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Abstract

Large Language Models (LLMs) like ChatGPT, GPT-4, and Llama have shown tremendous

capacity in text understanding and generation. Among the most prominent emergent abilities

of LLMs is the so-called Chain of Thought (CoT) prompting. The latter consists of a series of

intermediate reasoning steps that can significantly improve the ability of LLMs to perform

complex reasoning. Moreover, it provides an interpretable window into the behavior of the

model, suggesting how it might have arrived at a particular answer and providing opportunities

to debug where the reasoning path went wrong.

The goal of the suggested project is to examine the application of CoT prompting in sentence

classification, and more specifically in intent classification. Estimating the intent of the user

of a service is one of the core problems in task-oriented dialog systems. Traditionally, it has

been approached as a classification problem requiring many training examples per intent and

older classifiers are trained on a pre-defined set of intents. Such approaches are in general

not scalable and hard to maintain, as they require one model per client due to the set of

intents being client-dependent. An additional weakness of these approaches is that they do

not reveal the way the model classifies phrases into intent classes. Explainability methods such

as LIME or SHAP can be applied, however, they do not always yield intuitive explanations, as

they merely estimate the contribution of each word of the phrase to the classifier’s decision,

something that Chain of Thought Prompting may provide a solution for.

LLMs have exhibited strong performance in text classification, both in a 0-shot and a few-

shot context, but not on the same level as older models that are designed specifically for

classification. To address this performance gap, in this work a set of 5 candidate intents are

added to the prompt. These intents are extracted utilizing a BERT-based classifier. To further

help with the reduction of the performance gap, a description for each of the 5 candidate

intents is also included in the prompt a description, which was created with the help of

ChatGPT.

As for the Chain of Thought part of this thesis, we first tested a 0-shot method utilizing three

phrases that generate Chain of Thought, “Let’s Think Step by Step”, “Let’s Take a Deep Breath

and work on this Step by Step”, and a novel phrase, “Show your Thoughts”. We will show that

in both datasets that are used, namely CLINC-150 and BANKING77, the method that was

outlined shows promising results.
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Περίληψη

Meg�la glwssik� montŁla (LLM) ìpwc ta ChatGPT, GPT-4 kai Llama Łqoun de—xei ter�s-

tia ikanìthta sthn katanìhsh kai paragwg  keimŁnou. MetaxÔ twn pio shmantik‚n anaduì-

menwn ikanot twn twn LLMs e—nai h legìmenh Chain of Thought (CoT) prompting. H teleu-

ta—a apotele—tai apì mia seir� endi�meswn bhm�twn sullogismoÔ pou mporoÔn na belti‚soun

shmantik� thn ikanìthta twn LLMs na ekteloÔn sÔnjetouc sullogismoÔc. EpiplŁon, parŁqei

Łna ermhneÔsimo par�juro sth sumperifor� tou montŁlou, upodeiknÔontac ton trìpo me ton

opo—o mpore— na Łqei katal xei se mia sugkekrimŁnh ap�nthsh kai parŁqontac eukair—ec en-

topismoÔ twn shme—wn ìpou h pore—a sullogismoÔ p ge strab�.

O stìqoc thc proteinìmenhc ergas—ac e—nai na exet�sei thn efarmog  thc mejìdouCoT prompt-

ing sthn taxinìmhsh prot�sewn, kai pio sugkekrimŁna sthn taxinìmhsh projŁsewn (intents).

H ekt—mhsh thc prìjeshc tou qr sth miac uphres—ac e—nai Łna apì ta basik� probl mata sta

sust mata dialìgou prosanatolismŁna se sugkekrimenh ergas—a. Paradosiak�, Łqei proseg-

giste— wc prìblhma taxinìmhshc pou apaite— poll� parade—gmata ekpa—deushc an� prìjesh kai

palaiìterouc taxinomhtŁc pou ekpaideÔontai se Łna prokajorismŁno sÔnolo projŁsewn. TŁ-

toiec prosegg—seic den e—nai genik� klimakoÔmenec kai dÔskola sunthroÔntai, kaj‚c apaitoÔn

Łna montŁlo an� pel�th lìgw tou ìti to sÔnolo twn projŁsewn exart�tai apì ton pel�th.

Mia prìsjeth adunam—a aut‚n twn prosegg—sewn e—nai ìti den apokalÔptoun ton trìpo me

ton opo—o to montŁlo taxinome— tic fr�seic se kl�seic projŁsewn. MporoÔn na efarmostoÔn

mŁjodoi epex ghshc ìpwc h LIME   h SHAP, wstìso den apod—doun p�nta diaisjhtikŁc exhg -

seic, kaj‚c apl‚c ektimoÔn th sumbol  k�je lŁxhc thc fr�shc sthn apìfash tou taxinomht ,

k�ti gia to opo—o h mŁjodoc Chain of Thought prompting mpore— na d‚sei lÔsh.

Ta LLM Łqoun epide—xei isqurŁc epidìseic sthn taxinìmhsh keimŁnou, tìso se pla—sio 0-

shot (dhlad  qwr—c kanŁna par�deigma ekpa—deushc sto prompt) ìso kai se pla—sio few-

shot (dhlad  me Łna sugkekrimŁno arijmì paradeigm�twn ekpa—deushc sto prompt), all� ìqi

sto —dio ep—pedo me palaiìtera montŁla pou Łqoun sqediaste— eidik� gia taxinìmhsh. Gia na

antimetwpiste— autì to kenì sthn ep—dosh, prost—jetai sto prompt Łna sÔnolo 5 upoy -

fiwn projŁsewn. AutŁc oi projŁseic ex�gontai qrhsimopoi‚ntac Łnan taxinomht  me b�sh

to BERT. Gia na meiwje— peraitŁrw to q�sma sthn ep—dosh, gia k�je m—a apì tic 5 upoy fiec

projŁseic perilamb�netai ep—shc sto prompt mia perigraf  gia thn prìjesh aut , h opo—a

dhmiourg jhke me th bo jeia tou ChatGPT.
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’Oson afor� to mŁroc thc alus—dac skŁyhc aut c thc diatrib c, dokim�sthke arqik� m—a 0-

shot mŁjodoc axiopoi‚ntac treic fr�seic pou par�goun Chain of Thought, «Let’s Think Step by

Step», «Let’s Take a Deep Breath and work on this Step by Step» kai mia nŁa fr�sh, «Show your

Thoughts». Ja de—xoume ìti kai sta dÔo sÔnola dedomŁnwn pou qrhsimopoioÔntai, dhlad  to

CLINC-150 kai to BANKING77, h mŁjodoc pou perigr�fhke parousi�zei elpidofìra apotelŁs-

mata.
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1Introduction

In recent years the advancements in the field of Deep Learning and especially in the Natu-

ral Language Process domain have completely changed our perception of Neural Networks.

Language models have evolved from the previous generation Machine Learning models accom-

panied by a beam search for the next word prediction, to transformer-based models (Vaswani

et al. (2017)), like Bidirectional Encoder Representations from Transformers (Devlin et al. (2019))

which revolutionized the field of NLP, to the more advanced and complicated Large Language

Models like RoBERTa (Liu et al. (2019)), T5 (Raffel et al. (2020)), and GPT-like models, like GPT2

(Radford et al. (2019)) and Instruct-GPT (Ouyang et al. (2022)).

While the scientific community knew a great deal about models like these, the rest of the

people did not. All these changed in December of 2022, when OpenAI released to the public

for free ChatGPT (OpenAI (2022)), a Large Language Model specifically trained to behave like

a chatbot. It should be noted that ChatGPT became one of the fastest-adopting platforms

of all time, achieving a million users in the record time of five days. For context, Instagram

needed 2.5 months to achieve 1 million downloads, whereas Netflix reached the 1 million user

achievement 3.5 years after its release.

As the advancements in the field continued to rise with the creation of larger andmore complex

models, scientists tried to find better ways to prompt these models. One such way was few-shot

prompting, where the user provides some examples of already answered questions of the same

type to control to some level the way the model answers. Another such way is the reason this

thesis exists and it’s called Chain of Thought prompting. In its essence, in Chain of Thought

prompting the user first presents some few shot examples in the Large Language Model,

but with a twist: in the already presented answers there exist some intermediate reasoning

steps, and not just the answer to the question. This is done in order to have some form of

explainability in the model’s response while increasing the performance of the model. In Fig.

1.1 we can see the same question answered both with normal prompting and Chain of Thought

prompting, where the normal prompting method could not accurately calculate the answer,

while the Chain of Thought example not only answered correctly, it also provided a reasoning

for its answer.

This technique could prove particularly helpful in a very specific task, the task of intent

classification of utterances that come from task-oriented chatbots, with the help of Large

LanguageModels. In a scenario where it is of the utmost importance for a system to understand
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Fig. 1.1: A few-shot prompt example with Chain of Thought prompting compared with normal
Prompting. Source: Wei et al. (2022)

the needs of the user that interacts with it so that it can serve the user be�er, the classification

of the user's intent is the only way to go. Up until this point this was usually done with LSTM

or simple transformer-based models, needing a very large amount of train u�erances per intent

while not explaining the classification. Despite the concerns raised by Turpin et al. (2023) who

supported the Chains of Thought produced by the model can be extremely di�erent when

changing a few things in a prompt (e.g. reordering the possible answers in a multiple choice

few-shot prompt so that the correct answer is always the same) our goal is still the same. By

utilizing Chain of Thought prompting we aim to create a universal intent classification system

that can be o�ered with very small di�erences to di�erent customers while at the same time

o�ering adequate reasoning for the predicted intent.

Our proposed approach for this thesis revolves around building a few-shot prompting pipeline

which includes the 5 most probable intents as per a traditional BERT-based classifier, and their

descriptions, as they were extracted using ChatGPT. The in-shot exemplars are also extracted

a�er prompting the same model utilized for the classification of the texts. As we will prove in

this thesis, this approach achieves superior performance relative to simple prompting while

being relatively close to a fine-tuned version of a BERT classifier.

Besides the prompting pipeline, which we will describe in the following chapters, our main

contribution with this thesis is another phrase that can be used to extract Chains of Thought

from Large Language Models,Show your Thoughts. This phrase achieves similar or even
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superior performance when compared with other such phrases likeLet's Think Step-by-Step,

both in terms of accuracy and in terms of Chain of Thought quality.

This thesis is structured as follows:

Chapter 2: Related Work

In this chapter some of the papers that inspired the work for this thesis and some more papers

that are very closely related to the work of this thesis even if they are not actively utilized are

presented.

Chapter 3: Datasets and LLM

This Chapter has a brief overview of the two datasets used in this thesis, CKINC-150 and

BANKING77, as well as the process of creating the subsets of these datasets used in this thesis.

There is also a brief description of the model that is used in the thesis, the Llama2 model.

Chapter 4: Prompting Pipeline

This Chapter gives, in great detail, an overview of the pipeline that is used for this classification

task with Chain-of-Thought prompting, along with the models that are used in each stage of

the pipeline, the prompting techniques that are used, and an example prompt for each one.

Chapter 5: Initial Results

This Chapter provides insights as to the results of the the experiments with the pipeline that

was described in the previous Chapter, for both Chapters. For each prompting technique for

both datasets, there is also a brief analysis of the Chain of Thought of some correctly classified

text u�erances to determine the degree to which our method achieves what we are hoping

for.

Chapter 6: Few Shot Experimentation

In this Chapter, the few-shot pipeline, which extends the 0-shot pipeline, that was used in this

thesis will be explored, along with the results of this technique on both datasets and the same

Chain of Thought analysis that took place in the previous Chapter.

Chapter 7: Ablation Study & Error Analysis

This 7th Chapter presents a detailed Ablation Study where the parts of the prompting pipeline

that are tested, like the Chain of Thought inciting phrases or the intent descriptions, are

gradually removed to quantify their importance. A detailed error analysis is also included

where the errors of the best methods for both datasets are reviewed and analyzed.
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Chapter 8: Conclusions & Future Work

In the final Chapter of this thesis, a brief review of the conclusions of this thesis is presented

along with some key ideas that could be explored in the future.

4



2Related Work

This work is inspired by many di�erent research areas. In this chapter, we will describe in

some detail the papers that influenced us the most and we consider to be the most relevant to

this project.

Wei et al. (2022) started it all with their paper"Chain-of-Thought Prompting Elicits Reasoning

in Large Language Models". They explore the idea, as the title puts it, of Chain of Thought

Prompting which they define as a series of intermediate reasoning steps. By introducing

just a few exemplars that feature these intermediate reasoning steps in the prompt for In

Context Learning, models with more than 100 billion parameters seem to have massive perfor-

mance gains in problems that require complex multi-step reasoning, like Arithmetic Reasoning

problems, Commonsense reasoning problems, etc. Models that have less than 100 billion

parameters tend to not have any performance gains by Chain of Thought Prompting, they

could even lose some performance when utilizing it, as these models produce fluent yet illogical

Chains of Thought. They also note that the use of hand-cra�ed exemplars yields a variance in

performance (in some cases as high as 20%) as a result of the di�erent annotations by di�erent

people.

Kojima et al. (2022) were inspired by Wei et al. (2022) and they tried to mitigate the large

drawback that Chain of Thought Prompting presented: the need for hand-cra�ed exemplars

that yielded a variance in the performance of the model. The way they did this was by

introducing a key phrase in the prompt to incite the model to reason. This phrase is"Let's

Think Step-by-Step". They noticed that by simply adding this phrase at the end of the prompt,

the model produces logical intermediate reasoning steps. When they took these steps and

inserted them at the end of the original prompt the performance of the model improved by

a significant margin in all of the tasks that the original Chain of Thought Prompting was

tested on, i.e. Arithmetic Reasoning, Commonsense Reasoning etc. The only drawback of their

method is that the performance gain is not as great as the one with the Chain of Thought

Prompting as Wei et al. (2022) suggested it, and the fact that still smaller models with less

than 100 billion parameters do not have any performance gains.

