this purpose and show the

configurations for bert-tx-max-512 and bert-txff-max-512 equivalently.

Management Risk Proceeds Summary
Learning Rate 1e-5 4.2953e-05 1e-5 4.2953e-05

Batch Size 25 31 25 31

Threshold 0.5 0.6313 0.5 0.6313

Tab. A.10.: Hyper-parameters selected for bert-tx-max-512.
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Management Risk Proceeds Summary
Learning Rate 9.2911e-05 9.2911e-05 1e-5 9.2911e-05

Batch Size 27 27 25 27

Threshold 0.5417 0.5417 0.5 0.5417

Embedding Output Dimension n 12 12 12 12

Tab. A.11.: Hyper-parameters selected for bert-txff-max-512.

A.2.2 Hyper-parameters for Hierarchical BERT

Proceeding, Tables A.12 and A.13 show the configurations for the lighter hierarchical-BERT

variants (hierbert-tx-cls-8192 and hierbert-txff-cls-8192), which can process sequences

of up to 8,192 tokens.

Management Risk Proceeds Summary
Learning Rate 1e-5 1e-5 1e-5 1e-5

Batch Size 3 3 3 3

Threshold 0.5 0.5 0.5 0.5

Tab. A.12.: Hyper-parameters selected for hierbert-tx-cls-8192.

Management Risk Proceeds Summary
Learning Rate 0.000981 0.000981 0.000981 0.000981

Batch Size 2 2 2 2

Threshold 0.4953 0.4953 0.4953 0.4953

Embedding Output Dimension n 10 10 10 10

Tab. A.13.: Hyper-parameters selected for hierbert-txff-cls-8192.

In addition, we also display the hyper-parameters for the heavier versions of hierarchical-

BERT (hierbert-tx-cls-20480 and hierbert-txff-cls-20480), which extend the input to

20,480 tokens.

Management Risk Proceeds Summary
Learning Rate 1e-5 1e-5 1e-5 1e-5

Batch Size 1 1 1 1

Threshold 0.45 0.45 0.45 0.45

Tab. A.14.: Hyper-parameters selected for hierbert-tx-cls-20480.
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Management Risk Proceeds Summary
Learning Rate 1e-5 1e-5 1e-5 1e-5

Batch Size 1 1 1 1

Threshold 0.45 0.45 0.45 0.45

Embedding Output Dimension n 8 8 8 8

Tab. A.15.: Hyper-parameters selected for hierbert-txff-cls-20480.

A.2.3 Hyper-parameters for Longformer

This paragraph reports the configurations needed to replicate the experiments of the

Longformer variants. First, we display the hyper-parameters of the experiments performed

with ipo-longformer-tx-cls-8192 and ipo-longformer-extra-global-tx-cls-8192 in

Table A.16.

Management Risk Proceeds Summary
Learning Rate 8.5966e-06 8.5966e-06 8.5966e-06 8.5966e-06

Batch Size 2 2 2 2

Threshold 0.644073 0.644073 0.644073 0.644073

Tab. A.16.: Hyper-parameters selected for ipo-longformer-extra-global-tx-cls-8192 and ipo-
longformer-tx-cls-8192.

Furthermore, Table A.17 shows the relevant information when applying financial in-

dicators in cooperation with textual features for ipo-longformer-txff-cls-8192 and

ipo-longformer-extra-global-txff-cls-8192.

Management Risk Proceeds Summary
Learning Rate 1.8588e-05 1.8588e-05 1.8588e-05 1.8588e-05

Batch Size 3 3 3 3

Threshold 0.4521457 0.4521457 0.4521457 0.4521457

Embedding Output Dimension n 10 10 10 10

Tab. A.17.: Hyper-parameters selected for ipo-longformer-extra-global-txff-cls-8192 and ipo-
longformer-txff-cls-8192.

Proceeding, we show the results of the extended to 20,480 tokens Longformer lighter

versions for the experiments conducted using ipo-longformer-tx-cls-20480 and ipo-
longformer-extra-global-tx-cls-20480 in Table A.18.
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Management Risk Proceeds Summary
Learning Rate 2.0500-06 2.0500-06 2.0500-06 2.0500-06

Batch Size 1 1 1 1

Threshold 0.45 0.45 0.45 0.45

Tab. A.18.: Hyper-parameters selected for ipo-longformer-extra-global-tx-cls-20480 and ipo-
longformer-tx-cls-20480.

