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Abstract

Document analysis is a procedure focusing on the processing of documents in order to
extract details concerning information such as transactions, involved parties, objectives etc.
It is a topic most relevant in the modern society due to the increasing need for fast, easy
and clear understanding of the content of documents, as is the case with legal documents.
Nevertheless, the incorporation of Deep Learning (DP) techniques that could simplify
procedures such as layout analysis, section classification, etc., has only been a topic of
relatively recent origin [Yih+20]. Up to that point, document analysis was mostly carried
out either manually or by the use of predefined rules. This project aims to broaden the
research on the field while also providing its services to Cognitiv+, a company carrying
out legal document analysis. Thus, this project is split into two tasks. The first task
pertains to the detection of paragraphs and titles, called text blocks, in images of legal
documents, using Computer Vision and Natural Language Processing (NLP) techniques.
For the purpose of the task, focus will be given on two Computer Vision models, namely
YOLOV5 and RetinaNet, that will be trained to detect regions of text blocks. After that,
a post-processing phase will be included in order to further classify these texts as either
"paragraph” or "title", by means of a simple rule-based NLP approach. The best model will
be selected to work along a similar one that is trained to detect tables and is developed by
the company mentioned. As per the second task, it revolves around the classification of
document text zones (not to be confused with text blocks) as one of the classes "Table of

"o

contents”,

"o

Recitals", "Cover page", "Introduction” or "Main body", by utilizing their textual
content. This task can exist stand-alone or in combination with the first one. For the
completion of the task two NLP models will be trained. These models are a RoBERTa and a
hierarchical model. The hierarchical model will be based on the RoBERTa output and will
try to further improve its results by adding a second model on top. In this thesis, insight
over the data used, methodologies and results will be given along with an overview of each
one’s strengths and weaknesses. Finally, further possible improvements or alternatives

will be discussed.
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Document Analysis; Computer Vision; Natural Language Processing; Deep Learning;
Object Detection






[Teptindm

H avéivon eyypaowv eivor pua Stadwacio mov eotidlel otnv eneepyacio eyypapwy,
pe onomd vo e€dyel Aemtopépeleg mov oxetilovrol pe mANpoPopieg OTwG cUVOAAXYES,
epmtAendpeva péAT, otoyovg A, Ilpdrertan yio éva Sépa, G0 %aL OO ETiKALPO OTN)
oVOYXPOVI HOLVWVI, AOY® TNG AVEXVOIEVTG AVAYKHNG YLO LD YPT]YOPT), EOXOATN KOl GO
eEENYNOT TWV TEPLEXOUEVOV TOVG, OTTWG OTN) TEPUTTWOT] TWV VOUKODV £YYPRPwV. ‘Opwg,
n xpnomn texvinodv Badieg Madnong, ol omoleg Ja pmopovoav va astAomrotjcovy di-
adwaoieg 6Twg N avaivon diata€ng, n takvopnon Topéwy, KA., aoTedel Eva oYETA
npdseato Fépa [Yih+20]. Méxpr mpdTivog, 1 avédvon eyypaoov yvotayv uatd xOpLo
AOYO yelpovouTivd 1] péow ypriong mpoxadoplopévev xavovev. H epyacio avtr] oto-
XeVeL aTNV dLebPLVOT] TOL GLYKEUPLHEVOL TTedIOV EPELVAG TPOCPEPOVTAS TAVTOX POV
TIg vmnpecieg g otnv Cognitiv+, piar eToupior OV TPOYHOATOTOLEL AVAAVGT] VOOV
eyypagpwv. H epyacio eival xwpiopévn oe 0o pépn. To mpodto apopd TOV eVTOTIONO
TOPAYPAPWV KL TITAWV GE ELOVEG VOULLOV EYYPRPWOV HE TN XPTioTn TEX VKDY YTOAOYLo-
g ‘'Opaong rou Ene€epyaciog Puvowrg Mdooag. o tovg oxomotg tov, épgact da
dovei o 300 povréda Yroloyiotinng ‘Opaong, ovyrexpyéva ota YOLOVS xou RetinaNet,
To omtoio Yo eEUTTOULOEVTOVV GTOV EVTOTMLGHO CUYHEUPLUEVOV TTEPLOYWDV HEWHEVOL. MeTd TN
Srdwacio evromiopod da axorovdrioet éva Pripa peta-eneEopyaciog xatd To omoio ot
meployég uelpévou da tavoundoiv emuAéov oe pio otd TIG xorTyopieg "mopdypopog”
1 "titAog", péow epappoyn pic aAng tpocéyylong Ene€epyooiag Pvowmng I'iwooag pe
TN xprion xavovev. To xaddTepo povtédo da xAndel va cuvepyooTel pe éva debtepo pov-
TENO TTOV HATAOHEVAGTNKE aTd TNV I8l TNV eTALPi [l GHOTO TOV EVTOMLOUO TLVAKMV.
To debtepo pépog oyxetiletan pe tnv TaEvopnoT {wvev xeyévaov (To omoio dev mpémel
VO GUYYEETAL HE TIC TEPLOYES HEWEVOD) o€ pio atd Tig watryopieg "Table Of contents”,
"Recitals", "Cover page", "Introduction” 1} "Main body". Avto6 to pépog pmopel va Aet-
TOUPYNOEL G€ GLVEPYTiX Pe T HoVTéAQ TTOL TTpoavagépdnrav N aveEaptnta. o Tnv
entitevén tov, dvo povtéda EneEepyaciag Puowrg MAdooag do exmoudevtovv. Avtd ta
povtéda meptiopfavovv to RoBERTa xadwg xan éva tepapyind. To tepapyund povtédo
Ja Paciotel otig mpoPAéyeic Tov RoBERTa ko da mpoomadncel va PeAtidoel mepe-
TAPW TO ATOTEAECHATA TOV, CUVOLALOVTAG TeG HeE €Vl EMUTAEOV HOVTEND. TN SITA®-
potnr] auth, Aemtopépeleg da dodovv oxetind pe ta dedopéva mov xproipomotidnray,

N pedodoroyio mov oorovdndnue Kot ToL ATOTEAEGUATA TOV EXACTOTE HOVTEAOL, GE



Vi

ouvdLAopO pe Tig duvatotnTég Tovg. Téhog, emmAéov miavég PeAtiwdoelg 1} evodian-

Tinég do mpotodoiv.

AéEarg Khedra
Avédvon Eyypaowv- Yroloywotin ‘Opaon- Ene€epyoasio uvowng Moooag Badewk
Madnon- Aviyvevon Avtiepévov
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Introduction

1.1 Motivation and Problem Statement

With the vast increase of data that is observed in the last years, the use of Artificial
Intelligence (AI) is more relevant than ever. Al can be used as a solution for the extraction
of meaningful information from data, but also as a facilitation for cumbersome tasks that
were previously carried out manually. The rise of Al in combination with the benefits
that come with its use found their way in almost every field and document analysis is no
exception. Tasks relevant to document analysis include document segments classification,
layout detection, section detection etc. [She+21]. Until relatively recently, these tasks
were mostly carried out manually or using rule-based approaches as there weren’t enough
studies providing advanced solutions at the time. With the recent advances of NLP and
Computer Vision the introduction of Deep Learning in document analysis was made

possible.

Cognitiv+ is a company involved in this field with many contributions and ongoing projects,
focusing on the legal domain. One of the ongoing projects is a service that provides visual
exploration of documents to users. For the purpose of the task, a backbone Deep Learning
model is needed, trained to detect paragraphs and titles, referred to as text blocks, that will
work in combination with an already implemented component, that is able to detect tables.
This model is to focus on the detection of the layout of the text blocks rather than the
context of each one, since the model needs to be language agnostic. Given a document, it
needs to output coordinates linking to the regions mentioned. Lastly, the model, since it is
to be integrated to a live service, needs to be as lightweight, in terms of memory usage, and
fast as possible without undermining accuracy. A second objective was also added later
on, requiring an NLP model able to classify specific text zones (text zones are comprised of
one or more text blocks) stemming from legal documents. These zones include the cover
page, introduction, table of contents, recitals and main body of the documents. Contrary
to the first task, the NLP models will focus on English documents only, since they are to
be further tested, using the output of a model implemented by the company. The existing
company’s model is aimed towards text zone detection using regular expressions, and will
provide the input that will later be classified by the NLP models that are presented in this

thesis.
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For the purpose of the first task and keeping in mind its requirements and requests of
the company, focus will be given on a specific type of DL pretrained model, called one-
stage detector, that mostly favors speed rather than accuracy, while still maintaining good
performance, such as the YOLOv5 and RetinaNet models, but a baseline using alternative
techniques will also be developed for reference purposes. In order to train these models, a
dataset is provided by the company including annotated coordinates for different regions
on document images. The regions of interest for the task are labeled as "text", "anonymity"
or "form" and are all considered text blocks, but the dataset also includes other regions as
well, such as tables. These text blocks may include text of any form, meaning that there is
no distinction between titles and paragraphs. As a result, the task will have to be divided
in two subtasks. The first one, named text block detection, revolves around the use of the
Computer Vision models for the detection of text blocks in documents, while the second,
named text block classification, will implement rules in order to classify each text block
as either title or paragraph. As per the second task, two NLP oriented models will be
implemented focusing entirely on English documents, that will be trained on a different
dataset that is also provided by the company. Any of the two Computer Vision models can
then be combined with the NLP models created in order to classify each text block or table
extracted, although this is not among the objectives of the thesis. To the knowledge of the
author there are no official studies focusing on layout detection and classification in legal
documents, utilizing the combination of the Computer Vision and NLP models that will be
featured in this thesis. As a result this thesis is also written with the hopes of adding to
the knowledge of the field.

1.2 Thesis Structure

The chapters to follow further explain the techniques and processes involved in the creation

of these models. These chapters are :

Chapter 2 - Background and Related Work

In this chapter insight is given over the pretrained models that are used. Furthermore,
fundamental definitions are provided for terms that are closely linked with each task.
Finally, relevant work will be discussed pointing to ideas that could have been implemented,

if the results of the models presented in this thesis proved to be unsatisfactory.

Chapter 3 - System Design and Implementation

This chapter gives a detailed overview of the way each implemented model works. For each
model its architecture will be explored along with its use. Finally, all the necessary prepro-
cessing and postprocessing procedures linked with each model or technique implemented

will be explained.

Chapter 1 Introduction



Chapter 4 - Data Exploration and Experimental Setup
In the 4th chapter the datasets used will be explored. For each dataset the labels, annotated

cases and other information and statistics will be provided. An overview of the metrics

with which each model will be evaluated, will be given as well.

Chapter 5 - Results and Error Analysis
In the 5th chapter the results of each model developed will be provided, with the use of the

metrics mentioned in the previous chapter. For each model the strengths and weaknesses

will be discussed, and possible explanations of the results will be given.

Chapter 6 - Conclusions and Future Work

In the final chapter, the key points of the thesis will be summarized. Possible improvements
and ideas for future work that were not explored in this thesis either due to time restrictions

or the company’s requirements, will also be provided.

1.2 Thesis Structure






Background and Related Work

2.1 Background

In the process of solving the text block detection and classification and the text zone
detection tasks a plethora of techniques were used stemming from different fields. The
tasks revolve around the use of both Computer Vision and NLP. Since the documents used
are of legal nature, the end results have to abide by legal outlines as well. For the sake of a
clearer view of the legal outline for document structure as viewed by Cognitiv+, that will
be used throughout the thesis, a basic explanation of the structure of a legal document
will be given. Afterwords, the core aspects of NLP and Computer Vision relevant to this

thesis will be made clear.

2.1.1 Document structure

Legal documents, according to Cognitiv+’s guidelines, are comprised of text zones that
include text serving a specific purpose. Out of the 7 zone types, namely "Contract cover”,
"Table of contents", "Introduction”, "Recitals", "Main body", "Signatures" and "Attachments",
only the first five will be used, with the rest being merged with the "Main body" zone. The

document structure is the following :

1. Contract Cover
Contract cover, or Cover page, refers to the first page of the document and usually
includes information such as the document’s title, the names of the contract parties,
start or effective date etc. A cover page may not be present in every document, in

which case, the document starts directly from the introduction.

2. Table of Contents
A table of contents may be present at any point before the main body. It includes
page indexing of the main document clauses and usually starts with the phrases
"Table of Contents" or "Contents". As is the case with cover pages, tables of contents

may not be featured in every document.

3. Introduction

Introduction is yet another optional text zone present usually after the cover page
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and table of contents. It includes information about the contract parties, dates etc.,

that summarize the document, usually at a span of a single paragraph.

4. Recitals
The "Recitals" zone is usually present after the introduction and is often marked
by one of the headers "RECITALS", "BACKGROUND", "INTRODUCTION" (if an
introduction is not already present), "PREAMBLE" and features information found
in the introduction, expressed in detail, in a list form, usually starting with capital
English letters (A,B,..,Z). From the company’s perspective, the title of each text
zone does not always point towards the correct label. For example, the header
"INTRODUCTION" may refer to either the "Introduction” or the "Recitals" text zones.

As a result, the label will have to be define based on the content of each text zone.

5. Main Body
The main body is the main part of the document organized by theme and numbering.
For the purpose of the project it also includes any text regarded as a signature or an

attachment.

The above format represents a basic example of a document’s structure. It is by no
means final as most of the text zones are optional and most importantly may appear with
different order, to an extent. It is also possible that a text zone class appears multiple times

throughout the document, which is usually the case with the "Main body" text zone.

Another important terminology for the purpose of the project is the text block, the detection
of which is the main focus of the first task. Text blocks are components of text zones and
are split in 3 different classes, namely "text", "anonymity" and "form", based on the dataset
provided by the company. Text is considered anything that exists between the header and
the footer of the document and is not a column, table, image or handwriting. Anonymity
is a form of text block, containing text that is partially or entirely crossed by a red line
or covered by a white box with black or blue outline making the text difficult (but not
impossible in some cases) to read. An example of the "anonymity" text block is present in
Figure 2.1. Finally, the "form" text block acts as a placeholder for information such as dates,
signatures, names etc., that will be filled in the future by the parties, which the document

refers to. Unless necessary, these 3 types will be simply referred to as text blocks.