Wang et al. (2023) propose a new way to boost performance using Chain of Thought Prompting,

called Self-Consistency (SC). SC is what they call a"self-ensembling"method in the way that

the model samplesk di�erent reasoning paths (i.e.k di�erent Chains of Thought) and the

most frequent one is taken as the answer (hence the self-ensembling). The greatest advantage

5



of this particular method is that it can be used with both hand-cra�ed exemplars the way

Wei et al. (2022) proposed, and with zero-shot methods, like Kojima et al. (2022) proposed. In

both cases, a great performance gain relative to the previous standalone methods is observed.

Aggarwal and Yang (2023) did the same thing with their paper only with a slight di�erence

as they used a probabilistic stopping criterion to find the optimalk, thus minimizing the

computational cost relative to SC while retaining the performance gains that it provides.

Wang et al. (2023) propose an alternative to"Let's Think Step by Step", as proposed by Kojima

et al. (2022), with their method"Plan and Solve"(PS), where they simply replaced the key-phrase

"Let's Think Step by Step"with their variation of it: "Let's first understand the problem and devise

a plan to solve the problem. Then let's carry out the plan and solve the problem step by step.".

Through their tests, they came to the result that their method yielded significantly be�er

results than the method Kojima et al. (2022) proposed and they were comparable with the

performance that Wei et al. (2022) reported. But, as with the previous methods, models with

less than 100 billion parameters may not have any performance gains with this method.

Yang et al. (2023) present their new approach to leveraging Large Language Models as optimiz-

ers, but not in the traditional sense (i.e. like Adam Optimizer), where a model takes a prompt

as input and optimizes it to yield be�er responses. They build upon Kojima et al. (2022) with

this system, which they called OPRO. OPRO features two di�erent Large Language models, an

Optimizer model, and a Scorer model. The Optimizer model first takes as input a meta-prompt

and yields 8 di�erent candidate instructions. These instructions are then fed to the Scorer

model where we evaluate the accuracy of the training set of interest (which is dependent on

the task) 8 times and get 8 di�erent accuracy scores. These scores are then added to the meta

prompt, along with the candidate instructions and the process repeats itself. A by-product of

this process is one key-phrase:Let's Take a Deep Breath and work on this step by step, which

they found to be working be�er thanLet's Think step by stepthat Kojima et al. (2022) created.

Parikh et al. (2023) present a comprehensive study on advancing the field of intent classification

in conversational Natural Language Understanding systems, particularly addressing the cold-

start problem for new customers. Recognizing the constraints of storage space and the

need for scalability, the paper explores four innovative approaches: domain adaptation, data

augmentation, zero-shot intent classification using Large Language Models, and parameter-

e�icient fine-tuning of instruction-finetuned language models. Through extensive experiments,

the paper demonstrates that these methods, particularly parameter-e�icient fine-tuning using

T-few recipe on Flan-T5, significantly enhance performance in low-resource se�ings, even with

minimal data per intent. This work stands as a substantial contribution to the field, o�ering

6



practical solutions for deploying conversational agents more e�ectively and e�iciently across

a wide range of customers and scenarios.

Magister et al. (2023) address the significant challenge of transferring the advanced reasoning

capabilities of Large Language Models to smaller, more e�icient models. The authors explore

the e�ectiveness of Chain of Thought Prompting and knowledge distillation as a means to

endow smaller models with the ability to perform complex reasoning tasks. Their method

involves fine-tuning a smaller"student"model on the Chain of Thought Prompting outputs

generated by a larger"teacher"model. The study's results are promising, indicating that this

approach can significantly improve the smaller models' performance across various reasoning

datasets. This research is particularly notable for its potential to make the advanced reasoning

capabilities of large models more accessible and e�icient, contributing to the broader field of

NLP by enabling more compact models to perform complex tasks traditionally reserved for

much larger models.

Loukas et al. (2023) address the challenges of using LLMs for an intent classification task

on a dataset that we also used in this thesis, the BANKING77 dataset which consists of 77

fine-grained intent classes. For their research, they compared fine-tuned Masked Language

Models (MLMs) with few-shot MLMs and few-shot Large Language Models LLMs. They

concluded that LLMs are e�ective classifiers for this intent classification task, but extremely

costly. For this reason, they suggested a Retrieval Augmented Generation (RAG) approach for

this task which helps reduce the cost for this task by multiple times without sacrificing a lot

of performance.

7



3Datasets and LLM

3.1 CLINC-150

CLINC-150 is a dataset created by Larson et al. (2019) which addresses the issue that task-

oriented dialog systems need to recognize when a query is outside their range of supported

intents. Up until now, datasets created for text classification typically only define label sets

that cover every example. The novelty of this dataset is the addition of a di�erent class, called

"out-of-scope" which holds queries that do not fall under any of the other categories. This is

crucial because models cannot assume every query at inference time belongs to a supported

intent class.

The dataset contains 150 di�erent intents spanning 10 di�erent domains with the 151st intent

being theout-of-scope(oos) class. There exist 3 main dataset variations, one being balanced,

one imbalanced where theoosclass has many more texts than the rest of the classes, and one

smaller variation, where each class has a lot fewer representatives than the full variation.

Each variation of the dataset is also split in three di�erent subsets, atrain subset, avalidation

subset, and atestsubset, each being used as its name suggests.

The following table presents some statistical data for each of CLINC-150's balanced set data

splits, i.e. the train split, the validation split, and the test split.

Split Length Level Mean std min max median
Train 15,100 Character 39.89 15.25 2 136 38

Word 8.33 3.19 1 28 8
Validation 3,100 Character 39.71 16.5 2 114 37

Word 8.28 3.42 1 24 8
Test 5,500 Character 40.17 15.61 2 125 38

Word 8.29 3.19 1 25 8
Tab. 3.1: Statistics in both Character Level and Word Level for CLINC-150. The mean lengths are
shown along with their standard deviation and the minimum, maximum, and median lengths.

In the following table, we will also present some example text u�erances along with their

assigned intent class.

8



text intent
i need anniversary dinner added to my schedule for march 7 calendar_update
is there tra�ic to work tra�ic
hey, slow down and take your time change_speed
my card's magnetic strip is not working and i want to notify them damaged_card
what are you able to do what_can_i_ask_you
please take final exams o� my calendar for may 3 calendar_update
i recently took a new job and need help with my 401k rollover rollover_401k
the status of my day o� request, please pto_request_status
how long until i need to change my oil oil_change_when
what is your version on the meaning of life meaning_of_life

Tab. 3.2:Examples of text u�erances from CLINC-150 and their assigned intent class.

In this thesis, we have altered the dataset in a way to be�er suit our needs and limitations.

First and foremost we have completely dropped theoosclass from all of the data splits as it is

not in the scope of this project to detect out-of-scope queries. For all our experiments (which

we will describe in great detail in the following chapters) we use a subset of thetestsplit which

we have created by randomly selecting 5 texts from each intent which brings down the length

of the test dataset from 5500 texts to just 750. This was done because the inference times of

the model we utilized were simply too large for 5500 texts.

3.2 Banking77

Banking77 is a dataset created by Casanueva et al. (2020) and di�ers massively from CLINC-

150 in the sence that it features u�erances only from the banking domain which allows for

a deeper understanding of the specific types of queries and needs within the industry. Its

main aim is to address the complexities and nuances of intent classification in customer-based

interactions, like task-oriented dialog systems.

It features 77 unique fine-grained intents with 13,083 u�erances that come from various

customer service queries. The fine-grained nature of the intents makes the dataset more

realistic and challenging as it moves away from oversimplified intent detection tasks to be�er

reproduce the variety and complexity of actual customer interactions in a commercial se�ing.
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Unlike CLINC-150 which had di�erent vari-

ations based on the distribution of instances

across the classes, BANKING77 has only one

variation and it is an unbalanced one since

some intent classes have a lot more instances

than others. The presented violin plot shows

this imbalance across the classes. This plot

was created to have the number of instances

of each intent class (therefore the dataset had

77 observations). As we can see, most of the

counts are somewhere in the middle of the

y-axis or around 120 texts per intent class.

Fig. 3.1: Violin plot of class counts for BANK-
ING77

Let us now present some example texts for this dataset too.

text intent
What documentation is needed for the identity
check?

verify_my_identity

What is your maximum top up limit per day? top_up_limits
Why isn't my cheque deposit showing on my
account? I though it would be faster and would
like to to look into it and help.

balance_not_updated_a�er_cheque_or_cash_deposit

I am entering my passcode but ge�ing an error. passcode_forgo�en
Why is my cash request and the amount I re-
ceived di�erent?

wrong_amount_of_cash_received

What do I do if the machine rejects my card? card_not_working
Explain pending transactions. pending_cash_withdrawal
is there a limit on top ups top_up_limits
I wish to be able to top up with cash. top_up_by_cash_or_cheque
Why do I see an extra¿1 charge on my state-
ment?

extra_charge_on_statement

Tab. 3.3:Examples of text u�erances from BANKING77 and their assigned intent class.

Split Length Level Mean std min max median
Train 10,003 Character 59.47 40.86 13 433 47

Word 11.95 7.89 2 79 10
Test 3080 Character 54.23 34.65 13 368 45

Word 10.95 6.69 2 69 9
Tab. 3.4:Statistics in both Character Level and Word Level for BANKING77. The mean lengths are
shown along with their standard deviation and the minimum, maximum, and median lengths.
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As we did with CLINC-150, here too, to save time in inference we kept a balanced subset of

the test dataset featuring 5 u�erances per intent, bringing the total length of the test dataset

to 385 texts.

3.3 Llama2

Llama 2 (Touvron et al., 2023) is a family of Large Language Models created and released as

open-source models by MetaAI, the research division of the Meta company. The models come

in 4 sizes (with 7, 13, 34, or 70 billion parameters) and 2 variations (either stock or fine-tuned

for cha�ing purposes). The reality is that even MetaAI wanted to release the 34B model in

both variants, at the time of writing this thesis this has not happened yet.

Each model of the Llama 2 family of models was trained on the same training data all of

which come from publicly available sources and do not include any amount of data from

Meta's products or services, like Facebook, Instagram, etc. The authors do not specifically say

what this dataset includes but the authors mentioned that they took extra caution to remove

data from sites that feature personal information, which brought the total size of the training

dataset to 2 trillion tokens. The authors hope that with a training dataset of this size, the

knowledge of the models will expand when compared with the knowledge of the previous

generation of Llama models, and the hallucinations will be reduced to a minimum.

The architecture of every model of the Llama family is identical to one another with only the

model size changing between di�erent models. It remains mostly the same as in the previous

generation Llama model. It is built upon the standard Transformer architecture (Vaswani et al.,

2017). They also used a pre-normalization technique called RMSNorm (or Root Mean Squared

Normalization) that normalizes the input of each transformer sub-layer. This way the 2 trillion

training tokens and the multiple billions of parameters become a li�le easier to handle in terms

of memory and computational time. They also used the SwiGLU activation function and Rotary

Positional Embeddings (Su et al., 2021) which will help the models understand the importance

of the position of each word in a di�erent way than ordinary positional embeddings use as

it encodes absolute positional information with a rotation matrix and naturally incorporates

explicit relative position dependency in self-a�ention formulation. The primary di�erences

between the first generation Llama model and this one are the fact that the first generation

was trained on fewer data (1 trillion for the 7B and 13B models and 1.4 trillion for the 33B

and 70B models), the longer context length of Llama 2 (4k tokens vs 2k tokens for the original

11



Llama) and the use of a Grouped �ery A�ention (Ainslie et al., 2023) which will help with

the inference scalability of the model.

Fig. 3.2: The fine-tuning process MetaAI used on Llama. Source: Touvron et al. (2023)

One of the areas that the authors emphasized the most was the fine-tuning process they

utilized to create the chat variants of the Llama model, which can be seen on Fig. 3.2. For this

fine-tuning process, they used multiple techniques including Supervised Fine Tuning (SFT)

where they used hand-cra�ed data from di�erent sources to perform some safety control and

forbid Llama from answering in a harmful way. They also used a process called Reinforcement

Learning with Human Feedback (Ouyang et al., 2022) where an annotator checks the responses

of the Llama model and a reward system either rewards or punishes the model. Finally, they

also used a novel method called Ghost A�ention which allows the model to follow instructions

over multiple turns of dialog without the need to repeat the instruction. This in turn helps

with the dialog flow over multiple turns.

A�er testing the model both on popular benchmarks and against other chat models like

ChatGPT they found that all models performed admirably for the category they were in. The

7B model outperformed every other 7B model the authors tested in all but one test, the 13B

outperformed the previous generation 13B variant on every single benchmark and in many

cases outperformed larger models like the 33B Llama 1, MPT 30B and Falcon 40B. The larger

model sizes performed admirably on these same benchmarks, which was expected a�er the

results we previously discussed. Especially the 70B variant performed very similarly with

much larger LLMs on the same benchmarks, like GPT3.5, GPT4, PaLM and PaLM-2-L, which is

extremely important since all other models' parameters range in the hundreds of billions.
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4Prompting Pipeline

4.1 Introduction

In this chapter, we will present the pipeline we used to perform the classification task using

Chain of Thought prompting. Since Large Language Models are not the traditional models

used for text classification, and most of the time they are nowhere near the state-of-the-art

performance, we have incorporated to our pipeline elements that will make it easier for our

model to complete the task it was assigned. Below is a figure that presents visually the pipeline

we created for the purposes of this thesis.

