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Abstract

We present AUEB’s submissions to the
BioASQ 6 document and snippet retrieval
tasks (parts of Task 6b, Phase A). Our mod-
els use novel extensions to deep learning archi-
tectures that operate solely over the text of the
query and candidate document/snippets. Our
systems scored at the top or near the top for
all batches of the challenge, highlighting the
effectiveness of deep learning for these tasks.

1 Introduction

BioASQ (Tsatsaronis et al., 2015) is a biomedical
document classification, document retrieval, and
question answering competition, currently in its
sixth year.1 We provide an overview of AUEB’s
submissions to the document and snippet retrieval
tasks (parts of Task 6b, Phase A) of BioASQ 6.2

In these tasks, systems are provided with English
biomedical questions and are required to retrieve
relevant documents and document snippets from a
collection of MEDLINE/PubMed articles.3

We used deep learning models for both
document and snippet retrieval. For docu-
ment retrieval, we focus on extensions to the
Position-Aware Convolutional Recurrent Rele-
vance (PACRR) model of Hui et al. (2017) and,
mostly, the Deep Relevance Matching Model
(DRMM) of Guo et al. (2016), whereas for snip-
pet retrieval we based our work on the Basic Bi-
CNN (BCNN) model of Yin et al. (2016). Little
task-specific pre-processing is employed and the
models operate solely over the text of the query
and candidate document/snippets.

Overall, our systems scored at the top or near
the top for all batches of the challenge. In previous

1Consult http://bioasq.org/.
2For further information on the BioASQ 6 tasks, see

http://bioasq.org/participate/challenges.
3http://www.ncbi.nlm.nih.gov/pubmed/.

years of the BioASQ challenge, the top scoring
systems used primarily traditional IR techniques
(Jin et al., 2017). Thus, our work highlights that
end-to-end deep learning models are an effective
approach for retrieval in the biomedical domain.

2 Document Retrieval

For document retrieval, we investigate new deep
learning architectures focusing on term-based in-
teraction models, where query terms (q-terms for
brevity) are scored relative to a document’s terms
(d-terms) and their scores are aggregated to pro-
duce a relevance score for the document. All mod-
els use pre-trained embeddings for all q-terms and
d-terms. Details on data resources and data pre-
processing are given in Section 5.1.

2.1 PACRR-based Models

The first model we investigate is PACRR (Hui et al.,
2017). In this model, a query-document term sim-
ilarity matrix sim is first computed (Fig. 1, left).
Each cell (i, j) of sim contains the cosine simi-
larity between the embeddings of a q-term qi and
a d-term dj . To keep the dimensions lq × ld of
sim fixed across queries and documents of vary-
ing lengths, queries are padded to the maximum
number of q-terms lq, and only the first ld terms
per document are retained.4 Then, convolutions of
different kernel sizes n × n (n = 2, . . . , lg) are
applied to sim to capture n-gram query-document
similarities. For each size n × n, multiple ker-
nels (filters) are used. Max pooling is then applied
along the dimension of the filters (max value of all
filters of the same size), followed by k-max pool-
ing along the dimension of d-terms to capture the
strongest k signals between each q-term and all
the d-terms. The resulting matrices (one per kernel

4We use PACRR-firstk, which Hui et al. (2017) recommend
when documents fit in memory, as in our experiments.

http://bioasq.org/
http://bioasq.org/participate/challenges
http://www.ncbi.nlm.nih.gov/pubmed/
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Figure 1: PACRR (Hui et al., 2017) and TERM-PACRR.
In PACRR, an MLP is applied to the concatenation of
the document-aware q-term encodings to produce the
relevance score. In TERM-PACRR, the MLP is applied
separately to each document-aware q-term encoding;
the resulting scores are combined by a linear layer.

size) are concatenated into a single matrix where
each row is a document-aware q-term encoding
(Fig. 1); the IDF of the q-term is also appended,
normalized by applying a softmax across the IDFs
of all the q-terms. Following Hui et al. (2018), we
concatenate the rows of the resulting matrix into a
single vector, which is passed to an MLP that pro-
duces a query-document relevance score.5

Instead of using an MLP to score the concate-
nation of all the (document-aware) q-term encod-
ings, a simple extension we found effective was to
use an MLP to independently score each q-term en-
coding (the same MLP for all q-terms, Fig. 1); the
resulting scores are aggregated via a linear layer.
This version, TERM-PACRR, performs better than
PACRR, using the same number of hidden layers
in the MLPs. Likely this is due to the fewer pa-
rameters of TERM-PACRR’s MLP, which is shared
across the q-term representations and operates on
shorter input vectors. Indeed, in our early ex-
periments TERM-PACRR was less prone to over-
fitting.6

2.2 DRMM-based Models

The second model we investigate is DRMM (Guo
et al., 2016) (Fig. 2). The original DRMM uses pre-
trained word embeddings for q-terms and d-terms,
and (bucketed) cosine similarity histograms (out-
puts of ⊗ nodes in Fig. 2). Each histogram cap-
tures the similarity of a q-term to all the d-terms
of a particular document. The histograms, which
in this model are the document-aware q-term en-
codings, are fed to an MLP (dense layers of Fig. 2)
that produces the (document-aware) score of each
q-term. Each q-term score is then weighted using

5Hui et al. (2017) used an additional LSTM, which was
later replaced by the final concatenation (Hui et al., 2018).