(d) the Recipient shall promptly inform r J and the Sellers if it
becomes aware that unauthorised persons have obtained access to Confidential
Information.

Fig. 2.1: An "anonymity" text block.

Chapter 2 Background and Related Work



2.1.2 Text block detection

The first objective of the project is to build a model able to detect text blocks in images
of any given legal document. These text blocks can be either titles or paragraphs, the
detection and extraction of which are subject to the Computer Vision approach that is
explored. On the Computer Vision part several models were created stemming from two
main object detection approaches, namely one-stage detection and two-stage detection.
Regardless of being one-stage or not, the majority of the models implement an Object
Classification and an Region Proposal step. Their basic differences stem from the model’s
point in which each step is implemented [Yan+22]. For example two-stage detectors
execute their Object Classification step only after the execution of the Region Proposal
step, while one-stage detectors execute these steps in parallel. Basic terms related to each

type are explained below.

Bounding box — Bounding box regression: In cases where the location of an object in
an image rather that its simple existence is the objective, bounding boxes are an essential
aspect. They are the means of locating a specific object, by setting a border around it usually
in the form of a rectangle, and are specified through a set of coordinates. An example of
bounding boxes on an image is shown in Figure 2.2. These objects are present in areas
called Regions Of Interest (ROIs). Bounding box regression is a popular technique used
by models, in order to predict such bounding boxes or improve their prediction accuracy.
Using this technique models try to regress from their output, to the golden bounding boxes
presented as input [LKC19]. Depending on the task or the model, bounding box regression
is implemented differently and many alternatives have been proposed to combat frequent
problems such as the ambiguity of some cases where golden labels are set in an inaccurate

manner [He+19].

Non maximum suppression (NMS) is a technique broadly used in the Computer Vision
field to eliminated bounding boxes "targeting” the same object [HBS17; HBS16; Sym+19].
In the classification stage multiple boxes may be classified as containing the desired object,
which happens frequently in practice. The acceptable approach in such cases is to keep the
box that encapsulates the object the closest. NMS offers a means of doing so by assuming
that box to be the one with the highest class probability among overlapping bounding
boxes. It is favored due to its simplicity, execution speed and accurate results [HBS16].
The basic NMS algorithm is presented in Algorithm 1’s pseudo-code. Its effect is depicted
in Figure 2.3.

Improvements have been proposed featuring the introduction of neural NMS approaches,
in which the NMS process is handled by a neural network which is trained utilizing
image features, apart from the standard class probability criterion, or sharing information

between detections which form the input of the model. In such cases the input of the model

2.1 Background
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Fig. 2.2: Bounding boxes on a Coco dataset image.!

is comprised of a set of detected bounding boxes. Each detection is encoded and is later
given a score. This score, though separate for each detection, is partially formed by taking
into account the features of the other detections of the input. Sharing the information of
each detection with the rest, creates a more context-aware and accurate score for each
one. Cases of neural network-oriented NMS implementations are the GossipNet [HBS17;

HBS16] and the network created by Charalampos Symeonidis et al. [Sym+19].

"Intersection over Union(IoU), or Jaccard index, is the most popular evaluation metric
used in the object detection benchmarks" [Rez+19]. Given two bounding boxes usually in
the form of their coordinates, IoU is calculated as the quotient between the overlapping

area of the two boxes and the sum of their areas.

Mean Average Precision (mAP) is an evaluation metric extensively used in Computer
Vision and especially in object detection tasks, measuring the effectiveness of a model.
This metric is usually calculated in combination with a pre-specified IoU threshold, which,
in turn, is calculated between a predicted bounding box and its respective ground truth.
Only the bounding boxes that surpass this threshold are considered correct for the mAP.
The calculation of mAP on a specific threshold, for example 0.5 IoU, is represented as
mAP@0.5, while mAP@0.5:0.95 represents the average mAP calculated over the IoU
thresholds between 0.5 and 0.95, usually with a step of 0.05. It is important to note that as

'The image is part of the Coco dataset, which is publicly available from https://cocodataset.org/.

Chapter 2 Background and Related Work



Algorithm 1 Non-Maximum Suppression

1: procedure GET(BB,t)

® N o U W

Results + ||
BB « sorted(BB)
while BB not empty do
r < BB.pop(0)
Results.add(r)
1+ 0
while i < len(BB) do
if overlap(r,BB[i]) > t then
BB.pop(i)
1 1—1
1 1+1
return Results

> bbox coordinates, and overlapping threshold

> Sort BBoxes from highest prediction to lowest

> While there are still boxes

> Get the first box and add it to the result

> Iterate over the remaining boxes
> If there is significant overlap

> Remove the bounding box from the initial list

(A) [ CLIENT ] to grant any of the licenses or rights with respect to [ CLIENT
descibed ir Sertion 13 1-

(8) Service Provider to use any [ CLIENT | Equipment as permitted in the
Agreer ien;

(C)  Service Provider to take an assignment of any Assigned Contracts purst
ectio 11.2 or to manage anv Managed Contracts pursuant to Section 11.3:

(D) Service Provider to use in its provision of the Services any other service
sources, materials or other items that [ CLIENT ] provides to Service Provider to use to provid
srvices: and

(E)  the other Service Recipients to access and use any services, resources,
Crother items that | CLIENT | provides to the Service Recipients to access and use in their recei|

arvices

73 Compliance with Required Consents.

Comsernisad-tieFEHENT-FRequined-Gommenisr ot ertentthatrtie-temsolsaelrFGUENTH

onsent nave been GISCIOSed I WIIting tO Service Provider by [ LLIEN . [ LLIENT | will comply
requirements of each of the [ CLIENT ] Required Consents and the Service Provider Required Cc
to the extent that the terms of such Service Provider Required Consent have been disclosed in
[ CLIENT ] by Service Provider.

74 Costs and Fees.

Each Party will pay any costs, expenses and fees (including license, re-licensing, transfe
( ograde fees or termination charges) as may be required to obtain such Party’s Required Conse

75 Alternative Approaches

Ifa Party is unable to obtain a Required Consent, then, unless and until such Required ¢
obtained, Service Provider and [ CLIENT ] will determine and adopt, subject to [ CLIENT I's appr:
altarnative annrnarhac a¢ ar nereccans and cfficiant for tha Samirac tn he nravided withrt ¢
Required Consent. If such alternative approaches are required for a period longer than 60 days
following the applicable Statement of Work Commencement Date, the Parties will equitably ad
terms of the Agreement and adjust the Charges in accordance with the applicable Charges Met
to reflect any additional costs and expenses being incurred by a Service Recipient and any Servi
being received by a Service Recipient. In addition, it Service Provider tails to obtain a Service Pr
Required Consent within 60 days after the applicable Statement of Work Commencement Date
failure has a material adverse impact on the Service Recipients’ receipt of the Services, [ CLIENT
upon notice to Service Provider, terminate for cause, in whole or in part, the applicable Statem
Work, as of the termination date specified in the notice, without regard to Section 29.1, withou
Petiaily aiit wiliioul Ui payiiei Of any Cnninalon Gianges. Tie faiiure W ubiain any Sevice
Required Consent will not relieve Service Provider of its obligations under the Agreement and S
Provider will not be entitled to anv additional comoensation or reimbursement of anv amounts

Master Services A

Fig. 2.3: Before and after the application of NMS.

(A) [ CLIENT ] to grant any of the licenses or rights with respect to [ CLIENT ] IP
described in Section 13.1;

(B)  Service Provider to use any [ CLIENT ] Equipment as permitted in the
Agreement;

(C)  Service Provider to take an assignment of any Assigned Contracts pursuant to
Section 11.2 or to manage any Managed Contracts pursuant to Section 11.3;

(D) Service Provider to use in its provision of the Services any other services,
resources, materials or other items that [ CLIENT ] provides to Service Provider to use to provide the
Services; and

(E)  the other Service Recipients to access and use any services, resources, materials
or other items that [ CLIENT ] provides to the Service Recipients to access and use in their receipt of the
Services.

7.3 Compliance with Required Consents.

Service Provider will comply with the requirements of each of the Service Provider Required
Consents and the [ CLIENT ] Required Consents, to the extent that the terms of such [ CLIENT ] Required
Consent have been disclosed in writing to Service Provider by [ CLIENT |. [ CLIENT ] will comply with the
requirements of each of the [ CLIENT ] Required Consents and the Service Provider Required Consents,
to the extent that the terms of such Service Provider Required Consent have been disclosed in writing to
[ CLIENT ] by Service Provider.

74 Costs and Fees.

Each Party will pay any costs, expenses and fees (including license, re-licensing, transfer or
upgrade fees or termination charges) as may be required to obtain such Party’s Required Consents.

7.5 Alternative Approaches.

I a Party is unable to obtain a Required Consent, then, unless and until such Required Consent is
obtained, Service Provider and [ CLIENT ] will determine and adopt, subject to [ CLIENT I's approval, such
alternative approaches as are necessary and sufficient for the Services to be provided without such
Required Consent. f such alternative approaches are required for a period longer than 60 days
following the applicable Statement of Work Commencement Date, the Parties will equitably adjust the
terms of the Agreement and adjust the Charges in accordance with the applicable Charges Methodology
to reflect any additional costs and expenses being incurred by a Service Recipient and any Services not
being received by a Service Recipient. In addition, if Service Provider fails to obtain a Service Provider
Required Consent within 60 days after the applicable Statement of Work Commencement Date and such
failure has a material adverse impact on the Service Recipients’ receipt of the Services, [ CLIENT ] may,
upon notice to Service Provider, terminate for cause, in whole o in part, the applicable Statement of
Work, as of the termination date specified in the notice, without regard to Section 29.1, without cost o
penalty and without the payment of any termination charges. The failure to obtain any Service Provider
Required Consent will not relieve Service Provider of its obligations under the Agreement and Service
Provider will not be entitled to any additional compensation or reimbursement of any amounts in

Master Services Agreement
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the mAP represents the mean of the Average Precision (AP) per class, mAP and AP are

equal in cases where there is only one class to be detected, as is the case in this project.

Region Proposal algorithms aim to detect regions that will later be classified by the
object classification model [SI18; Ren+15a]. There are many Region Proposal techniques
implemented such as Selective Search, CPMC and Objectness just to name a few [Gir+14].
The majority of them function by taking into account image attributes such as color contrast,
edge maps etc. [ADF12]. Taking Selective Search as an example, it is an algorithm that
defines pixel regions in images based on their structure. Older approaches proposed taking
into account every possible location in an image (called exhaustive search). Exhaustive
search is achieved by the sliding window method in which a window is applied from the
start to the end of the image, creating candidate bounding boxes. This process normally
takes a tremendous amount of time as every candidate box has to be classified. In order
to combat its effects, Selective Search implements a hierarchical algorithm to gradually
merge regions that are similar with each other so as to minimize the proposed regions.
As a result, Selective Search is able to capture regions regardless of scale and take into
account various image features such as color, lighting etc., while simultaneously reducing

the computational time [Uij+13].

Anchors (or “priors”) define a popular region proposal technique. They are a predefined
set of fixed bounding boxes. They differ in size, aspect ratio and position on images and
are assigned per class [Yan+18]. Typically, for each image, several anchors are created
across it. During training, the ratio and size of these anchors may be refined based on the
golden bounding boxes, meaning that the models that incorporate them, usually learn
to offset the predetermined anchor box coordinates as needed, for a better performance
[Zho+20]. Their use is a more efficient answer to the exhaustive search problem. By means
of anchors every proposed region on an image can be processed and classified in parallel
thus speeding the whole process up, usually at the expense of accuracy. They are typically
present in one-stage detectors, but there are cases such as the Faster R-CNN that features

such a methodology as well [Zho+20].

Object Classification is a step in which the candidate bounding box is classified as
having a desired object or being part of the backround. In this step, rather than calculating
the weights for every input (pixel) of an image, which is the case with traditional Feed
Forward neural networks (FFNN), CNNs are used to minimize the required parameters by
introducing kernels [AMA17]. Kernels are windows that are slid over the image multiplying
their values with the corresponding window of the image thus creating new features. Their
weights are the ones that are trained and are shared across the input space. CNNs may be
present in both the classification stage and the region proposal one. With an image as an
input, during the region proposal stage, bounding box coordinates are created. In turn,
these coordinates offer the input for a Deep Learning model, that is trained to classify the

region proposal output [Gir+14]. There are two cases for the proposed region. It either
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belongs to one or more classes and as such the bounding box is valid, or it belongs to the

background and is excluded.

Two-stage detector actions are split into two steps: region proposals generation and
classification. Typically, the region proposal step needs to finish in order to move to
the classification step, which is not the case with one-stage detectors. Earlier two-stage

detectors feature a pure rule-based region proposal approach but for the most recent

and accurate ones there are usually two neural networks involved, one for each task.

Two-stage detectors typically suffer from a major drawback; they are computationally
slow [SI18]. Furthermore, as "their training process includes two networks that have
to be trained separately they are harder to optimize" [Red+16]. Finally, as the regions
represent a new sub-image each, they typically tend to make more mistakes when it
comes to the background of an image compared to other techniques [Red+16], as they
treat each sub-image independently. Despite these drawbacks they typically are favored
for their accuracy, outperforming the one-stage ones in most cases [Lin+20]. Moreover,
recent advances on the field have made it possible to further minimize the speed-accuracy
trade off, by accelerating the region proposal stage and minimizing the classification time
[Li+17]. Some well-known approaches are the Fast R-CNN, Faster R-CNN [Ren+15a],
Masked R-CNN [He+17] and Light-Head R-CNN [Li+17].

One-stage detectors treat region proposal and classification as a single step and thus are
able to perform faster, usually at the expense of accuracy [Yan+22; Red+16]. They excel in
areas where two-stage detectors usually pale in comparison, as is the case with real time
object detection where execution speed is key, and have witnessed a rise in popularity as
seen through publications in the resent years [Loh+21]. Finally, the region proposal step

of the one-stage detectors is executed by means of anchors.

Focal Loss is an alternative version of the standard Cross Entropy Loss, used in order
to train a one-stage detector model, called RetinaNet, which was created with the intent
of bridging the gap between the accuracy of one-stage and two-stage detectors without
sacrificing the speed aspect [Lin+20]. This is achieved by the introduction of an addition

of a term to the Cross Entropy Loss as shown in Figure 2.4.