Fig. 4.1: An overview of the pipeline used in this thesis
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4.2 Top-5 Intents Extraction

The first phase of our methodology involves the deployment of a classifier that represents the

prior state-of-the-art, utilizing the training subsets of the dataset. For this critical task, we se-

lected the BERT classifier, available to us through theTransformers1 Library from Huggingface,

and more specifically theTFBertModelForSequenceClassification2 function. The architecture

of this model consists of a BERT-base model with 12 Transformer blocks, with each block

consisting of 12 a�ention heads. The 12 transformer blocks are followed by a dropout layer

with a rate of 0.1 to mitigate overfi�ing and a classification layer with a so�max activation

function, the nodes of which are equal to the number of classes within each dataset.

To assess the performance of this classifier, we used two metrics: accuracy and top-5 accuracy.

The la�er reveals the frequency with which the correct intent class ranks among the five most

probable predictions as determined by the so�max activation function.

For the loss function, we chose the Sparse Categorical Cross Entropy loss, paired with the

Adam Optimizer, a learning rate of2e� 5, and an epsilon value of2e� 8. We trained this classifier

for 15 epochs on a single TPUv3.8 provided by Google Colab, during which we saved the best

weights whenever a superior top-5 accuracy score was achieved.

We use this BERT classifier for two reasons. Firstly, it serves as a contemporary benchmark

against which we can measure our results, providing a clear indication of our successes and

areas for refinement. Secondly, it enables us to extract the top 5 predictions for the test dataset,

a crucial step towards the creation of the prompts used in our final system. We will elaborate

further on the use of these top 5 predictions in subsequent chapters.

4.3 Description Extraction

The next step of our pipeline is the extraction of the intent descriptions. For this, we employed a

straightforward yet somewhat labor-intensive method that drew inspiration from the scholarly

work of Bouzaki (2023).

1h�ps://huggingface.co/docs/transformers/en/index
2h�ps://huggingface.co/docs/transformers/model_doc/bert
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Our method involved interacting with the web interface of ChatGPT, specifically the GPT-3.5

version, utilizing a prompt cra�ed by Bouzaki (2023). This prompt includes two hand-cra�ed

intent class descriptions designed to guide ChatGPT's responses, subsequently prompting

it to generate a comparable sentence describing the intent class of our choice. The original

prompt is as follows:

The intent "translate" represents ways to ask for the translation of a word or phrase in a

language di�erent from the one being used. The intent "find_phone" refers to a request for

assistance in locating a lost cell phone or a question about its current location. Create only

one similar sentence with a description for the intent [x], without mentioning any example of

it.

where [x] is the intent that we want to extract its description each time.

Given that both our research and Bouzaki (2023) are grounded in the CLINC-150 dataset,

we saw no necessity to alter this prompt, as it has proven to be quite e�ective. However,

considering the BANKING77 dataset, we devised a second prompt, closely modeled a�er the

first, to cater to this dataset's unique intents. This second prompt also includes two tailor-made

intent class descriptions to steer ChatGPT's response. We then ask it to provide a similar

descriptive sentence for the intent class we are examining.

The exact wording of the second prompt is as follows:

The intent "card_arrival" refers to a request for assistance in tracking a card or a question

about its current location or time of arrival. The intent "card_payment_wrong_exchange_rate"

represents ways to express frustration with the wrong exchange rate between di�erent

currencies being applied on a internet purchase. Create only one similar sentence with a

description for the intent [x], without mentioning any example of it.

where [x] is the intent that we want to extract its description each time.

In the next sections, we'll elaborate on the precise manner in which we employ these extracted

descriptions.

4.4 Technical Setup

Our chosen methodology for cra�ing prompts might appear somewhat unconventional at first

glance, yet it's fundamentally the most e�ective strategy. Recognizing that Large Language
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Models lack genuine cognitive abilities and are prone to generating misleading or hallucinatory

content, it becomes necessary to provide them with extra information. To this end, we

incorporate the top five intents as predicted by BERT at the beginning of each prompt. These

top five intents are accompanied by their description as they were cra�ed by ChatGPT. This

was done to reduce the number of possible intent classes that the model has to choose from as

both datasets feature an enormous amount of intents (150 and 77 respectively), thus reducing

the size of each prompt and e�ectively reducing inference times.

The model we chose to do this was the 13B version of the Llama23 model, created by MetaAI.

This model was chosen among others of similar size because it surpassed similar models in

terms of performance (at least at the time when this thesis began) in almost every task. As the

size of this model is extreme and cannot fit in any available GPU, we loaded the model using a

4-bit quantization method (Jacob et al., 2017) which reduces the model size enough to fit in

a T4 GPU (available on the free tier of Google Colab), without reducing its capabilities and

handicappingthe model.

The inference was done on a A100 GPU, available to us by the Pro+ Tier of Google Colab,

utilizing the text generation4 pipeline bytransformerswith this parameter specification: tem-

perature = 0.7, top_p = 0.95, max_new_tokens = 200 and repetition_penalty = 1.1. On this

specific pipeline, we fed each test prompt we are about to describe with a batch size of 1,

as having a batch size greater than 1 could result in memory overflow thus terminating the

inference procedure.

4.5 Prompting Techniques

Our prompting strategies that are designed to elicit reasoning from the Llama model are three.

For the purposes of this thesis, we will name themLet's Think, Deep Breathand Show your

Thoughts.

3h�ps://llama.meta.com/
4h�ps://huggingface.co/docs/transformers/en/main_classes/pipelines
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4.5.1 Let's Think

This innovative prompting strategy is the work of Kojima et al. (2022) who drew inspiration

from the original Chain of Thought Prompting paper (Wei et al., 2022). Their objective was to

emulate the outcomes of the original study but through an automated process that eliminates

the necessity for hand-cra�ed few-shot exemplars. The methodology they devised can be seen

in Fig. 4.2. They begin by appending the phraseLet's Think Step by Stepto the end of the initial

prompt, a deliberate addition designed to encourage the Language Model to articulate its

reasoning process. Following this, the response generated by the model is integrated back into

the original prompt as an intermediate step, and this augmented prompt is then re-submi�ed

to the model to elicit an answer.

Fig. 4.2: The two-stage prompting method of 0-shot Chain of Thought prompting. Source: Kojima
et al. (2022)

Even though this prompting technique was proven useful for Kojima et al. (2022), it presents a

practical challenge in our case, primarily due to the relatively slow inference speed of Llama2

and our lack of resources. Undergoing two iterations through the model to arrive at the desired

answer is a luxury we cannot a�ord. Consequently, we adapted the method proposed by

Kojima et al. (2022) to extract both the Chain of Thought and the final answer within a single

prompt. The way we did this is by asking the model to figure out the intent of the user when

they wrote the input text while adding theLet's Think Step by Stepphrase a�er the question.

With this process, we eliminate the necessity for a second prompt, e�ectively halving the

inference time compared to Kojima et al. (2022) methodology, thereby enhancing the e�iciency

of our process.

Below we present a full prompt for each dataset to show exactly what we meant in the previous

paragraphs.
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We have the following set of intents along with their descriptions:

� no: The intent "no" signifies a straightforward refusal or a negative response to a question or

statement, indicating a lack of agreement or a�irmation.

� what_can_i_ask_you: The intent "what_can_i_ask_you" pertains to seeking guidance or sug-

gestions on the types of questions or topics that can be posed.

� what_are_your_hobbies : The intent "what_are_your_hobbies" involves prompting someone to

share information about their personal interests and activities, o�ering insights into the individual's

leisure pursuits and pastimes.

� insurance: The intent "insurance" pertains to inquiries or requests related to obtaining informa-

tion about insurance coverage or the specifics of the insurance plan of the user.

� calculator : The intent "calculator" involves users seeking access to or information about a digital

or physical calculator, expressing a need to perform mathematical calculations or inquiring about

the functionalities of a calculator tool.

A user wrote the following text: �'can i know what type of things you can help me with�'. The

intent of this text is definitely one from the five intents in the previous set.

What was the intent of the user when they wrote this text? Let's think step by step, answer in a

single sentence, do not speculate and for your answer include the intent as wri�en in the previous

set, exactly as it is wri�en there.

As we can see, the top 5 intents, as they were extracted using BERT, were inserted at the

beginning of the prompt, along with their respective descriptions, as they were created using

ChatGPT, for our model to choose one of them as the correct one.

A�er these possible intents of the user's u�erance, we present the u�erance itself on the

model and we ask it to return to us the intent of the user when they wrote this text.

Finally, we use theLet's Think Step by Stepphrase to elicit reasoning from the model. We

accompany this phrase with some behavior-se�ing phrases that we found to work, asking the

model to answer in a single sentence, do not speculate about the answer (i.e. not use words

like likely, possiblyetc) and include in its answer the intent name exactly as is wri�en above.

4.5.2 Deep Breath

Let's take a Deep Breath and work on this Step by Stepwas initially conceptualized by Yang et al.

(2023). This prompt emerged as an enhanced version of theLet's Think Step by Stepstrategy,
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originally introduced by Kojima et al. (2022). The empirical investigations of the Google

Deepmind engineers who worked on this prompting method revealed that this particular

prompting strategy outperformed its counterparts, yielding superior results within their

Prompt Optimization framework. Encouraged by these findings, we decided to incorporate

this strategy into our prompting techniques' choices.

We used this prompting strategy in the same way we did with theLet's Thinkone. Specifically,

we appended theLet's take a Deep Breath and work on this Step by Stepphrase at the end of

our prompt, along with the same behavior-se�ing phrases as before. This way we incite the

model to perform the necessary intermediate reasoning steps and at the same time perform

the classification of the u�erance to one of the 5 possible intent classes.

We will now present a full prompt to fully visualize the previous description of our prompt.

We have the following set of intents along with their descriptions:

� pending_transfer : The intent "pending_transfer" refers to inquiries or concerns about the status

of a financial transaction that has been initiated but not yet completed, o�en seeking clarification

on the expected completion time or reasons for the delay.

� reverted_card_payment? : The intent "reverted_card_payment?" pertains to inquiries or con-

cerns regarding transactions that have been canceled or reversed on a card, o�en seeking clarifica-

tion on the reasons, processes, or implications of such reversals.

� transaction_charged_twice : The intent "transaction_charged_twice" corresponds to inquiries

or concerns regarding a situation where a user's account shows that a single transaction has

been processed and debited more than once, leading to confusion and a need for clarification or

resolution.

� request_refund : The intent "request_refund" refers to an inquiry or action taken by a user

to seek the return of funds for a transaction or service that did not meet their expectations or

requirements.

� Refund_not_showing_up : The intent "Refund_not_showing_up" pertains to inquiries or con-

cerns regarding the visibility or status of a processed refund that has not yet appeared in the

individual's account or financial statements.

A user wrote the following text: �'How long will it take to get my refund�'. The intent of this text

is definitely one from the five intents in the previous set.

What was the intent of the user when they wrote this text? Let's take a deep breath and work on

this step by step, answer in a single sentence, do not speculate and for your answer include the

intent as wri�en in the previous set, exactly as it is wri�en there.
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Again, the top 5 intents that were extracted using BERT are at the beginning of the prompt,

along with their respective descriptions, as they were created using ChatGPT. These 5 classes

are presented as the only possible classes for our model to choose from.

In the next part of the prompt, the user's u�erance is presented to the model in the same

manner as theLet's Thinkmethod. We then request the model to determine and relay back to

us the specific intent of the user at the time of writing their text.

Last but not least, we insert theLet's Take a Deep Breath and Work on this Step by Stepphrase,

the most important part of our prompt, to elicit reasoning from the model. This phrase is

followed by the same behavior-se�ing phrases as before to somewhat control the output of

the model.

4.5.3 Show your Thoughts

Show your Thoughtsis our novel approach to a prompt strategy that encourages Large Lan-

guage Models to exhibit their reasoning processes. When reading the relative work for these

prompting techniques we noticed the simplicity of these phrases, which by simply asking the

model to think step by step or work on a problem step by step, can extract the reasoning behind

the model's decision. We decided to take a similar path and just keep it simple. The simplest

way to ask for the thoughts of someone is to ask them to show their thoughts. Thus theShow

your Thoughtsprompting strategy was born, which we pit against these two strategies for

simple Chain of Thought extraction.

Similarly to the previous two strategies, we appendShow your Thoughtsat the end of our

prompt, along with the same behavior-se�ing phrases we used before. The goal is to have the

model not only provide an answer but also reveal the reasoning path it utilized to arrive at

that particular answer.

We have the following set of intents along with their descriptions:

� schedule_maintenance: The intent "schedule_maintenance" involves seeking help or informa-

tion regarding the arrangement of upcoming maintenance activities for a car.

� gas_type: The intent "gas_type" involves seeking information about the specific type or grade of

fuel required for a vehicle or a related inquiry about available fuel options.

� oil_change_when : The intent "oil_change_when" involves seeking information or recommen-
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dations regarding the appropriate timing or intervals for performing an oil change in a vehicle,

considering factors such as mileage, driving conditions, and the specific requirements of the vehicle

manufacturer.

� oil_change_how : The intent "oil_change_how" pertains to inquiries seeking guidance or instruc-

tions on the process of performing an oil change for a vehicle, including steps and recommended

tools.

