An extractive supervised two-stage method for sentence compression

Dimitris Galanis and Ion Androutsopoulos

Natural Language Processing Group
Department of Informatics
Athens University of Economics and Business
Introduction

- Sentence compression: produce a shorter form of a sentence, which is grammatical and retains the most important information.

- Example:
 - **source:** Then last week a second note, *in the same handwriting*, informed Mrs Allan *that* the search was on the wrong side of the bridge.
 - **compression:** Last week a second note informed Mrs Allan the search was on the wrong side of the bridge.

- Examples of applications of sentence compression:
 - text summarization
 - displaying texts on small screens

- Extractive compression: Only word deletions are permitted.
Our Approach

- Our algorithm compresses sentences in two stages.

1. **Generate candidate compressions**
 - Input: Source sentence
 - Output: Candidate compressions

2. **Ranking candidate compressions**
 - Input: Candidate compressions
 - Output: Compressed sentence
Generating candidate compressions

- **Generate candidates** by deleting edges of the dependency tree of the source sentence.
 - For every edge there are **3 possible actions** leading to 3 different candidates:
 - Retain the edge (not_del).
 - Delete it along with the **subtree** (del_l).
 - Delete it along with the **uptree** (del_u).
 - Sentence with m words \rightarrow at most $3^{(m-1)}$ possible candidate compressions.
- In practice we generate fewer candidates:
 - If we delete an edge along with its subtree, then there are no separate actions for the subtree’s edges.
 - If an action has **low probability** (as judged by a MaxEnt classifier, next slide), we don’t use in any of the candidates.
Generating candidate compressions

- We consider the edges in a top-down DFS manner.
Training the MaxEnt classifier

- Learning probabilities for actions:
 - We use a MaxEnt (ME) classifier trained on pairs of source and compressed (gold) dependency trees.

Examples of features:
- label of the dependency edge
- POS tags of head and modifier
- etc
We need a function $F(c_i|s)$ that will rank the candidate compressions.

1st ranker we tried: Linear combination of \textbf{grammaticality} and \textbf{importance rate} (LM-Imp model)

- A compression rate penalty factor α is included, to bias our method towards generating shorter or longer compressions.

$$F(c_i|s) = \lambda \cdot \text{Gramm}(c_i) + (1 - \lambda) \cdot \text{ImpRate}(c_i|s) - \alpha \cdot \text{CR}(c_i|s)$$

$$\text{Gramm}(c_i) = \log P_{LM}(c_i)^{1/m} = \frac{1}{m} \cdot \log \left(\prod_{j=1}^{m} P(w_j|w_{j-1}, w_{j-2}) \right)$$

$$\text{ImpRate}(c_i|s) = \frac{\text{Imp}(c_i)}{\text{Imp}(s)}$$

$$\text{Imp}(\xi) = \sum_{w_i \in \xi} tf(w_i) \cdot idf(w_i)$$

$$\text{CR}(c_i|s) = \frac{|c_i|}{|s|}$$
Ranking with SVR

- 2nd ranker we tried: Support Vector Regression (SVR) model
- SVR models are trained using \(l \) training vectors and learn a function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \)

Training vectors
- Candidate 1 of source sentence 1 \(\rightarrow \langle 0.1, 0.34, \ldots, 0.47, 0.8 \rangle \)
- Candidate 2 of source sentence 1 \(\rightarrow \langle 0.2, 0.31, \ldots, 0.42, 0.8 \rangle \)
- ...
- Candidate \(n \) of source sentence \(k \) \(\rightarrow \langle 1.0, 0.44, \ldots, 0.41, 0.5 \rangle \)

Features \((x_i) \):
- grammaticality
- importance rate
- average depth of deleted words
- which POS tags were deleted

Score \((y_i) \):
- similarity between candidate and gold

Testing vectors
- \(<0.1, 0.36, \ldots, 0.42, {?} \rangle \)
- ...

SVR
- A score for each candidate
SVR’s similarity measures

- Two versions of similarity between gold (g) and candidate (c_i):
 - **Grammatical relations overlap:**
 - d denotes the dependencies of a sentence
 - F1 is the F-score (\(\beta = 1\))
 - SVR-F1 model
 - **Tokens accuracy and grammaticality:**
 - is the percentage of tokens of s that were correctly retained or removed in c_i
 - SVR-TokAcc-LM model

\[
y_i = F_1(d(c_i)), d(g)) - \alpha \cdot CR(c_i | s)
\]

\[
y_i = \lambda \cdot TokAcc(c_i | s, g) + (1 - \lambda) \cdot Gramm(c_i) - \alpha \cdot CR(c_i | s)
\]
Experiments

- We used Edinburgh's “written” sentence compression corpus (http://homepages.inf.ed.ac.uk/s0460084/data/)
- 3 parts:
 - training, development, and test.
- Training part used to:
 - train the MaxEnt model of Stage 1
 - train the SVR model of Stage 2.
- With $a = 0$, we varied λ and selected the value that gives compression rate approximately equal to human compression.
- Then we varied parameter a (compression rate penalty factor), which is available in all models.
- ME threshold $t = 0.2$
 - Limits the number of candidates ($< 10,000$) for almost every source.
 - Tuned in preliminary experiments.
Selecting our best configuration (with automatic evaluation)

- **F1** is the avg F1-score of the **dependencies** of system compressions against gold compressions on the **development set**.
 - F1 has been shown that correlates well with human judges
- **SVR-TokAcc-LM** is the **best configuration of our system** for most compression rates.
Comparing to state-of-the-art (with human judges)

- We compared **SVR-TokAcc-LM against T3** (Cohn & Lapata 2009)
- **T3** is a state-of-the-art sentence compression system.
 - Best reported results on Edinburgh's “written” corpus.
- 80 source test sentences.
- **4 judges** were asked to rate **240 compressions**.
 - 80 compressions of T3, 80 compressions of our system, and 80 gold compressions.

<table>
<thead>
<tr>
<th>system</th>
<th>G</th>
<th>M</th>
<th>Ov</th>
<th>F1 (%)</th>
<th>CR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>3.83</td>
<td>3.28</td>
<td>3.23</td>
<td>47.34</td>
<td>59.16</td>
</tr>
<tr>
<td>SVR</td>
<td>4.20</td>
<td>3.43</td>
<td>3.57</td>
<td>52.09</td>
<td>59.85</td>
</tr>
<tr>
<td>gold</td>
<td>4.73</td>
<td>4.27</td>
<td>4.43</td>
<td>100.00</td>
<td>78.80</td>
</tr>
</tbody>
</table>

Table 2: Results on 80 test sentences. G: grammaticality, M: meaning preservation, Ov: overall score, CR: compression rate, SVR: SVR-TokAcc-LM.
Conclusions

- A new sentence compression method.
 - Candidate compressions generated by considering three actions per dependency edge (retain, delete subtree, delete uptree).
 - A MaxEnt classifier rejects unlikely actions.
 - An SVR model ranks the candidate compressions.
 - Our method has comparable (or better) results to a state-of-the-art sentence compression system.

- Future plans:
 - Use more complex dependency tree transformations.
 - Experiment with different sizes of training data.
 - Add more features.

- Questions?