The idea behind the inclusion of the extra term stems from class imbalance. Typically,
two-stage detectors utilize their region proposal implementation (e.g. Selective Search)
to narrow down the possible bounding boxes. On the other hand, one-stage detectors
must process every available anchor box the majority of which comprise the background
[Lin+20]. The inclusion of the new term, depending on its value, is able to help the model
focus on harder examples (having a low prediction probability) in terms of classification
while down-weighting easier ones. The higher the y value the lower the impact of easily
classified examples is. This in turn increases the accuracy of the predictions, to the point

of reaching two-stage detectors in some cases, without sacrificing speed [Lin+20].

2.1 Background
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CE(p) = —log(p) -
4 FL(p) = —(1 — p1)" log(px) =1

well-classified
examples

0 0.2 04 0.6 0.8 1
probability of ground truth class

Fig. 2.4: The addition of the factor (1 — p;)” to the standard cross entropy criterion. Setting y >
0 reduces the relative loss for well-classified examples (p; > 0.5), putting more focus on
hard, misclassified examples. In the case of y = 0 Focal loss turns into the regular Cross
Entropy Loss [Lin+20].

YOLO (You Only Look Once) is a family of one-stage detectors, highly praised for their
speed and lightweight architecture. Each implementation revolves around the application
of a grid, splitting the image into grid cells. For each cell a set of anchor boxes is generated,
having the same center as the cell but featuring different sizes. The final bounding box
coordinates are predicted along with a probability for each bounding box through a single
network [Red+16]. In other words, the region proposal and classification steps take place
simultaneously [Yan+22] having both bounding box coordinates and class predictions as
output without the need of task specific sub-networks [Red+16]. Thanks to its simple
yet effective architecture, the YOLO model family features the model with the highest
known inference speed (YOLOv7) [WBL22]. Moreover, being able to process the whole
image, they can create features based on the whole context and thus are able to avoid
background misclassification as was the case with two-stage detectors. What this means
for the current task is that they may be able to ignore ROIs based on their position and not
just their content. Finally, "YOLO learns generalizable representations of objects" [Red+16]
being able to predict cases of objects in different contexts. When tested on artwork against
two-stage detectors, the implemented YOLO model was able to outperform its opponents

in terms of both accuracy and speed.

As is the case with every model of this architecture, earlier YOLO model versions suffer
in terms of accuracy compared to the top two-stage detectors but also to some one-stage

cases. On top of that they struggle when it comes to detecting small object [Red+16]. In
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the latest version improvements were made, featured in every new version, reducing the
prediction errors to a point of outperforming R-CNN implementations (as is the case with
YOLOv7-E6) [WBL22] while maintaining high execution speed.

It is important to note that the YOLOv5 model used for the project, is not considered an
official YOLO model since it was not created by the minds behind the first four implemen-
tations (YOLOv1 - YOLOv4). Regardless, it is almost identical to YOLOv4. Furthermore,
it is unclear whether YOLOVS5 is superior to YOLOv4 as the accuracy of each one is task
dependent, with no clear victor. The use of the YOLOv5 model for the task is justified from
its lower memory usage and training time, compared to YOLOv4, but is also based on the

requests of the company.

2.1.3 Text block and Text zone classification

In this thesis, NLP is present both during the classification of text blocks as titles or
paragraphs and text zone classification. For the accomplishment of these tasks, a variety of
methods were used, ranging from simple rule-based approaches to fine-tuning advanced
pretrained models. These implementations feature the use of the pytesseract Optical
Character Recognition (OCR) tool and the RoBERTa pretrained model.

Python-tesseract (pytesseract library) is an OCR tool for python, meaning that is
able to recognise and read the text included in an image.? It is built around Google’s
tesseract which includes the OCR engine and the command line program responsible for
the character recognition. The tesseract implementation by Google is a neural network
trained to identify characters from images for more than 100 languages and can be further

trained to support new ones.

Robustly optimized BERT Pretraining approach (RoBERTa) is a Transformer-based
model featuring the same architecture as the BERT model. Like BERT, RoBERTa features
Transformer blocks with bidirectional self-attention to capture the context of the input
[Liu+19; Dev+19]. Their key difference stems from the pretraining approach. More specifi-
cally Yinhan Liu et al. came to the conclusion that BERT is "significantly undertrained"
[Liu+19] and as such started working on modifications on the pretraining process. While
BERT includes Next Sentence Prediction (NSP) as a downstream task it was excluded from
RoBERTa claiming redundancy. To further improve the model, RoBERTa was pretrained
using more data over a longer period and over longer sequences. Finally, the static mask-
ing of BERT was replaced by a dynamic one, generated per training sequence, to avoid
having the same mask over each training instance [Liu+19]. This approach boosted the
performance of the RoOBERTa model over the "undertrained" BERT.

*Pytesseract is freely available from https://pypi.org/project/pytesseract/.

2.1 Background
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2.2 Related Work

The basic approach to document layout analysis involves the use of standard Computer
Vision techniques, some of which were explored earlier like YOLO or Faster R-CNN or even
rule-based approaches [She+21]. Depending on the data, accuracy or speed restrictions,
one may be favored over the other, but regardless there weren’t many studies focusing on
document analysis-oriented models compared to other fields. It’s only since the past few
years, that new models started being developed tackling this specific task. Having been
trained in large scale document datasets, their purpose is, given an image of a document, to
define the areas where sections are present and classify them properly. Some well-known,

open-source approaches are the following:

LayoutParser is a tool that incorporates Deep Learning techniques to tackle document
image analysis (DIA). It is able to perform operations such as layout detection and classifi-
cation, character recognition, visualization and more [She+21]. Moreover, it incorporates
a selection of many different pretrained models, that specialize on different layout formats
based on 6 datasets (HJDataset, PubLayNet, PrimaLayout, NewspaperNavigator, TableBank
and MFD datasets).> Furthermore, it supports fine-tuning and multiple customization
options, enabling better performance for custom data as the layouts of most tasks defer
by a lot. Finally, it offers a tool for data annotations featuring active learning. Utilizing
its detection model only the important layout objects are needed in terms of annotations

minimizing the annotations cost [She+21].

LayoutParser can be further configured to produce results according to a confidence score
threshold. By setting a low threshold, multiple regions can be generated. On this set up,
LayoutParser will detect bounding boxes that it would categorize as "text", "title", "list",
"table" or "figure” with very low confidence based on its pretraining; meaning that the
output will not be irrelevant but an actual candidate region containing some form of
text, even on documents of potentially different format that those of its training. For the
purpose of the project, LayoutParser, being able to generate candidate areas such as these
even though it was not trained on the dataset provided by the company, will be used as
the region proposal architecture of a custom two-stage detector. The region proposals of

LayoutParser will then be passed to a CNN for classification.

LayoutParser can be used directly to detect text blocks. For that to happen though, a
training process is needed on the company’s dataset. Nevertheless, LayoutParser utilizing
two-stage detectors, comes with prohibitively long training and inference times both in
terms of the project’s deadline and the company’s requirements. Thus, the LayoutParser

training approach was not explored in this thesis.

*The models are available from https://layout-parser.readthedocs.io/en/latest/notes/modelzoo.html.
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LayoutLM is a model that combines information of both textual and layout origin, ex-
tracted from document images and aimed towards document analysis [Yih+20]. The
LayoutLM model builds upon the basic BERT model adding a Faster R-CNN architecture,
thus enabling the extraction of both textual and visual embeddings from documents. The
visual embeddings feature 2D position and image embeddings [Yih+20]. A 2D embedding
treats an element (e.g. a collection of one or more words) in terms of its position in the
document rather than a sequence which is the case with BERT’s positional embeddings.
This is achieved by a surrounding bounding box for each element featuring upper left and
lower right coordinates using an OCR tool. Its aim is to utilize the position of a text to
infer the kind of information that its surroundings offer. On the other hand, the image
embeddings are extracted by utilizing the Faster R-CNN which treats each bounding box
as an image. Treating each text visually but also the image as a whole, features such as text
font, size, table formats, layouts etc. can be used to maximize efficiency when handling
downstream tasks [Yih+20].

The two featured tasks involve the training of a Masked Visual-Language Model and
Multi-label Document Classification. The Masked Visual-Language Model is inspired by
the BERT language model architecture. In the same fashion LayoutLM is pretrained by
randomly masking text embeddings and predicting the masked features by utilizing their
2D positional embeddings. As a second task and in order to create high level and accurate
representations of the document elements, LayoutLM is also pretrained by minimizing the
classification loss of image elements, using each document’s golden labels for supervision

during pretraining, much like the usual classification tasks [Yih+20].

2.2 Related Work
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System Design and
Implementation

In this section insight is given over the functioning of the models developed or used. For
each model, information will be given over its architecture and the methodology followed
in order to prepare the data and configure or process its output. Finally, training details

and results will be shown so as to provide a hint for their final evaluation.?

3.1 Text block detection

For the purpose of text block detection two custom two-stage detectors were created, both
featuring different region proposal implementations. The classification step is carried out,
in both cases, by the same CNN architecture which is trained on different input images,
based on each of the region proposal approaches. Nevertheless, as per the company’s
request, focus will be given on one-stage detectors. For the one-stage detector approach
two pretrained models are featured, namely RetinaNet and YOLOv5. For the YOLOv5
model multiple variations were trained as well. For each model insight will be given over
its respective architecture and training procedure. Finally, due to the lack of necessary
data, a rule-based approach was implemented in order to further classify text blocks as

paragraphs or titles, instead of a Deep Learning one.

3.1.1 Region Proposal

The objective of the region proposal method in this case is, given an image, to output
coordinates of candidate ROI bounding boxes containing text blocks. There is a plethora
of methods developed and used, the predictions of which, along with a well-trained CNN,
have impressive results. Nevertheless, most such cases are not suitable for the specific
task. Such is the case with Selective Search. The process of grouping pixels based on color,
texture, size and shape that the specific method implements tends to work better in cases
where real life objects are present. For the purpose of the task at hand though, its results
are far from optimal. In this case, intuitively following the idea of the algorithm, one
would argue that the objects on documents are the letters or numbers which are clearly

defined, in most cases, by their black color in white background. This is exactly the case

*Every model was trained and tested using a single Quadro RTX 6000 GPU.
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with Selective Search. The method tends to draw bounding boxes around characters or
in the best case a collection of them. Capturing a whole text block seems far beyond its

intended purpose as seen in Figure 3.1.

SECTION 4.10 Increased Costs.

(a) Increased Costs Generally. If any Change in Law shall:

@ impose, modify| or deem applicable [any| reserve, special deposit, compulsory
loan, insurancel charge or similar requirement against assets of, deposits with jor| for thie account
of, ior| advances, loans or other credit extended| or participated in by, any Lender| (except any
reserve requirement ireflected inthe LIBOR Rate)) or the LC Issuer;

Fig. 3.1: The Selective Search algorithm’s output on a test case.

As such, alternative approaches needed to be found. There are two approaches that were
followed. The first approach is based on OpenCV image processing methods, that serves
as a baseline, while the other relies on the use of LayoutParser predictions for candidate

text blocks.

3.1.2 Object classification - CNN

The CNN'’s objective is, given an image, to output the probability of it being a text block.
To this extent, the input for the model provides the bounding box set associated with each
document, rather than the image of the document as a whole. The bounding boxes that
are extracted during the region proposal step will be “fed” to the CNN, for each of which
a probability will be reported, much in the same way as the R-CNN developed by Ross
Girshick et al. [Gir+14]. If the probability exceeds a specified threshold the bounding
box will be present in the original image. Following the architectural orientation that
Ross Girshick et al. followed when creating their R-CNN [Gir+14], a CNN having similar
architecture was developed in the work of this thesis, for the object classification stage.
More specifically the model of choice for the development of their R-CNN [Gir+14] was
the VGG_ILSVRC_16_layers model available in Caffe Model Zoo.” The basic VGG
16-layer architecture is the one seen in Figure 3.2. Similarly, in the implementation of the
custom R-CNN in this thesis, a VGG architecture was used. The VGG version selected
for the task is VGG19. The VGG19 model, described in the work of Karen Simonyan et al.
[SZ14] is a neural network model featuring 16 convolutional layers (compared to the 13
convolutional layers of VGG16), famous for its simplicity and accuracy. It uses the smallest
filter size (3x3) able to capture the surroundings of each pixel, along with a size 1x1 filter

for linear transformations. After the CNN layers, 3 Fully Connected Layers (FCL) follow,

The Caffe Model Zoo is publicly available from https://github.com/BVLC/caffe/wiki/Model-Zoo.

Chapter 3 System Design and Implementation



acting as classifiers for the convolution layer output, which is in the form of a probability

per class, through a softmax activation function.
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Fig. 3.2: VGG16’s basic architecture [Tam19].

For the purpose of the project, the most recent version of VGG available in the Keras
library was used. Contrary to the region proposal step where the two-stage detectors to
be developed, will accent different approaches, the same CNN architecture will be used in
both cases, accepting input images of size 224x224. Finally, as the VGG model is pretrained
on the ImageNet dataset, in order to maintain the acquired knowledge but also specialize
it to the task at hand, instead of the original three FCLs, two new FCLs were introduced.
The first one manipulates the base model’s extracted features by means of 1024 nodes
with a Rectified Linear Unit (ReLu) activation function, while the second one outputs the

probability that the image is a text block through a sigmoid activation function.

3.1.3 Text Block Detection Baseline

The OpenCV approach was chosen as the baseline as it was less dependent on neural
networks, compared to the other approaches. Moreover, it is used as a means of comparison
between rule-based and network-based region proposal methods. The OpenCV approach
relies solely on the application of rules in order to propose regions and involves three main
steps.® The first two focus on the necessary preprocessing of the images while the last one

is responsible for the detection. The result of each step is depicted in Figure 3.3.

1. Binarization
The objective of this step is to remove the possible noise and get an image with
characters, as foreground, while anything else as background. The foreground
and backround need to be separated by color; ideally the characters need to be in
white and the rest in black. In order for the binarization of the image to be more
accurate two filters were used. The first one is a simple gray-scale filter applied

to the image. This color transformation removes unnecessary coloring that will

SThe inspiration came from a post found on https://stackoverflow.com/questions/57249273/how-to-detect-
paragraphs-in-a-text-document-image-for-a-non-consistent-text-stru.