� shopping_list : The intent "shopping_list" involves requests or actions related to creating, man-

aging, or obtaining information about a list of items to be purchased during a shopping activity,

whether it's in-store or online.

A user wrote the following text: �'put together a list of instructions for me on how to change the

oil in my car�'. The intent of this text is definitely one from the five intents in the previous set.

What was the intent of the user when they wrote this text? Show your thoughts, answer in a single

sentence, do not speculate and for your answer include the intent as wri�en in the previous set,

exactly as it is wri�en there.

In the above example of a prompt using ourShow your Thoughtsprompting method, we can

see the similarities with the prompts of theLet's ThinkandDeep Breathmethods.

The prompt begins by incorporating the five primary intents as identified through BERT, each

accompanied by detailed descriptions that we cra�ed using ChatGPT. These intent classes are

introduced as the only possible intent classes for the text u�erance that follows.

Next in the prompt, we display the user's u�erance exactly as it appears in the dataset we

have. Following this, we prompt the model to classify the u�erance into one of the five intent

categories that were previously outlined.

The final element of the prompt is the phraseShow your Thoughts, which will hopefully make

the model provide a logical reasoning for its decision. FollowingShow your Thoughtswe include

the same behavior-se�ing phrases from theLet's ThinkandDeep Breathmethods.

More prompts from each prompting strategy can be found in Appendix A
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5Initial Results

Following the discussion of the previous chapter we employed the text generation pipeline

outlined earlier and applied the three prompting techniques described before to our intent

classification task with Chain of Thought. Recognizing the inherent variability in Large

Language Model responses, we conducted each experiment three times for each prompting

technique. This approach was crucial because Large Language Models, not unlike traditional

models, can yield di�erent predicted intent classes for the same text input across separate

runs. However, the distinction with Large Language Models is more pronounced given that

their outputs are textual responses from which the intended class must be extracted, unlike

traditional models where the primary output is the predicted intent itself. To account for

this variability and gain a more comprehensive understanding of the performance of each

prompting technique, we repeated each experiment three times.

The e�ectiveness of each prompting method is assessed with the accuracy metric. This metric

is the most suitable given the structure of our test datasets, which are balanced in nature,

containing an equal number of samples�five from each intent category. This balance enhances

the reliability and relevance of the accuracy metric as a measure of performance. In scenarios

where datasets are unbalanced, the accuracy metric would not o�er the same level of reliability,

and di�erent metrics, like F1-Score would be employed.

Given that the output of this project is textual rather than merely labels or probabilities,

determining accuracy for the test datasets proved to be more complex than initially anticipated.

A detailed examination of a subset of the responses revealed that the model's replies o�en

diverged from the exact intent names as presented in the prompts. Variations included the

removal of underscores, spelling mistakes, the insertion of additional words within intent

names, or even the generation of entirely new intent names. Consequently, relying on a

rule-based approach for calculating accuracy was deemed impractical, as it became evident

that there would always be an outlier response that such a set of rules would fail to accurately

categorize.

In light of these challenges, we adopted a more labor-intensive yet accurate methodology.

This involved manually reviewing each response generated by the model across all runs and

prompting techniques to identify the predicted intent. This process allowed us to account

for and adapt to every error on a case-by-case basis. We established a flexible set of rules for

evaluating these errors, where if the model's prediction was essentially correct but included
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minor errors�such as spelling mistakes (e.g., "recognised" instead of "recognized", at least in

the context of the correct spelling for each dataset) or the use of a di�erent form of a word

(e.g., "top" instead of "topping")�we would still regard the predicted intent as accurate. Below,

we provide several examples to clarify our approach and demonstrate how we managed these

discrepancies.

class name in response actual class name correct reason
top_up_by_card topping_up_by_card True spelling error

car rental car_rental True omi�ed _
direction directions True omi�ed le�er

pending_payment pending_card_payment False word missing
top_up_by_cheque top_up_by_cash_or_cheque False word missing
what_is_your_age how_old_are_you False complete change

cancel_whisper_mode whisper_mode False word added
correct yes False complete change
what what_song False word missing

Tab. 5.1:Examples of mistakes made by Llama on inference and how we classified them.

These are just a few examples to illustrate the mistakes made by the model in the class names.

As we can see there are cases where the model omi�ed a word from the original class name to

the predicted class name, it added a word to the original class name as it thought it be�er

described the true intent of the user, or it completely changed the name of the class.

5.1 CLINC-150

We now present our findings from applying various prompting techniques to the initial dataset,

CLINC-150, which we presented in Section 3.1. To provide some context, the CLINC-150 dataset

is comprised of 150 distinct intent classes that span across 10 di�erent domains. For our testing,

the dataset utilized contains 5 texts for each intent class. This configuration results in a total

of 750 texts within our test dataset.

Prompting Technique 1st run 2nd run 3rd run Average St. Dev.
Deep Breath 85.33 86.26 86.26 85.95 0.54
Let's Think 85.73 83.73 86.93 85.46 1.61

Show your Thoughts 86.00 88.13 86.40 86.84 1.13
BERT 96.00

Tab. 5.2:Accuracy of CLINC-150 across 3 runs and their average.
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We observed that each of the three techniques yielded reasonably high results, especially if

one considers the 0-shot se�ing of this line of experiments, consistently achieving over 85%

accuracy in all but one instance. However, our novel method,Show your Thoughts, distinguished

itself by surpassing the 86% mark in all three runs, with an average accuracy of 86.84% and

a standard deviation of 1.13. Specifically, the second trial recorded the highest accuracy at

88.13%, while the first and third trials reported an accuracy of 86% and 86.4%, respectively.

This indicates a minimal variability of just 2.13 percentage points between the best and worst

performances observed.

Deep Breathachieved an average accuracy of 85.95%, trailing by a mere 0.89 percentage

points behind the leading method,Show your Thoughts, while also achieving the best standard

deviation of the three methods, 0.54. Remarkably,Deep Breathdemonstrated consistent

performance, with both the second and third runs yielding an identical accuracy of 86.26%,

while the initial run registered an accuracy of 85.33%. This method exhibited the least variability

among the three prompting techniques under evaluation, with all outcomes falling within

a narrow 0.93 percentage points range. This consistency suggests thatDeep Breathmay be

a more stable prompting approach, o�ering outcomes with higher certainty regarding their

accuracy, even if it does not always guarantee the best performance of the model.

Securing the third position among these techniques isLet's Think, which narrowly missed

the second spot by a mere 0.5 percentage points, recording an average accuracy of 85.46%

and a standard deviation of 1.61. This performance is also 1.38 percentage points lower than

that of Show your Thoughts. The relatively modest score ofLet's Thinkcould be due to the

significant variability observed across its runs. Specifically, the first run achieved an accuracy

of 85.73%, the second run dropped to 83.73%�marking the lowest performance across all

prompting techniques�and the third run rebounded impressively to 86.93%, which stands

as the second highest performance across all nine evaluations. This resulted in a variability

span of 3.2 percentage points between the best and worst runs, a figure that is relatively high

compared to the variations seen with the two preceding techniques.

What remains to be seen is the comparison between these techniques and the BERT classifier

we used to extract the top 5 intents per text. Recall that while our main monitored metric

on that classifier was indeed the top-5 accuracy, we also monitored the plain accuracy of the

classifier. BERT produced a 96% accuracy on the whole of the test dataset, which is almost

10 percentage points greater than our best result so far, making all our techniques' results

kind of irrelevant relative to that great accuracy result. Even though there is no improvement

when compared with the BERT classifier, this di�erence in performance is a very useful insight
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and we cannot simply overlook it. We have to remember that while high accuracy is one of

our focused areas, our main focus is the creation of logical and correct Chains of Thought

from our model to have explainable results, something that is not possible with a plain BERT

classifier.

5.1.1 Chain of Thought Analysis

We will now showcase some example responses generated by our Llama model, originating

from u�erances that were accurately classified. This is because this series of experiments

will not be a part of the final system and we just want to showcase the potential of these

prompting techniques. Our evaluation will focus on the quality of the Chain of Thought

processes exhibited, if any, within these responses. For each prompting technique evaluated,

we will present a total of 3 examples, distributing them equally with 1 example from each

distinct test run. We also note that, for the inferences made in this subsection we took into

account the additional examples that can be found in Appendix B.

Show your Thoughts

text : both could be
response: the intent of the user when they wrote the text "both could be" is "maybe" because
the user is expressing uncertainty and exploring multiple possibilities.

text : i was at publix trying to buy some food but my card wouldn't work
response: the intent of the user when they wrote the text "i was at publix trying to buy some
food but my card wouldn't work" is most likely "card_declined" because the user is seeking
clarification or assistance due to their card being declined during a transaction.

text : could you use the female voice
response: the intent of the user when they wrote the text "could you use the female voice" is
"change_accent", as it pertains to a request related to modifying the voice assistant's accent or
language pronunciation.

From these 3 responses along with the ones presented in Appendix B, we can see that Llama

produces accurate and eloquent Chains of Thought. This is of the utmost importance since it

proves that our novel approach can indeed produce Chains of Thought while o�ering clear

and comprehensible insights into why the model categorized each u�erance into the specific

intent class it did. Thus, we can confidently regard this technique as reliable for producing

explainable and accurate classification results.
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Deep Breath

text : can you tell me what hobbies the ai has
response: the intent of the user when they wrote the text "can you tell me what hobbies
the ai has" is "what_are_your_hobbies", as it matches the description of the intent "seeking
information about the personal interests and activities of the ai".

text : can i increase the credit limit on my mastercard
response: the intent of the user when they wrote the text "can i increase the credit limit on
my mastercard" is "credit_limit_change".

text : what would be the best way to deal with lost luggage
response: the intent of the user when they wrote the text "what would be the best way to
deal with lost luggage" is "lost_luggage".

In contrast toShow your Thoughts, Deep Breathdoes not seem to produce Chains of Thought

as much, as in most of the responses Llama merely echoes the provided text and assigns a

predicted intent class without further elaboration. The single result that features a Chain

of Thought is eloquent thought and follows a correct logical path, as the ones created using

Show your Thoughts. But, even though the responses do not include Chains of Thought as

much, the high accuracy rate of this prompting technique could be seen as indicative of the

model's ability to e�ectively distinguish between u�erances of one intent and those of another.

Thus, it appears that, at least within the context of this dataset, the method does not perform

exceptionally well, particularly in terms of generating Chains of Thought.

Let's Think

text : i want to talk english
response: the intent of the user when they wrote the text "i want to talk english" is
"change_language" because the user is seeking guidance on how to switch to speaking english
on a device or platform.

text : could you find out if my bank charges transaction fees on my american card if use
internationally
response: the intent of the user when they wrote the text "could you find out if my bank
charges transaction fees on my american card if use internationally" is "international_fees".

text : find a decent rental care for next week at the philadelphia airport
response: the intent of the user when they wrote the text "find a decent rental care for
next week at the philadelphia airport" is most likely "car_rental" because the text mentions
renting a car and providing specific location and time frame information, which aligns with
the description of the "car_rental" intent.
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Here we observe a more nuanced set of outcomes. In just 1 out of the 3 responses, there is an

absence of a produced Chain of Thought, with the model merely reiterating the input text

alongside a predicted intent class. Conversely, the remaining 2 responses did manifest Chains

of Thought that were both accurate and comprehensive, e�ectively illuminating the model's

rationale behind classifying each input u�erance into its respective intent class. Although this

approach ranked as the least e�ective among the three prompting techniques evaluated in

this thesis, the presence of accurate and explanatory Chains of Thought, especially when one

considers the additional examples of Appendix B, renders it partially reliable. This reliability

pertains to both its classification accuracy and its capacity to produce Chains of Thought,

o�ering a mixed yet insightful performance.

5.2 BANKING77

We now present the outcomes of our prompting techniques as applied to the BANKING77

dataset, which we presented in Section 3.2. This particular dataset is comprised of 77 distinct

intent classes, all derived from the banking domain. To provide some context, the test subset

we compiled for this dataset comprises 5 u�erances for each intent class, culminating in a

total of 385 text entries for our evaluation.

Prompting Technique 1st run 2nd run 3rd run Average St. Dev.
Deep Breath 74.54 72.20 73.50 73.31 1.17
Let's Think 71.68 69.09 73.24 71.33 2.09

Show your Thoughts 72.98 73.76 71.42 72.72 1.19
BERT 94.00

Tab. 5.3:Accuracy of BANKING77 across 3 runs and their average.

In this dataset, we observe a di�erent picture than the one we observed with the CLINC-150

dataset. The standout method in this analysis isDeep Breath, which achieved both the highest

single-run accuracy across all examined techniques with a 74.54% on its initial a�empt with

subsequent accuracy scores of 72.2% and 73.5% on its second and third a�empts, respectively.

This leads to an overall average accuracy of 73.31% and a standard deviation of 1.17.

The variability inDeep Breath's performance metrics is particularly significant when compared

with its behavior on the CLINC-150 dataset. The observed range of results on this dataset

is approximately 2.34 percentage points, a notable increase from the sub-1 percentage point

range observed in CLINC-150.
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The silver medal is awarded toShow your Thoughts, which closely trailed behindDeep Breath

in performance. Across three runs it achieved its highest score of 73.76% on the second a�empt.

The first and third a�empts yielded scores of 72.98% and 71.42%, respectively. These results

lead to an average accuracy rate of 72.72%, narrowly missing the top position held byDeep

Breathby a marginal di�erence of 0.5 percentage points, and a standard deviation of 1.19. It's

also worth noting that the consistency of this technique's performance mirrors that ofDeep

Breath, with all scores falling within a range of 2.34 percentage points.