Finally, we indicate the hyper-parameters of the experiments performedwith ipo-longformer-
txff-cls-20480 and ipo-longformer-extra-global-txff-cls-20480 in Table A.18.

Management Risk Proceeds Summary
Learning Rate 7.8981e-05 7.8981e-05 7.8981e-05 7.8981e-05

Batch Size 1 1 1 1

Threshold 0.5292 0.5292 0.5292 0.5292

Embedding Output Dimension n 14 14 14 14

Tab. A.19.: Hyper-parameters selected for ipo-longformer-extra-global-txff-cls-20480 and

ipo-longformer-txff-cls-20480.

A.3 Loss Curve Insights

Within this section, we display a brief collection of loss curves, each one representing the

best method across all Transformer-based model families. As we methodically present

each figure, we provide the readers with essential insights analyzing their behavior. We

notice the fact that all variants reached their optimal performance in the Risk Factors

section.

First, we start by showing the loss curve for bert-tx-max-512, (see Figure A.1) a model

experimented on Risk Factors, and reached over 59% on the macro-averaged PR-AUC score,

placing it in the first position of the leaderboard for the family of BERT-based methods.
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Fig. A.1.: Loss curve for bert-tx-max-512 at Risk Factors section.

The insights shown in Figure A.1 demonstrate a training scenario in which the validation

loss consistently remains significantly lower compared to the training loss across all

training epochs (which seems weird). They both decrease and may stabilize at a point

after the 10
th
epoch. This fact leads to the conclusion that a few more training epochs

could potentially lead to better training results and more powerful generalization ability.

In addition, Figure A.2 illustrates the macro-averaged PR-AUC curve of the same model. If

we employed macro-averaged PR-AUC instead of validation loss in our tuning strategy,

the same epoch (10
th
) would have been selected.
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Fig. A.2.: Macro-averaged PR-AUC curve for bert-tx-max-512 at Risk Factors section.
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Second, we display the loss curve for hierbert-txff-cls-20480, a model reaching a macro-

averaged PR-AUC score of over 61% on balanced training data.
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Fig. A.3.: Loss curve for hierbert-txff-cls-20480 at Risk Factors section.

By observing the loss variations in Figure A.3, we notice that both training and validation

losses initially increase approximately till the 4
th
epoch, and then they chart a downward

trajectory till the end of the training, in which the validation loss is always lower except few

positions (see the corresponding point after the 8
th
epoch). At the final stage of the training,

the blue solid line (train loss) seems to increase, while the validation loss keeps decreasing.

Figure A.4 illustrates the macro-averaged PR-AUC curve of hierbert-txff-cls-20480.
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Fig. A.4.: Macro-averaged PR-AUC curve for hierbert-txff-cls-20480 at Risk Factors section.
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Moving into the Longformer variants, we show the loss curve for ipo-longformer-txff-
cls-8192 (see Figure A.5), a model that reached approximately 63% on macro-averaged

PR-AUC with balanced training data, again in the Risk Factors section.
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Fig. A.5.: Loss curve for ipo-longformer-txff-cls-8192 at Risk Factors section.

Similarly with Figure A.1, the loss curve for ipo-longformer-txff-cls-8192 demonstrates

a training scenario in which the validation loss constantly decreases and maintains lower

levels compared to the training loss, with the two lines possibly meeting at a point after

the 8
th
epoch. Furthermore, Figure A.6 shows the macro-averaged PR-AUC curve of

ipo-longformer-txff-cls-8192.

Finally, by observing the macro-averaged PR-AUC curves displayed for all three models

(see Figures A.2, A.4, and A.6), we conclude that always the final training epoch would

have been selected in case the tuning strategy employed the macro-averaged PR-AUC

score instead of the loss (across the validation data). However, we could potentially apply

more training epochs in future work to investigate the effects of the training and the

performance of each model.
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tion.
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