3.1 Text block detection
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make the desired distinction more difficult. Afterwards a blurring filter is applied in
order for the edges of the characters to be smoother and thus easily separable from
the background. From this point on, the image is passed to the actual binarization
step. Since the image may contain any number of colors in the white-black color
spectrum a threshold needs to be set, depending on which, each color is transformed
to black or white. The threshold in the specific case stems from Otsu’s Binarization
technique [Ope00a]. This technique enables the automatic detection of the optimal
threshold for the task. After applying the threshold, the resulting image is finally

binarized.

2. Dilation
Dilation is a technique implemented in the OpenCV library that enlarges the bound-
aries of the foreground, meaning characters in this case [Ope00b]. Dilation was used
for the task with the aim of "stretching” each character in a way that characters
grouped together (as is the case with text blocks) overlap. The dilation was set to
take effect more in the x axis of each character compared to the y axis to avoid
grouping characters belonging in different text blocks. In the resulting image the

dilated characters now form a rough rectangle where the text blocks are.

3. Contour Detection
In the final step the shapes created during dilation need to be pinpointed. OpenCV
utilizes the Border Following algorithm [SA85; Ope00c] to detect these shapes and
return the coordinates of their corresponding bounding boxes. The original image
is later cropped according to these coordinates, offering the input for the object
detection CNN.

Training

Since the OpenCV region proposal step is not trainable, the training revolves around the
CNN of the object classification step. It is important to note that, the training data used for
the model are not the golden bounding boxes of the annotations. A common practice in
such cases is to use the output of the region proposal technique. The results of the region
proposal step are then compared to the golden annotations. Given a threshold, if the IoU
between the output and a golden annotation is greater, the output bounding box is treated
as a positive case. If not, it is considered negative. This enables the model to learn by
utilizing its own predictions rather than the golden truth which no region proposal is able
to achieve. For the purpose of the task, the threshold was set to be 0.6 as it balances the
positive and negative cases. The resulting distribution of the data is 50.000 positive cases
and 50.000 negative cases. The use of the whole dataset was avoided mainly because both
the region proposal generation, and CNN training times were prohibitive. The validation

data size is 20.000 and includes the same amount of positive and negative cases.
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Fig. 3.3: Text block detection baseline region proposal approach.
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The VGG19 architecture utilized for the purpose of the task includes pretrained weights for
the convolutional layers. In order for the VGG19 model to adapt to a specific classification
task, the custom FCLs need to be trained from scratch, independently from the rest of
the model. Afterwards the whole model needs to be jointly trained in order for the
convolutional layer weights to be tuned, thus achieving maximum effectiveness. For this

to happen the model was trained in two phases.

The aim of the first phase is to train the FCLs without altering the weights of the rest
of the model. This was accomplished by a method called freezing that allows for partial
model training. Training the model unfrozen would have had catastrophic results as the
pretrained weights would be tarnished during the first training epochs when the top layer
results would be far from optimal. When the results of the training reach a satisfactory
level, the first phase is complete and the model passes to the next step. The model in its
current state was trained for 16 epochs, with the best weights being formed in the 6th and
with each epoch being completed after 8.5 minutes on average. The validation loss at that

point is 0.19.

The second phase is carried out with the hopes that the model still has the capacity to learn
by fine tuning the weights of every layer. This process involves the “unfreezing” of the
layer weights and the continuation of the training process from the 6th epoch. To avoid
catastrophic alterations of the convolutional layer weights the second training process was
carried out using a very small learning rate. This training process went on for 13 epochs
reaching 19 epochs in total. The finest model weights were formed in the 9th epoch. Due
to the model having to backpropagate through more layers, the average training time
per epoch was increased to 13.3 minutes. The resulting training and validation losses are
present in Figure 3.4 reaching a minimum validation loss of 0.14 compared to the 0.19 loss
achieved while the layers were frozen. The continuation of the training processes with
unfrozen layers has reduced the validation loss by about 0.05, justifying the use of the
method.

Baseline loss plot
Loss

Train Loss (frozen)

—— Validation Loss (frozen)
Train Loss (unfrozen)

—— Validation Loss (unfrozen)

10
epochs

Fig. 3.4: Text block detection baseline training and validation loss per epoch.
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Post-processing

Usually there would be a post-processing step before the final output. It’s quite possible
that there may be several bounding boxes correctly predicted, that contain the desired
object. As such during post-processing, NMS (as seen in Subsection 2.1.2) is usually applied
to keep the bounding box with the highest probability per detected object. Due to the
nature of the region proposal algorithm though, there is only one possible bounding box

at most per ROI and as such NMS is not required in this case.

3.1.4 LayoutParser as a Region Proposal method

LayoutParser Architecture

LayoutParser [She+21] incorporates the Detectron2 library, made by Facebook Al team,
that provides a variety of model choices.” As such LayoutParser can be configured to use
a subset of them. The difference between the LayoutParser and Detectron2 models is that
LayoutParser features models pretrained solely on document datasets. The model utilized
for the specific task is Faster R-CNN FPN with PubLayNet dataset pretraining. The basic

architecture of the model is featured in Figure 3.5.

— Classes
( \ FC ——»
RPN ~—Regions—# Schs

Feature Maps Fm_| FC
Pooling Layers

Image — FPN Feature Maps————— \ ) FC » Bounding Box

Regressor

Fig. 3.5: Faster R-CNN FPN architecture [Luc+19].

What Facebook Al's implementation does is to replace the original backbone of the Faster
R-CNN with a Feature Pyramid Network (FPN) in order to provided a richer collection of
features. More specifically, the way an FPN works is by incorporating three main aspects as
shown in Figure 3.6. The first one is a bottom up pathway which creates features by resizing
the input image’s feature map to half the original size. The initial image’s feature map is
usually created through a backbone model. Each new feature map instance is downscaled
compared to the previous one in which features are created in a fully convolutional manner.
The second aspect is the top down approach and does the exact opposite process. Having
the top feature map, which is semantically richer yet remarkably smaller than the input
image’s initial feature map, for each level created in the bottom up stage, an upscaled
version of the previous map is created, starting from the top level. In other words for each
scale of the image two features maps are created, one starting from the bottom while the
other from the top. Each scale has exactly two feature maps which are merged through

a lateral connection that applies an element-wise addition of the two maps, to create a

"Detectron? is publicly available from https://github.com/facebookresearch/detectron2.
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representation boasting of rich information. From this representation, a final feature map

is created per level [Lin+17].

i
i
:
— 1x1 mnv—-ﬁ) i
i

Fig. 3.6: The FPN’s 3 main aspects. The block represents the lateral connection that merges features
of the same level [Lin+17].

The architecture mentioned also incorporates, a Region Proposal Network (RPN), which is
a sub-model responisble for generating regions of interest directly from an image input and
is created by utilizing CNN layers [Ren+15b]. The outputs of the model are the coordinates
of the detected bounding boxes along with the respective class probability.

Training

Under normal circumstances, the CNN that will classify the LayoutParser’s output would
have to be trained using the LayoutParser predicted regions. Due to the immense time
it takes to generate a proportional amount of data to match the baseline, LayoutParser
was only used during inference. Instead the data used as positive cases were directly the
golden annotations. The original dataset contained annotations for bounding boxes that
were not considered text blocks (e.g. images, signatures, headers etc.) even though most
did contain text. As a result for negative cases a mixture of annotations belonging to one
of these classes and automatically generated bounding boxes not belonging to any class

were employed. The same CNN as in the baseline was trained using the data specified.
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The training process, while the convolutional layers are frozen, took 84 epochs with an
early stopping callback of 10 epochs. Since the CNN architecture, input size and training
configuration is the same as the baseline model, so is the efficiency of the model in terms
of execution speed. The model state with the lowest validation loss was detected at
epoch 74. From this point on, the model was completely unfrozen and kept on being
trained for another 13 epochs. While being unfrozen the model kept improving in terms
of loss, justifying the procedure. The model with the best performance was detected 3
epochs after the unfreezing. The model while being frozen reached a validation loss 0.093.
Its perfromance continued to improve after unfreezing reaching 0.089 validation loss as
depicted in Figure 3.7. The difference between frozen and unfrozen base model is not
significant since the model already has low loss in this case, but still stands up for the
specific approach. Furthermore, it would seem that it has achieved lower loss than the
baseline in terms of the validation set, but as the inputs for the model are directly the
golden labels, rather that the LayoutParser outputs, there is no indication of whether it

will be able to outperform the baseline in the final test case.

Post-processing

Contrary to the baseline model, LayoutParser is able to predict multiple bounding boxes
for the same RIO. For this reason, the output will have to pass through the NMS algorithm
to exclude redundant bounding boxes. As previously mentioned, NMS requires a threshold
above which overlapping bounding boxes with predicted probability lower than the highest
one, are excluded. The threshold that worked best in this case and with the current
configuration, is 0.3. The application of NMS in Figure 2.3 is an example of its use, applied

directly to the output of the current model.

LayoutParser loss plot
Loss

Train Loss (frozen)

—— Validation Loss (frozen)
Train Loss (unfrozen)

—— Validation Loss (unfrozen)

epochs

Fig. 3.7: LayoutParser/CNN Training and validation loss per epoch.
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3.1.5 RetinaNet

RetinaNet being an one-stage detector but also providing high accuracy, is highly favored
and widely used when it comes to object detection. It is also one of the two main choices

for the completion of the text block detection task.

Architecture

RetinaNet is comprised of a backbone network and two task specific sub-networks, as
depicted in Figure 3.8. For the backbone a ResNet architecture is used. ResNet is a Deep
Learning model pretrained on the ImageNet dataset. The ResNet architecture is combined
with the FPN which provides a rich collection of features stemming from the same image,
as was the case with Faster R-CNN FPN architecture.

A Box regression and a Classification sub-net comprise the task specific sub-networks. The
box regression sub-net includes an Fully Convolutional Network (FCN) used to regress from
each anchor boxes offsets to their corresponding ground truth bounding boxes by means
of a vector of length 4 (one value per coordinate). One the other hand, the Classification
sub-net is an FCN responsible for predicting class probabilities per anchor (after applying
the offset) and per class. It features a similar architecture as the box regressor but they

both use separate parameters [Lin+20].
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(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet {bottom)

Fig. 3.8: RetinaNet’s architecture [Lin+20].

Implementation details

The Keras implementation of RetinaNet offers ready to use scripts, able to preprocess the
data and train, evaluate and test the model as well as plenty of examples and on point
documentation, making the use of RetinaNet straight forward.® On the other hand, its
usage requires careful handling of the input. In order to train and validate the results
per epoch, two folders are required, each containing their respective images. Contrary to
the two-stage detectors, the training and validation data for RetinaNet are the document
images themselves. To recognise each bounding box, apart from the image folder, it
requires a file including such information. The format chosen for the task that is also
compatible with RetinaNet is CSV. In the CSV format, each line represents one bounding

box, meaning that each document can be represented by multiple lines. Each line includes

8The implementation is available from https://github.com/fizyr/keras-retinanet.
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6 values; the path of the image, along with the top left and bottom right coordinates and
the class of the object. In case that an image does not include any bounding boxes, the path
to the image must be included and the other values must be left empty. Like the image
folders, one CSV file was created per set. A final CSV file is required that maps the classes
of the task to a number. For this task, since the detection refers to one class only, a single

line was required, that included the name of the class and an id number.

Training

RetinaNet offers the options of both fine-tuning and training from scratch. Due to the
nature of the dataset of this thesis, which is far from what RetinaNet is trained on, but also
due to the sufficient amount of data available, the training process was opted. Downloading
RetinaNet’s files, along with the model, a training script is included that offers a variety
of choices ranging from backbone options to training history output formats. In order to
train the model, Restnet101 was chosen as a backbone, which is an upgrade from Resnet50
(suggested model by the creators of RetinaNet). Restnet101 pretrained weights were also
loaded. The training was set to complete after 200 epochs, but the early stopping option of

10 epochs was also implemented to avoid overfitting.

During both the training and testing phases the model’s predictions were inadequate. Its
results were even worse that the baseline even though the model is pretrained. It was later
found that the problem was caused by the anchor box configuration which was predefined
by the creators of RetinaNet in order to perform best in most cases, focusing especially
on small objects. This comes in contrast to the current task as there are cases where the
region of interest covers up to 90% of the image. As a result there were no anchor boxes
able to capture the majority of the training instances. Golden bounding boxes, which
RetinaNet is not able to detect by means of anchor boxes, are excluded during training,
thus the training instances were very few and restricted in terms of position. After altering
the anchor box configuration of RetinaNet’s scripts in order to include anchor boxes of
larger size and ratio, the model was able to capture the majority of the training instances

and thus perform remarkably better. An example is provided in Figure 3.9.

This example encapsulates two of the basic issues of using the default configuration of
anchor boxes. Firstly, without tuning the anchor box hyperparameters, in cases such as
this one it would seem that the model is not able to capture the essence of the data, which
is definitely not the case. Secondly as the hyperparameters have to be tuned there is a
number of different possible combinations, each of which offer different results. In order
to find the optimal result these combinations must be explored, each one requiring its own

training phase, meaning that better configurations may be possible for the current task.
For this case, after some preliminary experimentation, the anchor boxes were set to include

boxes of scale (size of the anchor box in pixels) up to 1.5 times the original size while

increasing the ratio (comparison between the width and height of the box) to 4. With these
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Fig. 3.9: The difference of default and altered anchor boxes. Red boxes represent golden boxes
with few to no corresponding anchor boxes which will be ignored during training. Boxes
in green represent golden boxes having an adequate number of corresponding anchor
boxes. The anchor boxes are the rectangles in blue.

changes the majority of golden boxes were detected thus increasing the training data that
would contribute to the model’s training. With the increase in the data came the increase
in training time as well. The training folder in this case contains 19122 images while the
validation 4096 which lead to a training time of 48 minutes per epoch, mostly due to the
number of layers RetinaNet includes. In order to reduce the training time, the amount of
documents in the training set was reduced to a third (to about 6500 documents), dropping
the training time to 23 minutes per epoch. Overall, the model was trained over 27 epochs
with early stopping. The best model was observed in the 17th epoch having a stable AP as
depicted in Figure 3.10. Since the text block detection task revolves around the detection

of one class only, AP is equal to mAP in this case.