Once again,Let's Thinkfound itself at the bo�om of the rankings among the three techniques,

recording the lowest performance of all nine a�empts with a 69.09% accuracy on its second

run. In contrast, its first and third a�empts showed somewhat improved outcomes, achieving

71.68% and 73.24% respectively. These performances contribute to an average accuracy rate of

71.33%, which is over 1 percentage point lower than that ofShow your Thoughtsand nearly

2 percentage points less thanDeep Breath, while the standard deviation was 2.09. Notably,

Let's Thinkexhibited significantly greater variability in its results compared to the other two

techniques. This is evidenced by a spread in outcomes exceeding 4 percentage points.

The comparison with BERT o�ers a di�erent perspective on the intent classification task. BERT

significantly outperforms the LLM-based classifier, achieving an accuracy rate of approximately

92% across the entire test dataset and a 94% on the same test subset that is used for inference

with Llama. This represents a substantially wider gap than what was observed in the CLINC-

150 dataset, with a di�erence of more than 20 percentage points in accuracy between the BERT

classifier and the Llama-based approach. Despite our primary objective being to enhance

explainability in predicted intents through the Chain of Thought methodology, the importance

of accuracy cannot be understated. This considerable disparity in performance prompts us to

be�er consider ways to enhance the performance of our techniques.

5.2.1 Chain of Thought Analysis

We will now present some examples from responses where our Llama model correctly classified

input u�erances to their correct intent classes. We will judge these responses by their Chain

of Thought, both their presence or absence, as well as the quality of it. For each prompting

technique we tested we will once more present 3 example responses, 1 from each run, which

when one considers the size of this test dataset here is an even stronger indication as to

whether each prompting technique produces Chains of Thoughts, and if yes, it will give us
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insights as to their quality. More such example responses can be found in Appendix C, which

we also took into account for the inferences made in this subsection.

Deep Breath

text : If the transfer details have already but reviewed and confirmed that they are correct,
what other reason would cause my transfer to be declined?
response: sure! based on the text the user wrote, the intent is: "declined_transfer" because
the user is asking about reasons why their transfer might be declined, which aligns with the
description of the "declined_transfer" intent.

text : How do I get the contactless feature to work for my card?
response: the intent of the user when they wrote the text "how do i get the contactless feature
to work for my card?" is "contactless_not_working".

text : Is there any documentation needed for the identity check?
response: the intent of the user when they wrote the text "is there any documentation needed
for the identity check?" is "verify_my_identity".

The same issue observed with the technique of "Deep Breath" on the CLINC-150 dataset,

where there was a notable lack of Chains of Thought in responses, is also evident on the

BANKING77 dataset. In 2 out of the 3 instances, the use of this prompting strategy did not

yield a Chain of Thought; the responses primarily consisted of the text u�erance paired with a

predicted intent class. However, on the 1 occasion where a Chain of Thought was generated,

it was accurate and insightful, providing clear reasoning behind the model's choice of intent

class. Given that this approach achieved the highest accuracy on this dataset, the scarcity

of Chains of Thought, which can also be observed in the additional examples of Appendix C,

leaves one desiring more of such detailed processing to truly consider it the best zero-shot

prompting method.

Show your Thoughts

text : Can my 19 year old daughter open a savings account at the bank?
response: the intent of the user when they wrote the text "can my 19 year old daughter open
a savings account at the bank?" is "age_limit". this is because the user is inquiring about the
minimum age requirement for opening a savings account, which falls under the "age_limit"
intent category.
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text : If I am overseas, how do I change my pin?
response: the intent of the user when they wrote the text "if i am overseas, how do i change
my pin?" is "change_pin" because the user is asking about modifying or se�ing a new personal
identification number for their card or account while being abroad.

text : How old do you have to be to be able to open an account?
response: the intent of the user when they wrote the text "there's a direct debit payment in
my account that i didn't make" is "direct_debit_payment_not_recognized". this is because the
user is indicating that there is a direct debit payment in their account that they did not make,
which aligns with the description of the "direct_debit_payment_not_recognized" intent.

In this case, the distribution of texts featuring a Chain of Thought versus those without is

inverted as out of 3 responses, all three include a Chain of Thought. In each response the

explanation provided by Llama was accurate, o�ering a logical justification for why the model

classified the input u�erance into the specified intent class. This is also evident in the examples

of Appendix C.

Let's Think

text : Is there a discount for frequently exchanging currencies?
response: the intent of the user when they wrote the text "is there a discount for frequently
exchanging currencies?" is "exchange_charge".

text : Why did it decline my payment?
response: the intent of the user when they wrote the text "why did it decline my payment?"
is "declined_card_payment". this is because the text explicitly mentions a declined payment,
which aligns with the description of the "declined_card_payment" intent.

text : Where will I find my card?
response: the intent of the user when they wrote the text "where will i find my card?" is
"order_physical_card". this is because the text is asking about finding a physical card, which
aligns with the intent of requesting a new physical card.

The responses generated using theLet's Thinkprompting method entails a generated Chain

of Thought in 2 out of 3 cases with the one remaining case consisting of just the text u�erance

supplied in the prompt and a predicted intent class. he responses that do include a Chain of

Thought, are accurate and correct, mirroring the quality seen in previous techniques we've

examined. These Chains of Thought are logically sound, albeit straightforward, and not highly

complex. The same observations can also be made about the examples found in Appendix

C.
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6Few Shot Experimentation

6.1 Introduction

Upon observing the diminished accuracy of our current prompting techniques (at least when

compared to the BERT classifier) as well as the fact that the prompting techniques in both

datasets generated Chains of Thought with adequate quality and accuracy, we decided to

take our experimentation one step further.

The way we did this was inspired by Wei et al. (2022), where the authors introduced hand-

cra�ed Chains of Thought to the prompt for In-Context Learning. This approach builds on the

findings that adding just a few exemplars to a prompt can significantly boost the performance

of a Large Language Model, as demonstrated by Brown et al. (2020). One extra benefit of

this approach is that the exemplars will guide the model in how to respond to queries. By

incorporating exemplars with a generated Chain of Thought in the prompt's context, the

model is encouraged to answer similarly.

We created our exemplars for In-Context Learning in a completely di�erent way from the one

Wei et al. (2022) utilized since our exemplars for In-Context Learning are not hand-cra�ed.

Instead, they are cra�ed using the Llama model and the pipeline we described in previous

chapters. To do this we followed a very specific procedure, which we will now describe.

Firstly, we extracted the top 5 intent classes for each u�erance of thetraining split of each

dataset using the same process we described in the previous chapters. We decided to use the

prompting technique that gave us the best zero-shot results in each dataset in the few-shot

scenario, namelyShow your Thoughtsfor CLINC-150 andDeep Breathfor BANKING77. This

was done because, with the In-Context exemplars featuring a Chain of Thought, we expect

that the few-shot prompting technique will retain the accuracy advantage of the previous

techniques but also enhance the quality of the Chains of Thought that are produced. A�er

shu�ling the complete train split of each dataset, and applying the corresponding prompting

technique on just the 20 first texts of each training split, we fed those prompts to the Llama

model, which generated the 20 most probable results for each prompt utilizing the top_k

argument of the transformers library's text generation pipeline. A�er careful examination

of these20� 20 = 400responses, we chose those that seemed to best fit our criteria to be

introduced as exemplars for few-shot prompting.
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Those criteria are three:

ˆ The response must have predicted the correct intent class

ˆ The response must include a Chain of Thought

ˆ The Chain of Thought produced must be correct and reasonable

Additionally, we paid close a�ention to a seemingly minor yet crucial detail: the Chain of

Thought must precede the model's predicted intent. This order is vital because if the model

first predicts the class and then explains its reasoning, it appears to be justifying its decision.

In contrast, we aim for the model to first deliberate on the u�erance, present its intermediate

reasoning steps, and only then conclude with the class prediction.

If any of the 400 responses fit these three criteria it was immediately considered a candidate

response to be included in the context of the prompt for In Context Learning. Out of these

candidate responses, we finally kept the 3 responses that we deemed to be the best. Out of

these three, we chose one to be included in our 1-shot experiments, two to be included in our

2-shot experiments, and all three were included in our 3-shot experiments.

The prompts that we used for In Context Learning for each dataset, along with full prompt

examples can be found in Appendix A.

Fig. 6.1: A N-shot prompt and the parts that comprise it.
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6.2 CLINC-150

We will now present the few-shot experimentation results using theShow your Thoughts

prompting technique on CLINC-150, which we presented in Section 3.1, provided us with the

best results on the 0-shot experimentation. Recall that CLINC-150 features 150 di�erent intent

classes across 10 domains. Our test dataset holds just 5 texts per intent, bringing the total

size of our test dataset to 750 texts. This is the same dataset that was used for the 0-shot

experimentation.

Prompting Technique 1st run 2nd run 3rd run Average St. Dev.
Show your Thoughts 86.00 88.13 86.40 86.84 1.13

1-shot 85.33 88.13 84.40 85.20 1.94
2-shot 88.53 87.33 88.93 88.26 0.83
3-shot 88.53 89.06 89.06 88.88 0.30
BERT 96.00

Tab. 6.1:Accuracy of CLINC-150 across 3 runs and their average.

The analysis reveals that all three employed techniques consistently yield impressive results,

with each maintaining an accuracy rate exceeding 87% in all but two instances, and surpassing

88% in all but three. Notably, the 3-shot technique emerges as the superior method among

the three, recording an exceptional average accuracy of 88.88% across three separate runs

and a standard deviation of 0.3. Delving into the individual run performances, the initial run

registered the lowest accuracy at 88.53%, while both the second and third runs mirrored each

other with a slightly higher accuracy of 89.06%. The remarkable aspect of these results lies in

the minimal variance in accuracy scores, with a mere 0.53 percentage points range, marking

the narrowest margin observed so far in all the 0-shot prompting techniques utilized. This

consistency in performance suggests that the 3-shot technique not only demonstrates high

accuracy but also exhibits a notable level of reliability and stability, making it a dependable

method for applications.

The 2-shot technique emerged as the second most e�ective achieving an average accuracy of

88.26% across three runs, which is just 0.6 percentage points worse than the 3-shot technique

and a standard deviation of 0.83. Notably, its most successful run was the final one, which

a�ained an 88.92% accuracy rate. This score is particularly noteworthy as it stands as the

second highest overall when considering the tie for the best score. On the lower end, the least

successful run of the 2-shot technique recorded an accuracy of 87.33%. The variability between
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the highest and lowest accuracy in these runs was just 1.6 percentage points, a remarkably

narrow margin.

In contrast to the other techniques, the 1-shot approach is the least e�ective, achieving an

average accuracy of only 85.2% on the test dataset, which is nearly 3 percentage points below

the average accuracy of the 2-shot method and 3.6 percentage points below the average

accuracy of the 3-shot method, while a�aining a standard deviation of 1.94. The results of

the 1-shot technique showed considerable variability, with a significant margin of nearly 4

percentage points between its best and worst outcomes. The best performance of this method

was observed in its second run, achieving an impressive 88.13% accuracy, which ranks as one

of the best scores across all techniques. However, this high point contrasts sharply with its

lowest accuracy of 84.4%, recorded in the third run, while an 85.13% on the 1st run brought

the average to the point it stands.

This wide gap in performance levels raises questions about the reliability of the 1-shot tech-

nique. The exceptional result in the second run, which is markedly di�erent from the other

two runs, might indicate an anomaly or outlier. Such an inconsistency undermines the credi-

bility of the 1-shot method, casting doubt on its dependability. A reliable technique should

ideally exhibit consistent and predictable results, which the 1-shot approach seems to lack, as

evidenced by the disparate outcomes in its various applications.

The performance of the 1-shotShow your Thoughtstechnique is further undermined, not just

by the wide gap between its best and worst accuracy scores, but also by its inability to surpass

the average accuracy of any 0-shot prompting technique discussed in the previous chapter.

Specifically, the 0-shotShow your Thoughtstechnique achieved a notable average accuracy of

86.84%, while the least e�ective among the previously mentioned 0-shot prompting techniques,

Let's Think, recorded an average accuracy of 85.46%. When these figures are compared, it

becomes evident that the 1-shotShow your Thoughtslags as it scores 1.6 percentage points

lower than the 0-shotShow your Thoughtsand is 0.26 percentage points less accurate thanLet's

Think. This comparative analysis clearly illustrates that the 1-shot version does not measure

up to the standards set by the 0-shot techniques. Its lower average accuracy, coupled with its

inconsistency (as evidenced by the large variance in its accuracy scores), severely impacts its

reliability, leading to the conclusion that it is a less trustworthy method in the context of the

techniques being evaluated.

The final stage of our analysis involves a comparative evaluation between the three few-shot

prompting techniques and the BERT classifier, which was fine-tuned on this dataset and
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Fig. 6.2: A heatmap of all the results, both individual runs and average accuracy, using the description
strategy for CLINC-150. We can easily discern between the best and worst runs and methods with ease
and it becomes apparent that the best method in terms of accuracy is the 3-shot method.

utilized specifically for extracting the top 5 intents per text. While our primary focus with the

BERT classifier was on its top-5 accuracy, to ensure the most accurate extraction of the top-5

predicted intents, we also kept track of its classic accuracy. On the entire test dataset, the

BERT classifier impressively achieved a 96% accuracy rate, while on the same test subset used

for our prompting experiments, it again achieved a 96% accuracy.