6In the related publication of McDonald et al. (2018)
TERM-PACRR is identical to the PACRR-DRMM model.
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Figure 2: Illustration of DRMM (Guo et al., 2016) for
three q-terms and m d-terms. The ⊗ nodes produce
(bucketed) cosine similarity histograms, each capturing
the similarity between a q-term and all the d-terms.

a gating mechanism (topmost box nodes in Fig. 2)
that examines properties of the q-term to assess its
importance for ranking (e.g., common words are
less important). The sum of the weighted q-term
scores is the relevance score of the document.

For gating (topmost box nodes of Fig. 2), Guo
et al. (2016) use a linear self-attention:

gi = softmax
(
wT
g φg(qi); q1, . . . , qn

)
φg(qi) is the embedding e(qi) of the i-th q-term, or
its IDF, idf(qi); wg is a weights vector. We found
that φg(qi) = [e(qi); idf(qi)], where ‘;’ is concate-
nation, was optimal for all DRMM-based models.

2.2.1 ABEL-DRMM
The original DRMM (Guo et al., 2016) has two
shortcomings. The first one is that it ignores
entirely the contexts where the terms occur, in
contrast to position-aware models such as PACRR

(Section 2.1) or those based on recurrent represen-
tations (Palangi et al., 2016). Secondly, the his-
togram representation for document-aware q-term
encodings is not differentiable, so it is not possi-
ble to train the network end-to-end, if one wished
to backpropagate all the way to word embeddings.

To address the first shortcoming, we add an en-
coder (Fig. 3) to produce the context-sensitive en-
coding of each q-term or d-term from the pre-
trained embeddings of the previous, current, and
next term in a particular query or document. A
single dense layer with residuals is used, in effect a
one-layer Temporal Convolutional Network (TCN)
(Bai et al., 2018) without pooling or dilation. The
number of convolutional filters equals the dimen-
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Figure 3: Producing context-sensitive term encodings.

sions of the pre-trained embedding, for residuals
to be summed without transformation.

Specifically, let e(ti) be the pre-trained embed-
ding for a q-term or d-term term ti. We compute
the context-sensitive encoding of ti as:

c(ti) = ϕ
(
Wc φc(ti) + bc

)
+ e(ti) (1)

Wc and bc are the weights matrix and bias vec-
tor of the dense layer, ϕ is the activation function,
φc(ti) = [e(ti−1); e(ti); e(ti+1)], ti−1, ti+1 are the
tokens surrounding ti in the query or document.
This is an orthogonal way to incorporate context
into the model relative to PACRR. PACRR creates
a query-document similarity matrix and computes
n-gram convolutions over the matrix. Here we in-
corporate context directly into the term encodings;
hence similarities in this space are already context-
sensitive. One way to view this difference is the
point at which context enters the model – directly
during term encoding (Fig. 3) or after term simi-
larity scores have been computed (PACRR, Fig. 1).

To make DRMM trainable end-to-end, we re-
place its histogram-based document-aware q-term
encodings (⊗ nodes of Fig. 2) by q-term encodings
that consider d-terms via an attention-mechanism.
Figure 4 shows the new sub-network that com-
putes the document-aware encoding of a q-term qi,
given a document d = 〈d1, . . . , dm〉 of m d-terms.
We first compute a dot-product attention score ai,j
for each dj relative to qi:

ai,j = softmax
(
c(qi)

T c(dj); d1, . . . , dm
)

(2)

where c(t) is the context-sensitive encoding of t
(Eq. 1). We then sum the context-sensitive encod-
ings of the d-terms, weighted by their attention
scores, to produce an attention-based representa-
tion dqi of document d from the viewpoint of qi:

dqi =
∑
j

ai,j c(dj) (3)

The Hadamard product (element-wise multiplica-
tion, �) between the document representation dqi
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Figure 4: ABEL-DRMM sub-net. From context-aware
q-term and d-term encodings (Fig. 3), it generates
fixed-dimension document-aware q-term encodings to
be used in DRMM (Fig. 2, replacing ⊗ nodes).

and the q-term encoding c(qi) is then computed
and used as the fixed-dimension document-aware
encoding φH(qi) of qi (Fig. 4):

φH(qi) = dqi � c(qi) (4)

The ⊗ nodes and lower parts of the DRMM net-
work of Fig. 2 are now replaced by (multiple
copies of) the sub-network of Fig. 4 (one copy
per q-term), with the � nodes replacing the ⊗
nodes. We call the resulting model Attention-
Based Element-wise DRMM (ABEL-DRMM).