Post-processing

RetinaNet does not provide a script that outputs predictions, at least for the Keras im-
plementation that was used. Instead, it offers a script that converts the final model to a
format that can be later used in a custom fashion to provide the predictions. This custom
procedure involves the loading of the model in Keras format. During inference, the images
have to be prepossessed beforehand, in the same fashion as the training which was done
automatically. For the model to work accordingly each image has to be rescaled to 800x1300
pixels. The pixels are also zero-centered. With the current image preprocessing, the model,
given a preprocessed image as an input, outputs the predicted box coordinates, labels and
probabilities. Having the coordinates, the final output is formed by drawing bounding

boxes in the document image where their respective probability is higher than 0.65.
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Fig. 3.10: RetinaNet’s AP per epoch.

3.1.6 YOLOv5

For the purpose of the task YOLOv5 was also used. YOLOV5 offering high accuracy and
even higher speed was the main focus for the completion of the text block detection
task along with RetinaNet. YOLOVS5 is also highly praised for the surprising low training
needs in terms of execution speed and hardware. It’s due to this fact that 3 alternative

configurations of YOLOvV5 were created along with the main model.

Architecture

YOLOV5 consists of four main parts; namely the input, backbone, neck and head. Its
architecture is depicted in Figure 3.11 [NE22]. The backbone architecture includes a Focus
block. It consists of a single layer rather than three, which was the case with YOLOv3,
in order to minimize memory usage and speed (hence the name), without a noticeable
difference in terms of accuracy. This speed increase is attributed to the fact that forward
propagation as well as backpropagation is done through fewer layers, compared to the

previous versions.

Following the Focus block there is a stacked combination of simple convolutional layers
and C3 blocks. C3 blocks themselves are a combination of convolutional layers and Cross
Stage Partial Network-like (CSP) layers, which are featured in YOLOv4 [NE22]. CSP layers
are part of the plugin modules, called bag of specials, used in YOLOv4 in order to increase
the training quality and time, while just slightly increasing inference speed. The CSP

layers featured in YOLOvVS5 are comprised of a mixture of three convolutional and several

bottleneck layers which help reduce the dimensionality of the features and size of the model.

The last block of the backbone is a Spatial Pyramid Pooling (SPP) layer which "significantly
increases the receptive field, separates out the most significant context features and causes
almost no reduction of the network operation speed" [AWL20] and is also part of the

bag of specials. SPP’s purpose is to eliminate the need for a fixed size input. Traditional

3.1 Text block detection
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CNNs, consisting of convolutional and dense layers require an input of fixed size. This
requirement stemms from the dense layers themselves rather than the convolutional ones
that can function with arbitrary sized inputs [He+14]. This requirement of a fixed size
input leads, in turn to the need for input resizing, re-scaling etc. In the case of images,
such actions may distort them enough to lead to unwanted results. With the addition
of the SPP layer between the convolutional and dense layers this image preprocessing
need is eliminated, as SPP accepts inputs of any size and provides fixed size output for the
dense layers. On top of that, SPP is able to generate different feature maps, by processing
multiple instances of the image (finer or coarser cases compared to the original). The
features extracted are later pooled (using average pooling) in order to produce the final

output that will later be passed to the dense layers as depicted in Figure 3.12.

The neck of YOLOVS is comprised of the Path Aggregation Network (PANet) architecture,
as depicted in Figure 3.11. PANet takes the place of the FPN featured in RetinaNet and
Faster R-CNN. Feature maps produced in the backbone stage are combined with feature
maps of the PANet through the Concat blocks that perform concatenation of the feature
maps. Similar to the top down aspect of the FPN, the initial feature map of this stage
passes through an Upsample block increasing the size of the feature map. The feature
map may be upsampled multiple times generating multiple levels, for which there is an
equal number of combined C3, convolutional and Concat blocks that the last upsampled
feature map passes through. Each level, provides a distinct feature map as was the case
with the FPN. Contrary to the FPN though, no down-scaling procedure is involved. Each
feature map is finally processed be a CNN block that serves as a detection module [NE22].
These blocks form the head of the model and are identical to both YOLOv3 and YOLOv4

architectures.

Implementation details

Compared to RetinaNet, YOLOvV5 demands a stricter directory hierarchy and data format.
More specifically, a data folder needs to be created with two sub-folders; a folder containing
images and a folder containing the annotations. Apart from the contents of each folder
their structure is otherwise identical. The data need to be split into training, validation and
testing sets. Each one of these sets form the main folders of their parents. Their contents
are where their structures diverge. Each sub-folder of the image folder contains images
belonging to a specific set. For the annotations folder each sub-folder contains the exact
same file names as in the image folder, with a .txt file type. Files with names that are not
present in the respective location of the image folder are disregarded. Each file of the
annotations folder represents an image and has a number of rows that matches the text
block annotations per image. If an image contains no bounding boxes an empty .txt file
still needs to be present. Each annotation is represented in the file by five values. These
are the id of the label, the x and y coordinates of the center of the bounding box, relative
to the top left corner of the document image, and the width and height of the bounding

box. Each number is scaled on a range of 0-1 so that image preprocessing will not affect
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Fig. 3.11: Backbone, neck and head of YOLOVS.

the annotation values. Finally a .yaml file needs to be created. The specific file contains

the paths to the image sub-folders, the number of classes and a list of the class names.

Training

Just like RetinaNet, YOLOV5 offers already implemented scripts for training. Different
training configurations are possible by simply using the training script with specific
arguments. The model was configured to resize the images to 640x640 as per the YOLOv5
creators suggestion and since the data bounding boxes are sufficiently large and well
annotated. A small-scale augmentation step was also initialized in hopes of increasing the
efficiency of the model. The augmentation techniques utilized include saturation of the
image as well as left-right flips and finally mosaicing. Image mosaicing was introduced by

YOLOV4, and is a process of combining 4 training images into one in order to train the

model to contexts not yet explored while maintaining the annotations intact [AWL20].

Since the algorithm should be language agnostic such augmentations should also help the
model focus more on the context of the text block rather than the content. Some examples

of the augmentation process are present in Figure 3.13.

Every YOLOv5 model was configured to be trained over 200 epochs with an early stopping
callback of 10 epochs measuring fitness. Fitness is a weighted linear combination of metrics
[Ult21]. These metrics are precision, recall, mAP@0.5 and mAP@0.5:0.95. The weights
of precision and recall were set to 0, while the weights for mAP@0.5 and mAP@0.5:0.95
were 0.1 and 0.9 respectively. For the initial model, YOLOv5m (medium) was chosen which

has 21.2 million parameters and takes up to 41 MB of space. The model was trained over
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Fig. 3.12: A CNN model featuring an SPP layer between convolutional and dense layers [He+14].

103 epochs, with each epoch taking 3.3 minutes on average. There were also 2 additional
models trained for comparison; YOLOvS5I (large) and YOLOvV5s (small) model. YOLOv5s
has 7.2 million parameters and takes 14 MB of space. The training went on for 178 epochs
with each epoch being completed after 2 minutes on average. Normally smaller models
perform worse but in order to compare the accuracy difference and since both size and
execution speed were important for the purpose of the task, this model was also considered.
On the other hand, YOLOvV5I includes 46.5 million parameters and takes 90 MB of space. It
was trained using the same images resized to 1280x1280 pixels and over 111 epochs with
the best state of model being in epoch 101. Each epoch took 6 minutes to complete, on

average. The resulting mAPs on the validation set are as depicted in in Figure 3.14.

Considering solely the mAP score, the large model outperforms the rest, while performing
slightly better than the medium. Of course this is the one that takes the most amount of
time per epoch which will also be taken into consideration during inference. Regardless
of the model size it would appear that every YOLO model considered, outperforms the
previous detectors (baseline, LayoutParser and RetinaNet). Contrary to the RetinaNet’s
case the YOLOVS5 training set containts more than 19.000 document images. For RetinaNet’s
case, due to the excessively long training time, fewer training instances had to be included
(6500 images were used for RetinaNet’s training). On the other hand, YOLOv5 had no such
training issue requiring up to 15 times less training time. Thus, the better results of the
YOLOV5 models are partially to be attributed to the number of training instances used and
to the fact that YOLOv5s’ anchors are task specific, meaning that their configuration is

generated automatically based on the training instances. In RetinaNet’s case, the anchors
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Fig. 3.13: YOLOv5 augmentation output.

had to be manually tuned, meaning that a better configuration for the RetinaNet’s anchors

may have been possible.

3.1.7 Rule-based text block classification

As previously mentioned, the initial data provided did not contain the appropriate annota-
tions for a task so specific as to classify text blocks as paragraphs or titles. Thus the use of
a rule-based approach was suggested by the company. These rules are to focus on the text
contained in each bounding box. In order to extract the text, pytesseract OCR tool was
used. After extracting and carefully examining a subset of the cases from a training set
consisting of 50 document images, 7 rules were created with the addition of a default case.
The rules are final, meaning that if a rule is satisfied, no subsequent rules are checked.

These rules are described below.

3.1 Text block detection
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Fig. 3.14: mAP scores per epoch and per YOLO version.
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. No text available

There are cases where pytesseract was not able to detect text. This is possible when
the text is underlined, which is usually the case with titles. Of course the majority
of underlined texts were correctly detected. It is also possible that some texts of the
dataset belong to the anonymity class as explained in Subsection 2.1.1, making the
text that much harder to read for pytesseract. The majority of the cases where text
was not detected in a block, either due to the text being underlined or belonging to

the anonymity class, were title cases and as such a title is assumed by the rule.

. More than 20 tokens

Keeping in mind the company’s legal document guidelines and noticing that, from
the extracted title text blocks of the training set no title extended more that 15 words,
a rule was formed. This rule dictates than any text having more than 20 tokens
(extra tokens were added for good measure) be considered a paragraph and not a
title.

. Part of a list

Applying the above rule does not automatically classify the cases with fewer than 20
tokens as titles. There are cases of text being part of a list that belongs to a paragraph
with as little as two words. The common attribute of list items is the use of brackets
and a form of enumeration. More specifically, list items on the training set tend
to appear with a letter or number as a first token followed by a right bracket. The
existence of the right bracket is what distinguishes list items from titles. As such, a
rule was created to detect right brackets in the first token of each text. If the rule is

satisfied a paragraph is assumed.

. Fewer than 5 tokens

With the majority of small texts being classified by the previous rule, texts with
fewer than 5 tokens are considered titles. Of course this rule, like the previous ones,
stems from the documents of the training set. That also does not mean that every
title has 5 or fewer tokens, but the rule manages to capture small titles well enough.

From this point on, numbers, punctuation and stopwords are removed.

. Word capitalization

A common feature of titles, of the training set at least, is capitalization. The words
of a title in these documents are either fully capitalized or have the first character of
each word capitalized, with the exception of very few cases. With that in mind, a
rule was created able to detect only whether the first character of each word in a
text block is capitalized, as the capitalization of the rest of the word characters is
irrelevant. If indeed this is the case, then a title is assumed. This rule is meant to

capture a title, without taking into account the number of its tokens.

3.1 Text block detection
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6. Part of speech (POS) tagger
After removing possible stopwords, it is very uncommon for titles to include verbs
(verbs removed as stopwords include the words is, be, etc.). As a result, a POS tagger
implemented by Spacy was used. Spacy is a python library extensively used for
advanced NLP. Its POS tagger’s purpose is, given a sentence, to detect the part of
speech each word belongs to. Thus, text blocks where no verbs are detected are
considered titles. Its use proved very applicable for texts that were not classified up

to this point.

7. Default case
If no rules are applicable at this point it means that they are texts of length between
5 and 20 tokens that are most likely not titles. Every title is expected to have been
detected up to this point, so the default case is that the text block that reached this

point is a paragraph.

3.2 Text zone Classification

For the text zone classification task two classifiers were developed along with a baseline
for comparison purposes. Their objective is, given the texts of a document’s text zones, to
classify each one as either "Cover page", "Introduction", "Table of contents", "Recitals" or
"Main body". The text zones used for the training and testing of the model, were created
as a result of manual annotation from the company’s employees, or from a model able
to split the document in text zones using regular expressions. The text zone classifiers’
use is broader than that of the text block classifiers, meaning that they can be applied to
many a task, stand-alone, but also work with some cases of the text block detecting models.
Contrary to the object detectors though, the models developed for this task are strictly
English oriented, per the company’s request. The baseline is a combination of a TF-IDF
vectorization approach and a logistic regression model. On the other hand, the two main
models are a fine-tuned RoBERTa model and a hierarchical one that combines the outputs
of the fine-tuned RoBERTa with stacked Recursive Neural Network (RNN) layers, which
will be further explored.

3.2.1 Text zone classification baseline

For comparison purposes a baseline was created using a combination of TF-IDF vectoriza-
tion and a logistic regression model. The purpose of the TF-IDF is to create an embedding
of each text zone, by creating a vocabulary. For each word of a text zone, if the token is
part of the vocabulary (the user may opt to keep a certain number of words in TF-IDF’s
vocabulary), the token is transformed in a numerical value based on its frequency in the

text zone and the number of text zones that include the specific token. Having transformed
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the zones to vectors of fixed size, they provide the input for the logistic regression model,
which aim is to output the probability of a text zone belonging to each of the classes. Before
the vectorization step, the text of each text zone was lowercased and stopwords were
removed along with any punctuation to reduce the size of the vocabulary. The vocabulary
size for the TF-IDF vectorizer was set to include 1000 tokens as it produced the best results

on the validation set.

Training

For the model’s training approximately 75.000 (60% of the dataset) were used for training
and 25.000 for validation. To visualize the ability of the logistic regression model to learn
from the training set, the model was trained multiple times using more data each time. As
depicted in Figure 3.15, the model was trained using from 10%, up to 100% of the training
data, with a step of 5% and measuring the macro f1 score of its predictions. The model
seems to rapidly improve as the number of training instances increases, reaching 0.85
macro f1 score when using 100% of the data. From the visualization, it seems the model

will not be able to improve much more given even more data.