In this context, the performance of our 3-shotShow your Thoughtstechnique is particularly

noteworthy. It managed to approach the high accuracy of the BERT classifier, with its best

result hi�ing 89.06% and an average accuracy of 88.88%. However, it is crucial to emphasize

that while BERT significantly outperformed our technique in terms of accuracy, these two

models are fundamentally designed for di�erent purposes. BERT is primarily utilized for tasks

such as Masked Language Modeling and various classification tasks, while the Llama model

we employed is geared toward text generation. The Llama model is not inherently suited for

classification tasks, at least not in the manner that BERT is.

Therefore, the observed disparity in their performance results is to be expected given their

di�ering functionalities and design objectives. However, the fact that our 3-shotShow your

Thoughtstechnique was able to narrow the gap in performance to some extent with BERT is

promising.
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6.2.1 Chain of Thought Analysis

A�er presenting the outcomes of our few-shot experiments, we will proceed to examine 3

randomly selected responses (1 from each run) for each of the 3 few-shot techniques we

discussed just before, all of which were accurately classified. We will only present correctly

classified examples here because in the following chapter we present a thorough error analysis.

The purpose of this examination is to determine whether these responses exhibit a Chain of

Thought and to evaluate the quality and veracity of this Chain of Thought. It is important

to note that, given the nature of our few-shot experiments and the fact that the in-context

examples we employed include responses characterized by a Chain of Thought, we anticipate

that nearly all of these responses will demonstrate a Chain of Thought. However, it remains

essential for us to verify this expectation through a detailed review.

More response examples can be found in Appendix B which we also took into account for the

inferences that we made in this subsection.

1-shot

text : i need to know the carry-on rules for southwest
response: since the user needs to know the carry-on rules for southwest airlines, which falls
under the category of seeking information about carry-on luggage, the intent is "carry_on".

text : talk fast
response: since the user requested to talk fast, which is related to changing the speaking
speed, the intent is "change_speed".

text : travel alert in cuba
response: since the user is looking for information about travel alerts in cuba, which falls
under the category of seeking information about potential disruptions or noteworthy events
that may impact travel plans, the intent is "travel_alert".

As anticipated, every response generated by the Llama model showcased a Chain of Thought

that it developed. Each response was not only truthful but also followed a logical reasoning

path that culminated in the correct answer. Additionally, it's worth noting that the model

benefited from the extra care we took in presenting the in-context exemplars. Specifically, we

made sure to include the final answer regarding the intent class at the end of each sentence

following the Chain of Thought. Since Llama2 is a decoder-only model with masked a�ention

that considers only the previously generated text, if the predicted class is output before the

Chain of Thought, the decoder is not aware of the Chain of Thought at the time of making
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the prediction. Therefore, the following text could be seen as an a�er-the-fact explanation of

its decision, which cannot be considered a Chain of Thought, as Wei et al., 2022 defined Chain

of Thought as a series ofintermediatereasoning steps. The same observations also apply to

the examples of Appendix B.

2-shot

text : how soon milk expires
response: based on the text provided, the user's intent is to seek information about the shelf
life or expiration date of milk, which falls under the category of "food_last", as the user is
inquiring about the remaining time until the milk goes bad.

text : should i have my shots up to date before i travel to the virgin islands
response: based on the text provided, the user's intent is to seek information about the
necessary vaccinations before traveling to the virgin islands, specifically inquiring about
whether they should have their shots up to date. therefore, the intent of the user is "vaccines".

text : let me know how many pounds are in 10 kilos
response: based on the text provided, the user's intent is to seek information about the
conversion of weight measurements from kilograms (kg) to pounds (lb), specifically to deter-
mine how many pounds are equivalent to 10 kilograms. therefore, the intent of the user is
"measurement_conversion".

The observations noted for the Chains of Thought created through our 1-shot approach are

also applicable here since the responses of our 2-shot method are be�er articulated, with

enhanced clarity, and exhibit more sophisticated reasoning behind the classification of each

text u�erance into its respective intent class. This development is highly encouraging for

our objectives, as it allows us to confidently a�irm the e�icacy of our methodology. This

assertion is further bolstered by the average accuracy rates achieved by the model. The same

observations also apply to the examples of Appendix B.

3-shot

text : give me the date that i last got my car checked
response: based on the given text, the intent of the user when they wrote "give me the date
that i last got my car checked" is to seek information about the last time their car was serviced
or maintained, which aligns with the "last_maintenance" intent from the provided set of
intents.
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text : how many stars does brasserie les halles have
response: based on the given text, the intent of the user when they wrote "how many stars
does brasserie les halles have" is to seek information about the rating or reputation of brasserie
les halles, which aligns with the "restaurant_reviews" intent from the provided set of intents.

text : i am asking you to add this song to my country music playlist
response: based on the given text, the intent of the user when they wrote "i am asking you to
add this song to my country music playlist" is to update their existing music playlist by adding
a new song, which aligns with the "update_playlist" intent from the provided set of intents.

As anticipated, the 3 sample responses generated using our 3-shot technique exhibit Chains

of Thought that are, not only more complex but also more eloquently articulated than those

produced by our 2-shot method. This observation serves as strong evidence of the e�ectiveness

of our approach, especially when applied to this particular dataset. It demonstrates the capacity

of our method to enhance the quality and sophistication of the generated responses, thereby

underscoring its potential as a robust tool for improving the interpretability and accuracy of

response generation in complex datasets. The same observations also apply to the examples of

Appendix B.

6.3 BANKING77

We now present the findings of our few-shot experiments, which employed theDeep Breath

prompting technique. Notably, this technique emerged as the most e�ective in our prior

0-shot experimentation using the same dataset. We chose this prompting technique for our

few-shot experimentation because it was the one that gave us the best 0-shot results in terms

of accuracy, even though most of the responses did not feature a Chain of Thought. But

some of them did feature a Chain of Thought, and through the pipeline we described at the

beginning of this chapter we managed to find some exemplars we deemed adequate to be

included in our few-shot experiments.

Prompting Technique 1st run 2nd run 3rd run Average St. Dev.
Deep Breath 74.54 72.20 73.50 73.31 1.17

1-shot 71.68 69.35 72.98 71.32 1.83
2-shot 70.90 71.42 72.46 71.59 0.79
3-shot 73.50 72.98 74.54 73.67 0.79
BERT 94.00

Tab. 6.2:Accuracy of BANKING77 across 3 runs and their average.

38



Upon initial examination of the few-shot results, we observe a pa�ern that mirrors that of the

few-shot experiments conducted on CLINC-150. Once again, the 3-shot technique emerges

as the top performer with an average accuracy of 73.67% and a standard deviation of 0.79.

This performance not only stands out on this specific dataset but also exceeds the score of

the 0-shotDeep Breathmethod, which recorded an average accuracy of 73.31%. Although the

di�erence in accuracy between the 0-shot and 3-shotDeep Breathtechniques might appear

minimal by CLINC-150 standards, it's important to acknowledge the increased complexity of

this dataset. Designed to more closely mimic real-world input u�erances, this dataset presents

challenges not encountered in CLINC-150.

Indeed, as previously noted, the 3-shot technique emerged as the most e�ective in our few-

shot experimentation, registering an average accuracy of 73.67%. Delving deeper into the

individual runs of the 3-shot experiments, we observe notable variation in performance. The

third run outperformed the others, achieving an accuracy of 74.54%. This performance is

particularly significant as it represents the best performance among all nine runs of the few-

shot experiments and is tied for the best result overall with the first run of 0-shotDeep Breath.

On the other end of the spectrum, the second run of the 3-shot experiments a�ained an overall

accuracy of 72.98%, a score which falls while the first run occupied a middle ground relative to

the other two, recording a score of 73.5%.

The variability in accuracy across these runs - approximately 1.56 percentage points - is the

lowest observed thus far on this dataset. This shows that maybe adding in-shot exemplars

to this particular prompting technique, i.e.,Deep Breath, could help stabilize the results a bit,

as 0-shotDeep Breathhad a margin of 2.34 percentage points between the best and worst

results.

The 2-shot technique emerged as the runner-up in terms of e�ectiveness, achieving an overall

accuracy of 71.59%, which is 2.08 percentage points below the accuracy of the 3-shot and,

quite notably, 1.72 percentage points below the average accuracy ofDeep Breath, which as

we mentioned before achieved an average accuracy of 73.31%, while the standard deviation

came to 0.79. It also scored worse thanShow your Thoughtswhich was the second best 0-shot

method, and only merely surpassedLet's Think, the worst of our 0-shot methods. It also

achieved a 0.79 standard deviation, which is the same as the standard deviation of the 3-shot

method. Within this series of runs, the most best was observed in the third a�empt, registering

an accuracy of 72.46%, a result that as we can see on the table is pre�y average when compared

with all the other runs. The initial run of the 2-shot technique yielded a moderate 70.9% which

was the least impressive run of the 2-shot method and one of the lowest scores we observed
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either in a few-shot or 0-shot se�ing. The performance of the second run in the 2-shot se�ing

is right in the middle between the first and third runs, achieving an accuracy of 71.42%. The

margin between the best and worst results on this series of experiments comes to just 1.56

percentage points which is tied with the 3-shot margin for the lowest margins observed in

this particular dataset. This comes as a stronger signal that the extra in-shot exemplars help

stabilize the results and make our model more sure of its responses, no ma�er the fact that

these responses could be wrong a li�le more o�en in this 2-shot se�ing when compared with

the 0-shot and 3-shot variants ofDeep Breath.

The worst of these few-shot techniques was, like it was on CLINC-150, the 1-shot method,

which performed very similarly to the 2-shot method, and more specifically a 71.32% which

is just 0.27 percentage points behind the 2-shot method and 2.35 percentage points behind

the 3-shot method, with a standard deviation of 1.83. This method, as the 2-shot method did,

scored worse than every 0-shot method we experimented with as the lowest of the 0-shot

scores was 71.33%, just 0.02 percentage points over 1-shot, but still over 1-shot. The best run

of the 1-shot experiments was the 3rd one which achieved a pre�y good 72.98% accuracy,

resembling the results of the 0-shotDeep Breathexperiments, while the worst run was the

second one, managing only a 69.35% overall accuracy, while the 1st run sits somewhere in the

middle of the previous two scores, at 71.68%. As we can already see, the variability between the

best and worst runs is around 3.6 percentage points which is pre�y substantial, even for this

dataset which always gave us results with high variability in their accuracy between runs.

The dataset in question, as pointed out by Casanueva et al. (2020), is designed to closely mirror

real-world data, making the task of achieving high-performance scores more challenging. This

inherent di�iculty could be a primary factor contributing to the observed performance levels,

and might also explain why the technique of few-shot prompting did not yield as significant

improvements here as it did with the CLINC-150 dataset. Another aspect to consider is the

specific in-shot exemplars selected for use with this dataset which even though they fulfilled

the predetermined criteria as to their quality, the criteria themselves might not be adequate to

help us choose exemplars that will yield a significant improvement in performance on this

particular dataset. Additionally, the limited number of exemplars used in this study, which

was restricted to just three, could also be a contributing factor to the sub-optimal performance

observed. This raises the question of whether increasing the number of exemplars might have

produced di�erent results.

Another perspective on the observed performance levels could be a�ributed to the specific

variant of Llama utilized in this research, namely Llama2-13B. Considering the scale of language
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Fig. 6.3: A heatmap of all the results, both individual runs and average accuracy, using the description
strategy for BANKING77. We can easily discern between the best and worst runs and methods with
ease and it becomes apparent that the best method in terms of accuracy is the 3-shot method, even by
a very slight margin.

models, a 13 billion parameter model may not possess su�icient capacity for this dataset. This

viewpoint gains credence when reflecting on the work of Loukas et al. (2023), who conducted

a similar classification task employing larger language models, including GPT-4, which, while

its exact parameter count remains undisclosed, is speculated to be in the hundreds of billions.

Notably, this e�ort was undertaken without leveraging techniques such as Chain of Thought

or providing descriptions, relying solely on In Context exemplars from each class. Despite

the significantly larger scale of GPT-4, the improvement in results over those achieved with

Llama2-13B was not markedly superior. This observation suggests that while the size of a

language model is a critical factor, the application of more sophisticated prompting techniques

or the challenges of the dataset may limit the extent of performance gains achievable solely

through increased model capacity.

The comparison of these outcomes with the findings from the fine-tuned BERT classifier, which

was employed to extract the top-5 potential intents for each u�erance, further underscores

the inadequacies observed. BERT achieved an impressive overall accuracy of 92% on the entire

test dataset and 94% on the test set that was used for inference with Llama. In contrast, our

best performing few-shot method, the 3-shot technique, only managed an average accuracy of

73.67%, which is almost 20% lower than the accuracy achieved by the BERT classifier, 18.33%

41



to be exact. This performance manages to close the gap between the BERT-classifier and the

Llama-based approach to this classification task, even by a very small margin.

This contrast underscores a crucial point: while BERT may be from an earlier generation of

models and is designed primarily for tasks like classification, our Llama model, aimed at a

di�erent function as a text generation model, faces distinct challenges. It becomes clear that

to even approach the performance level of previous generation models like BERT, our Llama

model requires extremely careful handling and a highly specialized approach, underlining the

significant di�erences in model capabilities and design objectives between the two.

6.3.1 Chain of Thought Analysis

A�er presenting the results of our few-shot experiments, we will move on to analyze 3 randomly

selected responses (1 from each trial) for each of the three few-shot techniques we previously

discussed, all of which were accurately classified. This analysis aims to check if these responses

exhibit a Chain of Thought and to assess the quality and accuracy of this Chain of Thought.