Training and validation macro f1 score per train set percentage.
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Fig. 3.15: Visualization of the text zone classification baseline’s training.

3.2.2 RoBERTa

RoBERTa was chosen for the task due its combination of state of the art architecture and

robust training, effectively increasing the capabilities of the model.

Architecture

RoBERTa is based on the BERT model [Liu+19], which is featured in Figure 3.16. BERT
utilizes stacked Transformer blocks, which accept embeddings as input and with the use
of several layers encodes the content. A Transformer block is comprised of a self attention
mechanism, which transforms the input sequence to a new one giving weight on specific
objects of the sequence. The input for the attention mechanism provides a combination
of positional embeddings and the actual input. Positional embeddings are crucial, since
without those, the model would not be able to keep track of the position of each word in

context with the rest, as it processes the whole sequence. The new embeddings created

3.2 Text zone Classification
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pass through a layer normalization block in order to decrease the amount of time it takes
for convergence and stabilize the training process. Each embedding then passes from a
fully connected layer to a new layer normalization stage. Residual connections are also
present to help prevent the vanishing gradient problem that could cause the weights to

stop being updated. The basic Transformer block is depicted in Figure 3.17.

Class
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Sentence 1 Sentence 2

Fig. 3.16: The BERT model [Dev+19].

Training

Since the RoBERTa model is pretrained and in order to "specialize” the model to the needs of
the task the fine-tuning approach was utilized. For this part, each section of the document
was treated independently. The textual content of each block was preprocessed, so as to
remove any punctuation except for dots. Dots were intentionally left in the text since their
presence easily distinguishes some of the "Table of contents" cases with the rest of the
labels. The text was also lower-cased. The preprocessed texts provide the input for the
tokenizer, which maps each token to an embedding, that will later provide the input for
the RoBERTa model itself. The output of the tokenized texts along with their labels can
then be used to train the model. The model was set to be fine-tuned for 200 epochs with
patience of 10 evaluations, using the same number of text zones as the baseline for training
and validation. Each evaluation takes place after 100 steps. Steps are subsets of epochs
and for the current case each epoch is comprised of 625 steps. The training process was
completed at 4000 steps which is 6,4 epochs and the best state of the model was during
step 3000 (epoch 4,8), barely reaching 0.95 macro f1 score. It takes 35 minutes on average
for the model to be trained for an epoch (5.5 mins/100 steps). The results of the training
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Fig. 3.17: A Transformer block [Ala20].

process are depicted in Figure 3.18. The evaluation suggests that the model was able to

adjust easily and accurately to the task with minimal loss and high f1 score.

ROBERTa fine-tuning plots
Validation f1 score

Train Loss
—— Validation Loss

epochs epochs

Fig. 3.18: RoBERTa fine-tuning loss and macro-averaged f1 score.

3.2.3 Hierarchical approach

In an effort to improve the results, a hierarchical approach was investigated, inspired by
the work of Ilias Chalkidis et al. "Obligation and Prohibition Extraction Using Hierarchical
RNNs" [CAM18]. Their work aimed towards the detection of contractual obligations and
prohibitions in legal documents. For the completion of their task, two RNN models were
involved. The first one was responsible for extracting an embedding for each sentence
or clause. The second one having as input the results of the first RNN would try to

predict classes with the hopes of capturing the context of the whole document to which it

3.2 Text zone Classification
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succeeded. A similar approach was attempted for the purpose of the project’s text zone

classification task.

Architecture

For the role of the sentence encoder the already fine-tuned model was used. Instead of
sentences though the input is still a text zone. Having embedded a text zone, the top
model will try to classify it keeping in mind the context of its surroundings. The top model
consists of two stacked Bidirectional LSTM (Bi-LSTM) layers of 512 and 256 nodes each.
Each layer features a recurrent dropout of 0.2 and a layer normalization step as was the
case with the Transformer blocks. Two fully connected layers follow with the purpose
of classifying each text zone of the document. The first one includes 128 nodes with a
ReLU activation function while the last features 5 nodes (one for each class) with a softmax

activation function.

Training

In contrast to the RoBERTa’s approach, which treats each text zone as input, the input
of this model is based on documents. More specifically, the input comprises a 3D-array.
The first dimension of the array represents a document, while the second represents a
specific text zone of a document. Finally, the third dimension, represents the embedding of
each text zone. For the 3D-array to be generated each input document needs to be pruned
or padded. Four of the target classes belong to zones present in the beginning of each
document apart from the "Main body" which makes up the rest of the document. Due to
this fact and keeping in mind that the average length of each document is about 40 text
zones, each document was pruned or padded to 40 zones. Some "Main body" zones were
removed as a result, but that is of no consequence since the class of the last text zones can
be inferred without the help of a model. After all, there is no point for an introduction to
be at the end of a legal document. Fixing the size of each zone, the second dimension of
the array was set. The size of the first dimension is irrelevant as the model accepts any
number of documents (memory allowing). The third dimension is where the fine-tuned
model comes into play. Each text zone is fed to the RoBERTa model from which a vector
of size 768 is generated. This vector is effectively the last hidden state of the model that

summarizes the context of the zone.

The training set includes the same training documents as the RoBERTa fine-tuning, this
time with a different format. The top model is relatively lightweight and thus the training
time for each epoch was 26 seconds on average. The training of the model was interrupted
at 37 epochs from an early stopping callback, measuring epochs this time, meaning that
the best weights were determined to be in epoch 27 as there wasn’t any improvement in

the validation set’s macro-averaged f1 score after 10 epochs.

From Figure 3.19 it is obvious that the model managed to improve its predictions compared

to the baseline, but most importantly there is an improvement compared to the RoOBERTa

Chapter 3 System Design and Implementation



as well, having a macro f1 consistently above 0.95. What this means is that the model is
able to predict the classes more accurately, after taking into consideration the surrounding
text zones. Of course this model adds on execution time and memory usage which may
contradict the needs of the company. Finally, although the model achieved a high macro f1
score from the very first epochs, there doesn’t seem to be a major improvement in later
epochs.

Hierarchical model plots
Validation f1 score

Train Loss
—— Validation Loss

20 ! o : 20
epochs epochs

Fig. 3.19: Hierarchical model loss and macro-averaged f1 score.

3.2 Text zone Classification
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Data Exploration and
Experimental Setup

4.1 Data exploration

Prior to the creation of the models mentioned, a data exploration and analysis took place.

Data exploration was crucial in order to efficiently design the custom models or define
the parameters of the pretrained ones. Such an example was already given in Figure 3.9,
where it was shown that RetinaNet was having trouble detecting the golden labels with the
default anchor box settings. As a result they had to be set manually. This manual definition
of parameters was a result of careful examination of the annotation features. This process
will be explored in this section for both datasets used. Moreover, the groundwork for the
model evaluation process will be set and explanations of the evaluation metrics used as
well as the reasons behind their choosing will be given. Fach dataset comes with its own
characteristics since they stem form different sources. Moreover depending on the dataset
and their intended use, different statistics were measured. Both datasets used, belong to

Cognitiv+.

4.1.1 Text block detection

The dataset for the text block detection contains 27.314 legal document images along with
their respective annotations. These are the data that will be used to train the text block
detection models, whose aim is, given a document image, to detect regions where text
blocks are present. In the dataset, out of the 12 labels in total, only the "anonymity", "text"
and "form" labels are considered text blocks, as discussed in Subsection 2.1.1. The rest
are considered backround. The annotations include the coordinates of each bounding
box present in a document, the label of the bounding boxes, the width and height of the
documents along with their skew angle. The coordinates of the bounding boxes are the
x, y values of its four corners out of which only the top left and bottom right were kept.
Furthermore, the skew angle was found to always be 0 so it was excluded. An example of

the visualization of these annotations is featured in Figure 4.1.

While processing the annotations, 63 blank or unannotated documents were found, along

with 282 erroneous bounding boxes (annotations with contradicting coordinates). An
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example again is featured in Figure 4.1, where the "header" bounding box is not correctly
defined. After the removal of such bounding boxes 250.567 bounding boxes remained in

total. The remaining bounding boxes follow the distribution presented in Figure 4.2.

From Figure 4.2 it appears that the "text" class is overwhelming with more that 177.000
bounding boxes belonging to the class. Adding to the count the "anonymity" and "form"
labels which are also considered text blocks, increases the count to over 190.000 boxes
making the dataset extremely imbalanced. Nevertheless in computer vision balanced
datasets are rarely the case, and as a result every model has its countermeasures as
explained in Chapters 2 and 3.
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Fig. 4.1: An example of an annotated document, with its gold bounding boxes and an erroneous
annotation belonging to the "header" class.

In Figure 4.3 the average count of each class in a document is depicted, where once again
the text block classes are the most frequent ones. The "text" class appears 6 times per
document image on average, whereas the rest of the classes are very rare. This is a result
of the document structure. Labels such as "header" and "footer" appear at most once per
document. On the other hand, "text" labels appear multiple times per image, as there
are multiple paragraphs and titles. On top of that, the results hint to the existence of

documents spanning over multiple pages, rather than a single document per image, as the
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Fig. 4.2: Bounding boxes per class.

number of documents (27.314 in total) vastly outnumbers the header count, considering

that each complete document has at least one.

Finally, on Figure 4.4 the average width and height of the bounding boxes are depicted.
Regarding width, the length of each class is pretty standard is most cases. The "table",
"footnote" and "text" classes come on top mostly because, if they are present, they usually
cover the majority of the page’s width, compared to the "header" class for instance, which

may be smaller.

In terms of height the "table" and "column" classes come on top as expected, since a table
of contents usually takes up the whole of the image as is the case with columns. In terms
of the text block classes ("text", "anonymity” and "form"), although their medians, which
are depicted as orange lines in each box of the same figure, are relative small, there are
plenty of outliers, which is justified by their variety. For instance a small title and a large
paragraph spanning half the image belong to the same class, regardless of their size. This
may point towards a possible issue with small texts. For instance, titles, which are part
of the text blocks are almost identical to headers, one of the 12 classes of the dataset,
which is considered backround. Titles and headers can usually be told apart based on their

positions on the document. Regardless, it may prove difficult for the models to make such a

4.1 Data exploration
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Fig. 4.3: Average class count per document.

distinction. On top of that, small texts such as titles and headers are also present elsewhere
in the footnotes or even images, which are also part of the backround. The models will
have to make a distinction between them, based on their context. As explained in the
YOLOVS5’s Subsection 2.1.2, according to Joseph Redmon et al. [Red+16], it is harder for
two-stage detectors to make distinctions between backround and a true ROIs, as they are
trained on parts of images rather than the images as a whole. On the other hand one-stage
detectors, take into account the whole image, and thus are able to make prediction based
on the whole context. This should make such distinctions easier for one-stage detectors,

highlighting once again their choice for the task.

4.1.2 Text zone classification

The dataset used for text zone classification contains more than 2.500.000 text blocks, out
of which 200.000 were used, spanning over 5100 complete documents, since the number
proved to be sufficient for the needs of the task. The annotations of the dataset include the
textual content of each text block, its label, the corresponding document id and its position

in the document. The dataset contains texts, each one belonging to one of 36 classes. Each
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Fig. 4.4: Bounding box width and height per class.
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document consists of 36 text blocks on average (with a standard deviation of 45 text zones).

Figure 4.5 depicts the average count of each class contained in each document.
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Fig. 4.5: Class count per document.

Out of the 36 classes representing the document, the models created are trained to predict
5; namely "Table of contents”, "Recitals", "Cover page", "Introduction” and "Main body".
Anything that does not belong to one of the first 4 classes is considered part of the "Main
body" class. As such the resulting class distribution is compressed as depicted in Figure 4.6.
It is obvious that the majority of each document’s content belongs to the "Main body" class,
and as a result this imbalance may pose a problem for the models. Since every class, apart
from the "Main body" class, appears strictly as the first zones of the document, there is no
point predicting the class of every single zone of a document. It was decided that every
document be considered up to its first 40 text zones, keeping in mind that the average
length of a document is 36 and since no other classes were present after that point, other
than the "Main body" class. The rest of the zones would automatically be labeled as "Main

body". As a result, the count of "Main body" zones was further reduced to 109.509 cases.

As per word count there are 19.141.439 tokens after stopword and punctuation removal

from which 268.341 are unique. Every block contains on average 105 words (with a standard

deviation of 332 words).
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Fig. 4.6: Class count before and after processing.
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4.2 Evaluation metrics

Regarding the text block detection task, the models will be evaluated for both their predic-
tion performance and speed. Their prediction performance will be reported in the form of
mAP over multiple IoUs, as explained in Subsection 2.1.2. More specifically, there will be
mAPs reported for the IoU thresholds 0.5 and 0.75 as well as the average of the thresholds
between 0.5 and 0.95 with a step of 0.05. These metrics are popular in literature [Ren+15a;
He+17; Red+16; WBL22; Lin+20; AWL20] aimed towards object detection and as such, they
are present in this thesis. Moreover, the execution time for the inference of one image,
on average, will be displayed. For the title and paragraph classification the rule-based
approach will be evaluated through a macro f1 score. Macro {1 scores will be calculated
for the overall performance of the NLP models as well, but f1 scores per class will also be

reported.

4.2.1 Intersection over Union

IoU is calculated as shown in Formula 4.1.

AUB

ToU —
U="1r"B

(4.1)

Where A and B are bounding boxes. This calculation is strictly done between two bounding
boxes. IoU can be present between two predicted bounding boxes, as is the case with the
NMS algorithm (as explained in Subsection 2.1.2), or between a golden bounding box and
a predicted one, as is the cases with the calculation of mAP. The output of the formula is
always in a scale of 0 — 1; 0 implies no overlap while 1, complete match. IoU encapsulates
and compares many bounding box characteristics such as the location, width and height
and is scale invariant. For all these properties IoU is favored and widely used as a metric

in Computer Vision tasks [Rez+19].

4.2.2 Precision-Recall

Precision and recall values are not directly reported, but are crucial in the calculation of
both f1 and mAP and as a result they should be mentioned. Precision and recall values are

calculated as shown in Formulae 4.2 and 4.3:

TP
P 1S1ON = ————— 4.2
recision = e (4.2)
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TP
Recall = m (43)

Where TP (True Positive) is the amount of correctly classified positive cases by the model,
FP (False Positive) is the amount of instances the model missclasified as positive and FN
(False Negative) is the amount of instances the model missclasified as negative. Since the
model outputs probabilities as predictions, these values need to be mapped to either 0 or 1.
As such in order to calculate precision and recall, a threshold is defined and as a result the
same predictions can have various precision and recall values. In other words by imposing
a threshold, if a prediction probability is higher that the threshold then the prediction is
mapped to 1. If not, the probability is mapped to 0. Having a range of thresholds results in
multiple precision and recall pair values, that when plotted on x and y coordinate system,

create the precision-recall curve (PR-curve).

4.2.3 mean Average Precision

Mean Average Precision, as the name suggests, is simply the mean value of Average
Precision (AP) over the classes. AP represents the area under the interpolated PR-curve
and is computed per class [HF17]. AP itself is calculated by obtaining precision and recall

values for a range of thresholds by using Formula 4.4.

C
AP =) (R, — Rn_1) x Py (4.4)

n=1

Where C is the number of thresholds that map the precision and recall values to either 0
or 1, R the recall values and P the precision ones at the nth threshold. The whole formula
implies iteration over the thresholds in order to calculate precision and recall values. As
AP is calculated per class, averaging the per class AP results in the mAP score. In order to
calculate the mAP, an IoU threshold needs to be stated as well. In the case of mAP@0.5,
the threshold’s value is 0.5. This IoU value describes a threshold for the overlap between
a prediction and its golden bounding box. If the IoU of the prediction is higher than the
threshold, only then is the prediction considered correct. An example is provided in Figure
4.7. Finally, a mAP value can also be reported by averaging mAP scores over multiple
thresholds, usually in the range of 0.5 - 0.95 (represented as mAP@0.5:0.95).

4.2.4 F1 score

F1 score is another metric that encapsulates both precision and recall values. Contrary to

mAP though, an f1 score is computed per threshold. The threshold for any experimentation

4.2 Evaluation metrics
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Fig. 4.7: A predicted (in red) and golden (in green) bounding box, with 0.7 IoU. The prediction will
be considered correct when calculating mAP@0.5, but wrong when calculating mAP@0.75.

is fixed to 0.5, in this thesis. F1 score is the harmonic mean of precision and recall and is

computed as depicted in Formula 4.5.

Precision x Recall TP
Precision + Recall TP +0.5% (FN + FP)

f1 score =2 % (4.5)

Since the datasets used feature high imbalance, a specific version of f1 score is used in
which the f1 score is calculated as the average f1 of all the classes involved, called macro

f1 score.

4.3 Experimental setup

In this section insight will be given over the evaluation process which will determine
the most efficient models per task. For each task a different evaluation process will be
followed. Regardless, the evaluation data upon which each model will be tested is the same

for models build for the same purpose.

4 3.1 Text block detection

From the initial annotation dataset a subset was kept for testing purposes which is the
same for every model. Extra attention was given to split the dataset so as to have a test set
of images not included in any training or validation set. This set consists of 2000 images.
For each text block detection model, 3 mAP scores will be provided using the formula
mentioned in the previous section. Finally, the inference speed of each model for an image

on average will be stated.

After determining the best model, an extra test case will be explored. For the most efficient
model an identical one will be created that will be trained and validated on a more balanced
dataset. The new model will be tested on two test sets. The original test case and a new
more balanced one. The original model will also be tested in the latter test case. The

balanced test set mentioned, features mostly far less text blocks compared to the original
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dataset. In the data exploration section it was pointed out that the dataset contained
annotations for classes which are not the points of interest. These classes can contain text
just like the text blocks and are likely to prove difficult for the original model. For example,
headers are similar to title text blocks, even though they belong to the backround, which
may cause missclassification issues. The purpose of the balanced test is to determine if a
more balanced training set can help improve the efficiency of the models in such cases.
Finally, it also serves as a stress test for the original model since it is trained using a dataset
in which the majority of the annotations belong to the "text block” class, which is not the
case in the more balanced test set. That being the case though, it needs to be pointed out

that this balanced test set, does not represent a viable scenario under any circumstances.

4.3.2 Text block classification

For the text block classification as either paragraph or title, since there were no data
available, 255 cases were manually annotated.” Out of the 255 cases, 198 were annotated as
paragraphs and 57 as titles. The efficiency of the rule-based approach will be determined

on these cases, using a macro f1 score.

4.3.3 Text zone classification

Following the same principles as the text block detection, a subset of the dataset was
withheld from the baseline, the RoOBERTa and the hierarchical model. This subset features
40.000 text zones spanning over 810 documents. Out of the 40.000 zones, the models
will predict the class of 22.741 as the rest will automatically be labeled as "Main body".
The reason behind this decision, as explained earlier, is because of the structure of the
documents. More specifically, the "Introduction”,'Recitals", "Cover page" and "Table of
contents" labels never appear in the end of the documents, so the last zones can be safely
considered as being part of the "Main body" class. RoOBERTa and the hierarchical model
have different architectures and input and output formats. As a result the structure of their
test sets is different but they include the same documents regardless. For the evaluation of
the models an f1 score will be calculated per class along with a macro-average f1 score

taking into account all the classes.

*These cases were annotated by the author, who is not a specialist on the specific field, and as a result few of
them may be wrongly labeled.

4.3 Experimental setup
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Results and Error Analysis

5.1 Text block detection

As previously mentioned, there are two distinct tasks, namely the text block detection
and classification and the text zone classification. Since the text block detection and
classification task is accomplished using two separate approaches, there are two separate
test case. The results of these test cases along with the case of the text zone classification
task are presented in this section. To satisfy the curiosity of performance on a more

balanced dataset an extra test case is presented featuring the YOLOv5medium model.

5.1.1 Model results

In Table 5.1 the results of each model featuring the metrics mentioned in Section 4.2
are depicted. Starting with the baseline, the mAP@0.5 score can be regarded as being
satisfactory, considering that the region proposals stem from a purely rule-based approach.
On the other hand, for the rest of the mAP values, the difference is considerable. Keeping
in mind that mAP is calculated by taking into account the predicted bounding box position,
an issue arises, as the region proposal algorithm of this case is not able to be trained on
golden bounding boxes coordinates. This means that, it will never be able to adapt to the
coordinates of the golden bounding boxes the same way that a trainable model would.
This is attributed to the regions the model is trained to predict as positive. Looking back at
Subsection 3.1.3, only the text block regions with IoU higher than 0.6, with their respective
golden bounding boxes, are considered positive. The majority of the resulting positive
cases though have an IoU of about 0.65 with their respective ground truth. In the case
of mAP@0.5 where the IoU level is 0.5, the majority of the predictions were correct. On
the other hand, as the IoU level rises higher that 0.7, the correct predictions are rapidly
declining, leading to the case of IoU 0.9 where no prediction was considered correct, as no
prediction managed to surpass an IoU threshold of 0.9 with the golden bounding boxes.
This results in a very low mAP@0.75 and mAP@0.5:0.95 as seen in the table. In terms of
inference, since this is a case of a two-stage detector, the performance was expected to be

considerably slower than the one-stage ones.

Looking at the YOLO models, they all feature similar performance. YOLOv5medium
surprisingly managed to outperform the YOLOv5large model for both mAP@0.5 and
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H Model H mAP@0.5 H mAP@0.75 H mAP@0.5:0.95 H inference time H

Baseline 0.888 0.790 0.775 28389 ms
YOLOv5small 0.969 0.965 0.920 2.3 ms
YOLOv5medium 0.978 0.974 0.931 5.9 ms
YOLOv5large 0.971 0.968 0.931 10.9 ms
RetinaNet 0.97 0.964 0.922 73.6 ms

LP+CNN 0.791 0.746 0.703 44187 ms

Tab. 5.1: Text block detection results.

mAP@0.75 but they both have the same mAP0.5:0.95 value. This means that the large
model, even though it makes slightly more mistakes than the medium one in terms of
predictions, managed to capture more closely the golden boxes’ coordinates in higher
IoUs, leading to the increase of the correct predictions in these IoUs. In such cases some
predictions of the medium model were considered wrong due to the insufficient IoU value
of its predictions. In terms of speed, YOLOv5small managed to score the lowest inference
time at 2.3 milliseconds. In comparison the medium and large model feature two and four
times the inference time respectively. As expected, all of the models come easily on top

compared to the baseline.

RetinaNet managed to slightly outperform YOLOv5small which is surprising considering
that YOLOv5small was trained using three times the amount of data. This may hint to the
fact that with more training data and better anchor configuration (if a better configuration
does indeed exist), RetinaNet could have performed a lot better, probably surpassing the
top YOLOv5 model. Regardless, it wasn’t able to match the performance of the other two
models. Finally, there is a huge difference between the YOLO models and RetinaNet’s

inference time which is unsurprising since YOLO models are famed for their speed.

Lastly, the combination of LayoutParser and CNN (depicted as LP+CNN in Table 5.1)
performed the worst in every case, outperformed by the baseline model, even though they
featured the same CNN architecture. This underlines the importance of training the object
detector using the images provided by the region proposal architecture as was the case
with the baseline. If that was the case, most likely, the model would have outperformed
the baseline, considering that the region proposal step is done through a pretrained model

rather than a rule-based approach.

5.1.2 Special test case

The class imbalance of the dataset has been mentioned several times. In order to compare
the results of one of the best performing models given a more balanced dataset for training
and the original one, two scenarios are further tested. These scenarios revolve around the

use of a balanced test set and the original one. The training, development and test sets
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Model

H mAP@0.5 H mAP@0.75 H mAP0.5:0.95 H

YOLOv5medium

0.978

0.974

0.931

balanced YOLOv5medium

0.863

0.859

0.835

Tab. 5.2: Balanced and original model comparison on the original test set.

H Model H mAP@0.5 H mAP@0.75 H mAP0.5:0.95 H
YOLOv5medium 0.745 0.710 0.679
balanced YOLOv5medium 0.78 0.734 0.691

Tab. 5.3: Balanced and original model comparison on the balanced test set.

used for the balanced model, are all balanced subsets of the balanced dataset. For the sake
of comparison, the models used are the medium YOLOvV5 and the same model trained on

the balanced training set. In tables 5.2 and 5.3 the two scenarios are depicted.

In the case of the original test set, the balanced YOLOv5 model performed poorly. Having
been trained on a more balanced set and thus predicting more cases as backround compared
to the original model, it is not able to detect many text blocks, which are more dominant

on the specific set, making the balanced model unsuitable for such a case.

When comparing the models on a more balanced yet non-realistic test case, the balanced
model outperforms the original YOLO model. One of the main obstacles for the model
regarding the task is making a distinction between bounding boxes that contain text and
are considered text blocks and bounding boxes with text that are considered background.
The balanced model seems to be able to make such a distinction easier, compared to the
original model, as it was given a more balanced training set. Nevertheless, no model

performed to a satisfactory level.

In conclusion, the results of the models in the balanced case are not far off. Furthermore,
it has to be noted that the balanced test set scenario is most unlikely as the number of
text blocks in an actual complete document is much larger. When it comes to the original
and realistic test case, it is the original YOLO model that performs better, meaning that a
balanced training set does not necessarily imply a better perfromance. As a result, the use

of the balanced model is not recommended.

5.1.3 Error Analysis

Every Computer Vision model developed is only able to distinguish between text blocks
and background. The number of correct and false text block and backround predictions of
the models featured in the error analysis will be presented through a confusion matrix.

Nonetheless, since the test data have annotations of their own, it is possible to further

5.1 Text block detection
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analyze the positive cases predicted by the models, and pinpoint the annotation label of

"o

each one. These annotations include the "text", "anonymity" and "form" labels which are

"o "on

treated as text blocks and "handwriting", "footnote", "column

"on "non

, "signature", "caption", "table",
"header", "image" and "footer" labels that are treated as backround. Every class includes
a form of text regardless. In order to determine regions in which the models confuse
backround text as being text blocks, each prediction was labeled according to its golden
bounding box. This was done by comparing each prediction with the golden bounding
boxes, given an IoU threshold. If the IoU between a prediction and a golden bounding
box was higher than the threshold, the predicted box was given the golden box’s label
(backround classes included). For the purpose of comparison, the IoU threshold was set
to 0.5. Based on the results, a barplot per model will also be presented, along with the
respective confusion matrix, showing the number of prediction labels compared to the
number of the golden ones. It is important to note that a prediction that is associated with
a golden bounding box by means of IoU, shares the same label with its golden counterpart.

As a result, there are no misclassifications on that part.

In the barplots mentioned, the total count of each golden label is depicted in orange, while
the predicted, in grey. Left of the dashed red line on each barplot, the text block labels are
presented, where the grey bars represent the true positive cases. Similarly, the difference
between the number of the golden and predicted cases in the text block classes, equals to
the false negative cases of the corresponding confusion matrix. It should be noted that
there are no true negative cases considered, as the backround consists of anything that is
not a text block (not just the dataset’s backround classes) and thus the number of such
cases cannot be accurately calculated. On top of that, true negative instances are not taken
into consideration when calculating mAP scores per class. As a result the number of these
cases are depicted as 0 in every confusion matrix, on purpose. Moreover, the false positive
cases that were mapped to a golden annotation are depicted as grey bars on the right of
the dashed lines. Their total count is only a subset of the total number of false positive
cases, as there were more falsely predicted bounding boxes that were not mapped to any

dataset bounding box.

Finally, the error analysis will revolve around the YOLOv5 and RetinaNet models (the
models that the company requested), in order to shed some light on usual errors made, the
exploration of which may lead to improvements in the future. An error analysis regarding
the special test case scenario will also take place for comparison purposes between the
two YOLOvV5 models involved.

YOLOv5medium

In Figure 5.1 the results of the error analysis regarding YOLOv5medium are depicted. The
confusion matrix of the figure, shows that the YOLOv5 model has predicted correctly
the vast majority of text block cases with minimal false negative predictions, making it

an effective model. Only a few text block cases weren’t predicted correctly, most likely
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belonging to irregular cases such as the one depicted in Figure 5.2 where the annotated

text blocks start with a number in a similar format as a footer while being inside a table.