Considering the nature of our few-shot experiments and the fact that the in-context examples

we used are marked by a Chain of Thought, we expect almost all of these responses to display

a Chain of Thought. Nonetheless, we must confirm this expectation by conducting a thorough

examination.

More such examples can be found in Appendix C, which we also took into account for the

inferences made in this subsection.

1-shot

text : Where can i find your locations?
response: based on the text "where can i find your locations?", the user is seeking information
about the physical locations where the services or products o�ered by the entity are available,
and therefore the intent of the user is "country_support".

text : Does delivery to the us take long?
response: based on the text "does delivery to the us take long?", the user is inquiring about the
estimated delivery time for a card to the united states, specifically asking about the duration
of the delivery process. therefore, the intent of the user is "card_delivery_estimate".
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text : How come the atm gave me less cash than what i asked for?
response: based on the text "how come the atm gave me less cash than what i asked for?", the
user is seeking clarification and understanding regarding a discrepancy between the amount
of money requested and the amount dispensed by an automated teller machine (atm), which
aligns with the intent "wrong_amount_of_cash_received".

The responses generated by our model using the 1-shot technique demonstrate eloquent

and precise Chains of Thought for every piece of text, aligning with our expectations due to

the inclusion of an exemplar response featuring a Chain of Thought in the 1-shot prompt.

Additionally, a noteworthy aspect of these responses is that the predicted intent is positioned

at the end, allowing the Large Language Model to first construct a reasoning path before

reaching the desired conclusion. The same observations apply to the examples of Appendix

C.

2-shot

text : Where's the verification code for the top-up card?
response: based on the text "where's the verification code for the top-up card?", the user is
seeking confirmation of the addition of funds to their account or service, specifically asking
for the verification code related to the top-up card. therefore, the intent of the user is "ver-
ify_top_up".

text : Where do i go to get the code to verify the top up card?
response: based on the text "where do i go to get the code to verify the top up card?", the user
is seeking information on how to obtain a verification code to confirm the addition of funds to
their account. therefore, the intent of the user is "verify_top_up".

text : My card is about to expire,
response: based on the text "my card is about to expire," the user is seeking information or
assistance regarding the upcoming expiration of their payment card. therefore, the intent of
the user is "card_about_to_expire."

Similarly to what we have observed across all responses generated by the few-shot methods on

both datasets, the responses from the 2-shot method consistently display correct and truthful

Chains of Thought that are articulated eloquently. Here as well, we note that the reasoning

precedes the predicted intent, which aligns with our objective and was a key factor in our

search for suitable in-shot exemplars. This deliberate structuring to prioritize reasoning before

concluding is a testament to the e�ectiveness of our approach in cra�ing responses that meet

our desired criteria. The same observations apply to the examples of Appendix C.
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3-shot

text : Can I cancel a transfer if is already processed?
response: the user is asking if they can cancel a transfer that has already been processed,
which falls under the category of a�empting to halt or reverse a previously initiated monetary
transaction. therefore, the intent of the user is "cancel_transfer".

text : I think something may have happened that caused a charge to show up twice.
response: based on the text "i think something may have happened that caused a charge to
show up twice," the user is seeking clarification and resolution regarding a double charge on
their account. therefore, the intent of the user is "transaction_charged_twice."

text : Is it possible to make several disposable cards in a day?
response: the user is asking if it is possible to create multiple disposable cards in a day,
which falls under the category of "disposable_card_limits." therefore, the intent of the user is
"disposable_card_limits."

In this instance, we observe that, in some cases, the model explicitly mentions the intent

class name before providing its final answer, a pa�ern not seen in the responses from the two

previous few-shot sets. This di�erence may be a�ributed to the inclusion of a third in-shot

exemplar, which was absent in the previous few-shot experiments, or to its interaction with

the other two in-shot exemplars. Regardless, we consider this to be a minor observation and

choose to overlook it, given that the resulting Chains of Thought are well-articulated and

truthful across all 3 responses. The same observations apply to the examples of Appendix C.
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7Ablation Study & Error Analysis

7.1 Ablation Study

Our next step involves conducting an ablation study, a crucial part of our analysis. The primary

objective of this study is to evaluate the robustness and e�icacy of our technique. Specifically,

we aim to determine the impact of incorporating intent descriptions and the inclusion of Chain

of Thought phrases. This will help us understand if these elements significantly enhance our

results, contributing to a deeper understanding of the elements that drive the success of our

methodology.

To conduct this comprehensive ablation study, our approach will be methodical and staged.

Initially, we will modify the prompt by omi�ing the Chain of Thought component. In this

phase, our task for Llama will be straightforward: to classify the provided text u�erance into

one of the top-5 intent classes we have predefined. Importantly, during this initial step, we will

retain the intent descriptions in the prompt to isolate the e�ect of removing only the Chain of

Thought.

Following this, we will invert our approach: we will preserve the Chain of Thought portion of

the prompt but will eliminate the intent descriptions. This will enable us to specifically gauge

the influence of removing the intent descriptions on the accuracy of our classification task.

The final segment of our ablation study aims to assess the combined importance of both

techniques. We will do this by evaluating the accuracy of a prompting technique that excludes

both the Chain of Thought and the intent descriptions. This will provide us with valuable

insights into the individual and collective contributions of these elements to the overall

e�ectiveness of our methodology.

For the reader to accurately discern between the methods that include Descriptions and those

that do not, we will from now on denote the techniques that do feature descriptions with their

name and theDESCRconcatenated.
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7.1.1 Without Chain of Thought

For this initial part of our ablation study we directly query our Llama model to choose the most

accurate intent class from the five we presented to it presented along with their descriptions.

The way we do this is by simply asking Llama:What is the intent of this text: [x]where [x] is

the u�erance of the dataset.

One example of a full prompt utilizing this method is this:

�estion: We have the following set of intents along with their descriptions:

� no: The intent �no" signifies a straightforward refusal or a negative response to a ques-

tion or statement, indicating a lack of agreement or a�irmation.

� cancel: The intent �cancel" involves users expressing a desire to cancel or terminate a

particular action or process.

� repeat: The intent �repeat" involves asking for the duplication or reiteration of a state-

ment, command, or information previously provided, seeking clarification or emphasis.

� who_do_you_work_for : The intent �who_do_you_work_for" involves inquiries seeking

information about the entity or organization that an individual or system is a�iliated with

or employed by.

� change_speed: The intent �change_speed" involves seeking information or guidance

on adjusting the speed se�ings, such as playback speed or talking speed, on a device or

application.

What is the intent of this text: �'forget what i told you to do�'?

Answer: [intent name goes here].

Let us now present the results of this technique for both datasets.
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Prompting Technique 1st run 2nd run 3rd run Average St. Dev.
No-CoT DESCR 86.53 85.86 87.46 86.61 0.80

Deep Breath DESCR 85.33 86.26 86.26 85.95 0.54
Let's Think DESCR 85.73 83.73 86.93 85.46 1.61

Show your Thoughts DESCR 86.00 88.13 86.40 86.84 1.13
BERT 96.00

Tab. 7.1:Accuracy of CLINC-150 across 3 runs and their average. The average accuracy of the method
without a Chain of Thought is highlighted.

Prompting Technique 1st run 2nd run 3rd run Average St. Dev.
No-Cot DESCR 71.94 73.50 74.02 73.15 1.08

Deep Breath DESCR 74.54 72.20 73.50 73.31 1.17
Let's Think DESCR 71.68 69.09 73.24 71.33 2.09

Show your Thoughts DESCR 72.98 73.76 71.42 72.72 1.19
BERT 94.00

Tab. 7.2:Accuracy of BANKING77 across 3 runs and their average. The average accuracy of the method
without a Chain of Thought is highlighted.

As we can see from the tables above, in both datasets the average accuracy of our latest

prompting technique, No CoT, which features the descriptions in the prompt but not a phrase

that generates a Chain of Thought, lags behind the best prompting technique by a very narrow

margin. No-CoT produced an average accuracy of 86.61% surpassing bothLet's Think DESCR

and Deep Breath DESCRby 1.15 percentage points and 0.66 percentage points respectively,

being just 0.23 percentage points behindShow your Thoughts DESCR. It also produced a

standard deviation of 0.8. On BANKING77 the same method produced an average accuracy of

73.15% surpassing bothLet's Think DESCRandShow your Thoughts DESCRby 1.82 percentage

points and 0.43 percentage points respectively, while it sits just 0.16 percentage points behind

Deep Breath DESCRwhich produced the best results on this Dataset, while it also produced a

standard deviation of 1.08.

In CLINC-150 the best result of No-CoT DESCR was an excellent 87.46% on its third run, while

the worst run was an 85.85% and the first run was an elevated 86.53%. The margin between

the best and the worst results was 1.6 percentage points which is one of the lowest recorded

in the CLINC-150 dataset.

In BANKING77 we see a very similar image. The third run was the highest scoring among

the three, achieving a 74.02% accuracy, which is the second highest of all runs on this dataset.

The first and second runs procured a 71.94% and 73.5% respectively, bringing the variability
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between the best and worst scores to 2.08 percentage points, the lowest observed in this

dataset.

The analysis indicates that in both datasets evaluated, the No-Cot DESCR method, while

not emerging as the top performer in the 0-shot se�ing, was remarkably close to the leading

methods in terms of performance. This observation leads to an intriguing conclusion: even

though prompts utilizing the Chain of Thought approach were the frontrunners in both

scenarios, the absence of Chain of Thought prompting would likely not result in a significant

disparity in accuracy. This inference is in partial alignment with the research findings presented

by Kojima et al. (2022), Wei et al. (2022), Wang et al. (2023), and Wang et al. (2023). These

studies have suggested that the accuracy of smaller models (i.e. with less than 100 Billion

parameters) on similar tasks to ours could potentially diminish when Chain of Thought

prompting is employed. However, it's important to note that this agreement is only partial, as

in both datasets analyzed, the methods that secured the top performance spots were those

that incorporated Chain of Thought prompting, albeit by a slim margin.

7.1.2 Without Descriptions

We will now test the importance of intent descriptions in the prompt. The way we will do this

is by keeping everything else in the prompt the same, but simply not including the descriptions

of the top-5 intents which our model will have to choose from. This way the model will have

to find similarities between the u�erance we provide it and the intents by using just the intent

names, which sometimes may be uninformative, or confusing as to what exactly they represent.

As for our prompting methods, in this step, we will research every prompting method we have

mentioned in previous chapters that is expected to produce a Chain of Thought, both 0-shot

and few-shot. For the few-shot scenarios, we opted to test the same method we used on the

few-shot scenarios with the intent descriptions present in the prompt, meaningShow your

Thoughtsfor CLINC-150 andDeep Breathfor BANKING77. The exemplars that were used

for In Context Learning were chosen using the same methodology we used for the few-shot

scenario with the descriptions included.

CLINC-150

A�er just one look at the table of the results, we notice that the absence of the descriptions has

a big impact on the results. The average accuracy of every method we tested, both zero-shot

and few-shot, has dropped significantly. When compared with the inclusion of descriptions,
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Method 1st run 2nd run 3rd run Average St. Dev. DESCR Average
Deep Breath 74.66 74.13 74.53 74.44 0.27 85.95
Let's Think 78.00 78.26 76.53 77.52 0.93 85.46

Show your Thoughts 76.93 75.86 76.93 76.57 0.62 86.84
1-shot 80.00 79.33 80.66 79.99 0.66 85.20
2-shot 83.33 83.06 85.20 83.86 1.16 88.26
3-shot 82.66 82.66 81.46 82.26 0.69 88.88
BERT 96.00

Tab. 7.3:Accuracy of CLINC-150 without the use of intent descriptions. The average accuracy of the
best method without intent descriptions is highlighted.

some methods' average accuracy dropped a li�le less, like the 2-shot technique where we

notice only a 4.4 percentage points drop in average accuracy, or a lot more, likeDeep Breath

which dropped a whopping 11.5 percentage points in accuracy score.

From the 0-shot techniques the best results now came fromLet's Thinkwith a 77.52% average

accuracy, a standard deviation of 0.93 and variability between best and worse runs of under

2 percentage points which is remarkable when one considers the fact with the descriptions

present this same prompting technique had more than 3 percentage points variability. Notably,

the drop in performance when compared with the descriptions included is around 8 percentage

points, one of the lowest we found.

Second best among the 0-shot techniques came ourShow your Thoughtsmethod with an

average accuracy of 76.57%, a li�le less than 1 percentage points o� theLet's Thinkvariant,

and 10.27 percentage points below the average accuracy of the same technique when used

with the intent descriptions in the prompt. The standard deviation came to 0.62 while the

margin here between the best and worst runs sits at an impressive 1.07 percentage points

which is less than half of the corresponding margin with descriptions included.

The worst performer for the 0-shot techniques wasDeep Breath, managing only a 74.44%

average accuracy across the three runs and a standard deviation of 0.27. The average accuracy

of 74.44% is 2.13 percentage points belowShow your Thoughtsand 3.08 percentage points

belowLet's Think. What is notable though is the drop in performance when compared with the

description-rich variant,Deep Breath DESCR, as the drop rose to 11.5 percentage points, the

largest of the three. As for the margin between best and worst runs, it was just 0.53 percentage

points which is the smallest margin we've observed in any 0-shot technique, whether with

descriptions or without.
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Fig. 7.1: The di�erence in average accuracy for CLINC-150 between using the descriptions and not
using them. It is evident that the technique that profits the most by the intent descriptions isDeep
Breath, while the few-shot methods seem to not su�er as much.