The header seems to be the backround class that the model struggles with the most, as seen
from Figure 5.1b. Misclassifications such as these though, are to be expected since title
text blocks and headers are very similar, with their distinguishable feature being mostly

their position in the document.

RetinaNet

RetinaNet managed to match the results of YOLOv5small, as was pointed in Subsection
5.1.1. RetinaNet was trained at 1/3 of the data due to the prohibitively long training time,
which may be one possible explanation. Nevertheless, the results as seen from Figure
5.3 are similar to those of the YOLOv5medium. There are many backround labels which
RetinaNet was able to differentiate from the text block labels. More specifically, there are
less "caption”, "footer", "header"” and "image" bounding boxes but only for a small margin,
compared to YOLO, which was not able to sway the results. RetinaNet also managed to
predict more accurately the "form" label compared to YOLOv5medium, although the same
cannot be said for the "anonymity” and "text" classes. Regarding Figure 5.2, RetinaNet
was not able to detect any text blocks, as was the case with YOLOv5medium, probably
hinting once again to the existence of some rare irregular cases, that the models have
not encountered before during training. Overall, RetinaNet came close to the YOLOv5
model’s number of true positive case, but made more false negative errors. Surprisingly
enough though, RetinaNet’s made less false positive mistakes, compared to the YOLOv5’s
case. These are promising results, possibly suggesting that with more training instances

RetinaNet may be able to outperform YOLOVS.

Original case vs. balanced case

In the case of the tests depicted in Figure 5.4, a comparison between the original YOLOv5
model and a more balanced version is depicted on a more balanced test case. The results
of the balanced version are slightly better but still there is a number of undetected golden
bounding boxes, as seen from the difference between the numbers of predicted and golden
bounding boxes of the text block labels, that cannot be disregarded. These undetected
golden bounding boxes are the false negative cases depicted in each confusion matrix in
Figure 5.5. After the examination on a subset of the results, it appears that their difference
stems mostly from mistakes made in text block predictions belonging to the "text" class that
are present in irregular positions like the top or bottom of the image, as is the case with
Figure 5.6. It seems, in the training set, the text blocks of such type are scarce, compared
to the number of text block instances overall. As such the original YOLOv5 model, most
likely, ended up disregarding the upper right text block presented on this example as a
header, judging from its position. On the other hand, the balanced model managed to
make a distinction between text blocks in irregular positions, thus predicting the case
correctly. The confusion matrices in Figure 5.5, show the reason why the mAP values of

Table 5.3 are so low. Both models seem to misclassify many backround regions as being

5.1 Text block detection
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(a) YOLOv5medium confusion matrix.
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(b) YOLOv5medium label prediction frequency.

Fig. 5.1: YOLOVS5 result plots.
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Fig. 5.2: An irregular case of YOLOv5medium predictions versus the golden boxes (predictions are
in red). Every "text"-labeled bounding box should have had a corresponding red bounding
box.

text blocks, probably hinting that some backround and foreground texts are in reality very
similar. Overall, given the current test scenario, the balanced model performed better, but
nevertheless, as it has been stated several times, this test is not to be taken as a possible

scenario and thus the use of the balanced model is not recommended.

5.2 Text block classification

Regarding the text block classification test case, since the results are produced by the
application of rules, there are no prediction probabilities. As a result, the performance
overview is based solely on a macro f1 score. Applying these rules to 255 cases yielded a
macro fl-score of 0.92. A confusion matrix is presented in Figure 5.7 showing the number
of correctly classified cases and mistakes. Label 0 represents titles while label 1 represents

paragraphs.

The paragraph misclassification cases are mostly attributed to the default rule case, meaning
that more rules for titles may be needed. In terms of title misclassifications the usual cases
are presented in Figure 5.8. In case 5.8a the "form" text blocks were labeled as paragraphs,
but through the use of rules they were classified as titles. This means that new rules
need to be made to specifically target the "form" regions. Nevertheless, the way each
company creates their forms is different and a common characteristic, that can be detected

by pytesseract, is difficult to be found. As a result, the use of rules targeting the "form"

5.2 Text block classification
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(b) RetinaNet label prediction frequency.

Fig. 5.3: RetinaNet result plots.
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(b) Balanced YOLOv5medium label prediction frequency.

Fig. 5.4: Comparison of the balanced and original YOLOv5 models on a more balanced test case.
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Fig. 5.5: Confusion matrix comparison of the balanced and original YOLO models on a more
balanced test case.
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(b) Balanced YOLOv5medium predictions.

Fig. 5.6: Comparison of the balanced and original YOLO models on a test case. The top right block

was regarded as backround by the original model, but was correctly predicted by the
balanced one.
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label may not be optimal. In case 5.8b, after examining the text that pytesseract detected,

it was apparent that pytesseract considered it to be a series of the characters "o" and "e".

This means that, not having satisfied the previous rules, the detected text reached the POS
rule, that checks whether the string contains verbs, as explained in Subsection 3.1.7. The
string, not containing a verb, was falsely regarded as a title. Even if a text was not detected
it would still be misclassified as according to the first rule, text blocks whose text is not
detectable are classified as titles. As a result, such cases of anonymity, although rare, may
also pose a problem. Overall though, the majority of titles and paragraphs were detected
by using the token counter rules. It would seem that classifying texts just by checking
whether they contain more that 20 tokens (paragraphs), or fewer than 5 tokens (titles),
the majority of the text block were correctly classified, which greatly contributed to the

increase of the f1 score.

Tue label

Predicted label

Fig. 5.7: Rule-based predictions confusion matrix.

GEO911. INC

title(rule POS)
1L I 1L

]

(a) Title misclassification of a form text block. (b) Title misclassification of an anonymity text block.

Fig. 5.8: Rule-based approach title misclassifications.
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H Model H macro f1 H Cover Page f1 H Introduction f1 H Recitals 1 H Contents f1 H Body f1 H

Baseline 0.866 0.858 0.806 0.814 0.867 0.987
RoBERTa 0.955 0.940 0.924 0.971 0.944 0.995
Hierarchical 0.967 0.951 0.953 0.980 0.955 0.997

Tab. 5.4: Text zone classification baseline, RoOBERTa and Hierarchical model comparison.

5.3 Text zone classification

For the purpose of the text zone classification task a hierarchical model and a RoBERTa,
alongside a simple baseline were tested. Due to the input of each model (text zones vs.
documents) the test sets used for each one revolve around the exact same documents but
are different in terms of format, as was the case with their training sets. For example, as
the RoBERTa accepts and classifies text zones directly, the test set remains untouched. The
same goes for the baseline model. On the other hand the hierarchical model requires a
document as input with a fixed number of text zones. For that to happen some text zones
were cut or padded for both the hierarchical model’s training, validation and test set. All
the excluded text zones represent "Main body" cases which are easy to infer, given their

position and as a result do not degrade the performance of the model.

5.3.1 Model results

Both RoBERTa and the hierarchical model performed to a satisfactory level, outperforming
the text zone classification baseline with ease, but the hierarchical is the one that came
on top, as presented in Table 5.4. Not only did the hierarchical model achieve the best
macro-averaged f1 score, it also managed to surpass RoOBERTa in every class. Of course
this is to be expected, since the hierarchical model builds upon the RoBERTa model, and
utilizes its context-aware representations of the text zones in each document to make more

accurate predictions.

5.3.2 Error Analysis

Similar to the error analysis of the text block detection task, the error analysis will revolve
around the models which the company is interested in. Once again an effort will be made

to determine and possibly give an explanation for the most frequent errors.

RoBERTa
In Figure 5.9, the RoBERTa predictions’ confusion matrices are depicted. The false negative
cases are the most frequent type of mistake in all classes but the "Main body" for this

model. Careful examination of errors suggests that most of the mistakes were cases of
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"Main body" misclassification. This is to be expected since the number of "Main body"
instances is greater, but there are more cases of concern than that. There were cases that
included very small texts that cannot be distinguished easily or at all. Such cases include
the phrases "dated september 10 2007", "americredit financial services inc. americredit”,
"definitive purchase agreement" and more, which are all part of the "Main body" class, but
such cases for other class do exist, making them very hard to classify correctly. On top of
that after testing, possible cases of mislabeled data were found. An example includes a
whole table of content being labeled as "Main body". Such cases count towards the number
of mistakes made by the model. Per the mislabeled cases, even though their number cannot

be easily estimated, judging from the f1 scores the model performed to a satisfactory level
regardless.
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Fig. 5.9: RoBERTa model confusion matrices.
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Hierarchical model

The hierarchical model results of Figure 5.10 seem even more promising, compared to
the other text zone classification models, as was the case with the Table 5.4. Of course
again there is a possibility that some cases were incorrectly annotated, the extent of which
cannot be easily estimated, especially in instances where their labels cannot be defined by
the author, which adds to the number of mistakes. After examining the misclassified predic-
tions, the model seems to make fewer mistakes in terms of "Main body" misclasifications,
compared to RoBERTa, but the misclassification cases for the other cases remain almost
identical. Taking the "Cover page" zone as an example, both models falsely predicted 6

cover page cases as introduction.

Excluding the increased inference time and memory size that comes with the use of the
hierarchical model, it is the preferable choice, mostly because of the results but also due
to the convenient input format of the model. The target being a whole document, the
hierarchical model can easily classify the input document’s text zones in context, rather

than the RoBERTa approach which classifies each text zone input independently.

Overall, both models perform quite well in the given test. For the use of each one, it
all boils down to the performance and properties of each. The RoBERTa model requires
less memory and offers faster inference, while the hierarchical one, more precise output.
Regardless their differences are not far off and as such both can be used with minimal

drawbacks.
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Conclusions and Future Work

6.1 Conclusions

In this thesis several approaches to two tasks were presented. The first task revolved
around the detection of text blocks in legal documents and their classification as either
paragraphs or titles. The data available included images and coordinates pointing towards
the desired output. Even though the dataset was imbalanced, the core models, being trained
to perform under such circumstances had no problem dealing with it. Keeping in line with
the company’s requests, RetinaNet and YOLOv5 models were tested. A custom two-stage
approach was also implemented featuring two different region proposal techniques. The
first provided surprisingly accurate results, thanks to the region proposal rules than were
able to capture the essence of a paragraph. Nevertheless, they were not on par with the

pretrained models.

Due to the low training requirements of the YOLOv5 model several alternatives were
also created featuring a small, large and a medium YOLOv5 approach. The YOLOv5
models proved almost equal in the original test scenario, with every one offering different
advantages and drawbacks. The fact that the small, medium and large YOLOV5 are the only
models that were trained using the whole training set involving more that 19000 images,
can be attributed to the training speed as well. In general, the YOLOv5 models proved
most efficient both in terms of accuracy and memory and time consumption. Finally, it
was deduced that the balanced YOLOv5 model was not able to outperform the original

one in a realistic scenario.

The final model tested regarding the text block detection task, was RetinaNet promising
strict training by introducing the Focal loss function, which focuses on improving training
instances with low prediction probability. Its effect was obvious from the results, in
which, having only been trained on 1/3 of the training images, it managed to match the
YOLOv5small model and almost reached the medium one. RetinaNet featuring the highest
amount of time per epoch, made it quite time consuming to train in to its full extent, given

the project’s time restrictions.

After the detection of the text blocks a set of rules were applied in order to distinguish
between titles and paragraphs. For a rule-based approach it performed quite well, even

though there were some mistakes made, due to the nature of the rules and the misleading
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results of pytesseract in some cases. As a result, its performance may not be on par with

approaches involving annotated data and trainable models.

Moving on to the second task, a model was needed able to classify text zones stemming
from English documents. To that extent, a RoOBERTa model was fine-tuned using a different
dataset than the one used in the first task. This dataset was also imbalanced, but never-
theless RoBERTa performed admirably. A more advanced approach was also attempted,
using the trained RoBERT?’s last state to encode each text zone. The hierarchical model
created, incorporated RoBERTa in order to create an embedding (a vector of length 768)
for each text zone of the input documents. Afterwards, by utilizing stacked bi-directional
LSTMs, the new representations were made context aware. The idea was that, given the
context of each text zone, they would be easier to classify. The implementation of this idea,
did manage to improve the results by a non-negligible amount, but introduced the need
of a new model to keep track of the context and make predictions using the RoOBERTa’s
embeddings. This in turn introduced more inference time and memory usage. Regardless,

both models easily outperformed the simple logistic regression model used as a baseline.

6.2 Future Work

Regarding the text block detection task, RetinaNet cannot be easily disregarded. The results
imply that with more training data there is a chance for RetinaNet to outperform even
the medium and large YOLOvV5 models. This of course would add to the inference time
and memory consumption which is not in the interest of the company but the results may
prove the investment worthy. More YOLO oriented alternatives also exist. For instance, a
new official YOLO model was introduced in the summer of 2022, promising more accurate
results and even faster inference. It would be possible to even train the model to detect
both text and tables, thus combining the two models of the company to one. Finally, if
the results are found to be unsatisfactory in some cases, datasets such as PubLayNet offer
many annotated data, that could be added to the existing ones.!° Being trained on more

data, the model’s performance is expected to increase.

For the text block classification as either title or paragraph, the rule-based approach is far
from optimal, but it is the only option given the lack of annotations. On the other hand,
with a set of annotations an NLP-oriented Deep Learning approach can be implemented.
These annotations could enable the use of pretrained models even on a multilingual level

and thus drastically improve the results.

Finally, regarding the text zone classification task, some problems regarding the dataset

were avoided. Such cases involved empty cases of text or possible misplaced labels (e.g.

"PubLayNet dataset can be found in https://developer.ibm.com/exchanges/data/all/publaynet/.
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cover page after the main body). But cases such as label missclassifications that were
noticed could not be handled and other issues may still be present. That being the case, a
dataset with less gold annotation errors may be needed. As for the models themselves,
there are many alternatives to be explored. A promising example is the use of Transformers
in combination with a hierarchical model. The current hierarchical model implementation
revolves around the use of RoOBERTa which is indeed a case of Transformers, and a top
model implemented by means of RNN layers. Instead, a Transformer based approach can
be used for the top model as well. Chalkidis et al. [Cha+21] proposed the hierBERT model
which uses Transformers in both levels of the hierarchical architecture. Cases such as this
promise better performance, even though the results of the current models did not suggest

they were necessary.

6.2 Future Work
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