The few-shot techniques performed slightly be�er than the 0-shot techniques, as with just 1

in-shot exemplar we managed to get a 79.99% in average accuracy which is 3.42 percentage

points larger than the respective 0-shot score and 5.21 percentage points down from the

original 1-shot with the descriptions in the prompt. The standard deviation of this technique

is 0.66. We also noticed a general stability in the results of 1-shot with the range between best

and worst average accuracies si�ing a 1.33 percentage points, as the worst score was achieved

on the 2nd run, a 79.33%, while the best at the third run, a 80.66%. The first run achieved a

solid 80%.

2-shot was the best performer in these few-shot prompting techniques without the intent

descriptions as it achieved a very respectable 83.86%, close to 4 percentage points up from

the previous technique and just over 4 percentage points below the 2-shot technique with

descriptions added, with a standard deviation of 1.16. The best run was the third one with

a surprising 85.2%, while the first and second ones performed similarly to one another, with
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83.33% and 83.06% respectively. This brings the total variability of the results to 2.14 percentage

points which is average for this dataset.

Finally, the performance of 3-shot sat in the middle of the previous two techniques we

presented, with an 82.26% average accuracy, 2.27 percentage points over 1-shot, and just 1.4

percentage points below 2-shot. This performance was also 6.62 percentage points worse than

the 3-shot performance with the descriptions in the prompt, while achieving a 0.69 standard

deviation. Here, the best score was achieved twice, both by the first and second run, which

both scored an 82.66% average accuracy, with the third run managing a 81.46% to bring the

total variability of the results to 1.2 percentage points, a margin which is good when compared

with most techniques.

From the above results, we can easily deduce that descriptions play a very important part in

the overall improvement in performance, both in individual runs and when averaged, as not a

single prompting technique without descriptions, either 0-shot or few-shot, got anywhere near

in terms of accuracy with the accuracy of the respective method with descriptions added. Even

the best performer without the descriptions, which was 2-shot with 83.86% average accuracy,

was close to 2 percentage points below the worst performer with the descriptions added, i.e.

Let's Think. This shows that the inclusion of descriptions in the prompt has a very significant

impact on the performance of these models.

BANKING77

Method 1st run 2nd run 3rd run Average St. Dev. DESCR Average
Deep Breath 62.33 63.11 63.89 63.11 0.78 73.31
Let's Think 66.75 67.01 64.93 66.23 1.13 71.33

Show your Thoughts 63.89 63.37 66.75 64.67 1.82 72.72
1-shot 64.15 64.93 64.41 64.49 0.40 71.32
2-shot 68.05 68.57 70.64 69.08 1.37 71.59
3-shot 67.27 69.87 68.05 68.39 1.33 73.67
BERT 94.00

Tab. 7.4:Accuracy of BANKING7 without the use of intent descriptions. The average accuracy of the
best method without intent descriptions is highlighted.

From a first look at the table, we immediately notice that descriptions have a similar impact

on the performance of BANKING77 too. This can be derived from the fact that the average

accuracy of every single technique, both 0-shot or few-shot, drops, and most times in a pre�y

significant manner. Let us explore these results more deeply.
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First and foremost, once more, the best technique without descriptions isLet's Think, which

was the worst 0-shot performer with the descriptions added to this dataset too. It performed

a 66.23% average accuracy which is 5.1 percentage points below the 71.33% this technique

scored with the descriptions while a�aining a 1.13 standard deviation. The best run was the

the second one, which gave us 67.01% while the first and third ones sit at 66.75% and 64.93%

respectively. This brings the variability between best and worst results to 2.08 percentage

points, which is one of the lowest di�erences we've observed in this dataset.

The second best among the 0-shot prompting techniques wasShow your Thoughtswith a 64.66%

average accuracy and a standard deviation of 1.82. The average accuracy is 8.05 percentage

points worse than the corresponding performance with the descriptions added in the prompt,

and just 1.56 percentage points below the best performer without descriptions,Let's Think.

This time around, the best run was the third one with a 66.75%. The first and second runs

performed very similarly, with performances of 63.89% and 63.37% respectively. This brings

the margin between the best and worst scores to 3.38 percentage points, one of the largest

such margins we've seen so far on this dataset.

The worst 0-shot performer this time around was the one that had the best performance

with the descriptions added,Deep Breath, which scored just a 63.11% average accuracy with a

standard deviation of 0.78. This performance is a li�le more than 10 percentage points below

the corresponding performance with the descriptions added, 10.2 percentage points to be

exact, while it also lags behindShow your ThoughtsandLet's Thinkby 1.56 percentage points

and 3.21 percentage points respectively. The best run of this technique was the third one with

a 63.89% while the first and second ones managed only a 62.33% and 63.11% respectively. The

variability between the best and worst scores now sits at 1.56 percentage points, which is the

lowest such variability we've seen on this dataset, either with 0-shot or few-shot prompting

techniques.

We will now present the BANKING 77 few-shot results of this part of our ablation study. Recall

that for these few-shot experiments, we used theDeep Breathprompting technique so that we

have comparable results for our few-shot techniques both with and without descriptions.

Starting with 1-shot, the average accuracy was 64.49% with a standard deviation of 0.4. The

accuracy performance of 64.49% sits not only 6.83 percentage points below the 1-shot technique

with descriptions in the prompt but also 1.74 percentage points below the best 0-shot performer

without descriptions,Let's Think, 0.18 percentage points belowShow your Thoughtswithout

descriptions, only slightly improving its base method,Deep Breath, by 1.38 percentage points.
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As for the specific runs, the best one was the second run with 64.93%, while the first and third

runs achieved just 64.15% and 64.41%, bringing the margin between the best and worst runs to

just 0.78 percentage points which is the lowest margin we've seen on this dataset in any of the

prompting techniques, showing us that while not achieving the best results, it's one of the

most stable methods of the bunch.

2-shot significantly improves on the 1-shot results, achieving an overall accuracy of 69.08%,

which this time surpasses all 0-shot methods by at least 2.9 percentage points, is also 4.58

percentage points be�er than the 1-shot and 2.51 percentage points below the respective 2-shot

method with the descriptions included while the standard deviation is 1.37. The best individual

run was the third one with a notable 70.64$ while the first and second ones maintained a

relatively close 68.05% and 68.57% respectively. This brought the final variability between the

best and words runs to 2.59 percentage points, which is just about average for this dataset.

Fig. 7.2: The di�erence in average accuracy for BANKING77 between using the descriptions and not
using them. It is evident that the technique that profits the most by the intent descriptions is once
moreDeep Breath, while the few-shot methods seem to not hurt as much.

Finally, 3-shot could not improve on the 2-shot performance, managing only 68.38% which is

0.69 percentage points below 2-shot, but still 3.72 percentage points be�er than 1-shot. Also,
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this percentage is 5.28 percentage points below the respective method with the descriptions

included, which gave us the best results with the descriptions included. The standard deviation

of this method is 1.33.The best individual performance was a 69.87% on the second run while

the first and third ones achieved a 67.27% and 68.05% respectively, bringing the margin between

the best and worst scores to 2.6 percentage points, a pre�y average margin for this dataset.

As we can see from these previous results, descriptions play a pivotal role in the improvement

of performance in this dataset too. More specifically, every method without descriptions could

not surpass any single method with descriptions, even by a relatively small margin on the

2-shot case, though this could and should be a�ributed to the worsening performance of the

1-shot and 2-shot cases when the descriptions are added to the prompt, where the in-context

exemplars lead to a drop in performance.

7.1.3 Without both

For our final test in this ablation study, we will test the case where both the Chain of Thought

inciting phrases and the intent descriptions are missing. The way we do this is by simply

incorporating into the prompt the top 5 intents as they were extracted using our BERT classifier

and simply asking our Llama model to choose the correct one among the 5. The way we question

Llama is the same question as in our first part of this ablation study:What is the intent of this

text: [x] where [x] is the u�erance of the dataset.

CLINC-150

Method 1st run 2nd run 3rd run Average St. Dev. DESCR Average
No CoT 80.40 78.66 79.46 79.50 0.87 86.61

Deep Breath 74.66 74.13 74.53 74.44 0.27 85.95
Let's Think 78.00 78.26 76.53 77.52 0.93 85.46

Show your Thoughts 76.93 75.86 76.93 76.57 0.62 86.84
1-shot 80.00 79.33 80.66 79.99 0.66 85.20
2-shot 83.33 83.06 85.20 83.86 1.16 88.26
3-shot 82.66 82.66 81.46 82.26 0.69 88.88
BERT 96.00

Tab. 7.5:Accuracy of CLINC-150 without the use of intent descriptions,No CoTincluded (highlighted).

We immediately notice that with both the Chain of Thought inciting phrases and the descrip-

tions absent the results are much be�er than the corresponding ones with just the Chain of

Thought inciting phrases added. More specifically, ourNo Cotmethod achieved an average
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accuracy of 79.5% across the three runs with a standard deviation of 0.87. The average accuracy

is 1.98 percentage points be�er thanLet's Think, which was the best prompting technique

without descriptions, 2.93 percentage points be�er thanShow your Thoughts, and an astonish-

ing 5.06 percentage points be�er thanDeep Breath. These results seem to once more confirm

the findings of Wei et al. (2022), Kojima et al. (2022), Wang et al. (2023), Wang et al. (2023) and

others, who supported that performance of Large Language Models with less than 100 billion

parameters can be worsened by the use of Chain of Thought prompting. When compared

with the few-shot methods without descriptions, it performs slightly worse. To be specific, it

performed 0.49 percentage points worse than 1-shot, 4.36 percentage points below 2-shot, and

2.76 percentage points worse than 3-shot. The drop in performance when compared with the

description-rich counterpart of this method was also significant though, 7.11 percentage points

to be exact. This once more shows that descriptions are a powerful asset to the performance

of our prompting techniques and are now proven invaluable.

As to the individual runs of this method, the best one was the first one with an 80.4% overall

accuracy, while the second and third ones achieved a 78.66% and 79.46% accuracy respectively.

This brings the total variability between the best and worst results to 1.84 percentage points

which is just about average for this dataset. This shows that while not the best results, this

method is stable between runs.

BANKING77

Method 1st run 2nd run 3rd run Average St. Dev. DESCR Average
No CoT 69.1 66.23 66.23 67.18 1.66 73.15

Deep Breath 62.33 63.11 63.89 63.11 0.78 73.31
Let's Think 66.75 67.01 64.93 66.23 1.13 71.33

Show your Thoughts 63.89 63.37 66.75 64.67 1.82 72.72
1-shot 64.15 64.93 64.41 64.49 0.40 71.32
2-shot 68.05 68.57 70.64 69.08 1.37 71.59
3-shot 67.27 69.87 68.05 68.39 1.33 73.67
BERT 94.00

Tab. 7.6:Accuracy of BANKING77 without the use of intent descriptions,No CoTincluded (highlighted).

Similar observations can be made about our prompting technique where both the Chain of

Thought and the intent descriptions are absent for the BANKING77 dataset. On this particular

dataset, this method is also the best among the 0-shot methods that do not feature the

intent descriptions, but not by a margin as large as it was on the CLINC-150 dataset. To

be more specific, theNo CoTmethod achieved a 67.18% average accuracy, a performance

0.95 percentage points be�er than the best prompting technique without descriptions,Let's
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Think, 2.61 percentage points be�er thanShow your Thoughtsand 4.17 percentage points

be�er than Deep Breath, while maintaining a 1.66 standard deviation. As on the previous

dataset, the observations made by Wei et al. (2022), Kojima et al. (2022), Wang et al. (2023),

Wang et al. (2023) and others about the worse performance of Chain of Thought Prompting

when compared with normal prompting on small LLMs seem to be confirmed. Now, when we

compareNo CoTwith the few-shot methods without descriptions we used on this dataset

we observe that the performance ofNo CoTis 2.69 percentage points be�er than the average

accuracy of 1-shot, but still 1.9 percentage points below 2-shot, which was the best few-shot

prompting technique without the descriptions added, and 1.21 percentage points below 3-shot.

Also,No CoTwas 5.97 percentage points below its description counterpart. Once more, we get

an idea of the strength of descriptions when they are added to the prompt as we continuously

observe that with the descriptions the results are always be�er.

Now for the individual runs, the best one was the first one with a 69.1% accuracy, while

the second and third ones performed the same with a 66.23% each. This brings the margin

between the best and worst runs to a 2.87 percentage points which is pre�y average for this

dataset. This shows that this technique is pre�y stable between runs despite the complexity

and di�iculties that come with this dataset.

7.2 Error Analysis

A�er examining the outcomes and calculating the accuracy of our various prompting methods,

we found that the best prompting technique for both datasets is the 3-shot method where we

inserted 3 exemplars for in-context learning, each complete with the full prompt we discussed in

earlier chapters and a response, generated by our Llama, which passes our criteria of correctly

predicting the intent class of the text u�erance and including a correct and reasonable Chain

of Thought. Building on this foundation, we are now poised to undertake an error analysis for

these two methodologies. This analysis involved examining instances of misclassification by

both methods to scrutinize the Chain of Thought employed in these instances. The objective is

to discern whether the inaccuracies stem from an incorrect Chain of Thought or a correct Chain

of Thought relative to the input text u�erance where the predicted intent class was wrong.

The way that this process was done was by selecting a random sample of the misclassified

responses from all three runs. This way we check the nature of the mistakes in all three runs.
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