Intuitively, if the document contains one or
more terms dj that are similar to qi, the attention
mechanism will have emphasized mostly those
terms and, hence, dqi will be similar to c(qi),
otherwise not. This similarity could have been
measured by the cosine similarity between dqi
and c(qi), but the cosine similarity assigns the
same weight to all the dimensions, i.e., to all the
element-wise products in φH(qi). By using the
Hadamard product, we pass on to the upper lay-
ers of DRMM (the dense layers of Fig. 2), which
score each q-term with respect to the document,
all the element-wise products of φH(qi), allowing
the upper layers to learn which element-wise prod-
ucts (or combinations of them) are important when
matching a q-term to the document.

2.2.2 ABEL-DRMM extensions
We experimented with two extensions to ABEL-
DRMM. The first is a density-based extension that
considers all the windows of lw consecutive tokens
of the document and computes the ABEL-DRMM

relevance score per window. The final relevance
score of a document is the sum of the original
ABEL-DRMM score computed over the entire doc-
ument plus the maximum ABEL-DRMM score over
all the document’s windows. The intuition is to re-
ward not only documents that match the query, but
also those that match it in a dense window.



The second extension is to compute a confi-
dence score per document and only return docu-
ments with scores above a threshold. We apply a
softmax over the ABEL-DRMM scores of the top
td documents and return only documents from the
top td with normalized scores exceeding a thresh-
old tc. While this will always hurt metrics like
Mean Average Precision (MAP) when evaluating
document retrieval, it has the potential to improve
the precision of downstream components, in our
case snippet retrieval, which in fact we observe.

3 Snippet Retrieval

For the snippet retrieval task, we used the ‘ba-
sic CNN’ (BCNN) network of the broader ABCNN

model (Yin et al., 2016), which we combined with
a post-processing stage, as discussed below. The
input of snippet retrieval is an English question
and text snippets (e.g., sentences) from documents
that the document retrieval component returned as
relevant to the question. The goal is to rank the
snippets, so that snippets that human experts se-
lected as relevant to the question will be ranked
higher than others. In BioASQ, human experts
are instructed to select relevant snippets consist-
ing of one or more consecutive sentences.7 For
training purposes, we split the relevant documents
into sentences, and consider sentences that overlap
the gold snippets (the ones selected by the human
experts) as relevant snippets, and the remaining
ones as irrelevant. At inference time, documents
returned by the document retrieval model as rele-
vant are split into sentences, and these sentences
are ranked by the system. For details on sentence
splitting, tokenization, etc., see Section 5.1.

3.1 BCNN Model

BCNN receives as input two sequences of terms
(tokens), in our case a question (query) and a sen-
tence from a document. All terms are represented
by pre-trained embeddings (Section 5.1). Snippet
sequences were truncated (or zero padded) to be
of uniform length. A convolution layer with mul-
tiple filters, each of the same widthw, is applied to
each one of the two input sequences, followed by
a windowed-average pooling layer over the same
filter width to produce a feature map (per filter) of
the same dimensionality as the input to the con-

7This was not actually the case in BioASQ year 1. Hence,
some of our training data do not adhere to this rule.

Sn
ip

pe
t T

er
m

s
Q

ue
ry

 T
er

m
s

Relevance
Score

Convolution/Pooling
Blocks

Linear
Layer

Average
Pooling

Features

Figure 5: BCNN (Yin et al., 2016) scoring snippets rel-
ative to a query. The example illustrates a query of 5
terms, a snippet of 7 terms, and a single convolution
filter of width w = 3. Zero-padding shown as empty
boxes. In each convolution/pooling block, the convolu-
tion layer is followed by a windowed-average pooling
of the same width w to preserve the dimensionality of
the input to the block. Thus convolution/pooling blocks
can be repeated, making the model arbitrarily deep.

volution layer.8 Consequently, we can stack an
arbitrary number of convolution/pooling blocks in
order to extract increasingly abstract features.

An average pooling layer is then applied to the
entire output of the last convolution/pooling block
(Fig. 5) to obtain a feature vector of the query and
snippet, respectively. When multiple convolution
filters are used (Fig. 5 illustrates only one), we
obtain a different feature vector from each filter
(for the query and snippet, respectively), and the
feature vectors from the different filters are con-
catenated, again obtaining a single feature vector
for the query and snippet, respectively. Similar-
ity scores are then computed from the query and
snippet feature vectors, and these are fed into a
linear logistic regression layer. One critical im-
plementation detail from the original BCNN paper
is that when computing the query-snippet similar-
ity scores, average pooling is actually applied to
the output of each one of the convolution/pooling
blocks, i.e., we obtain a different query and snip-
pet feature vector from the output of each block.
Different similarity scores are computed based on
the query and snippet feature vectors obtained
from the output of each block, and all the simi-
larity scores are passed to the final layer. Thus the
number of inputs to the final layer is proportional
to the number of blocks.

8The same filters are applied to both queries and snippets.



3.2 Post-processing

A technique that seems to improve our results in
snippet retrieval is to retain only the top Ks snip-
pets with the best BCNN scores for each query,
and then re-rank the Ks snippets by the relevance
scores of the documents they came from; if two
snippets came from the same document, they are
subsequently ranked by their BCNN score. This is
a proxy for more sophisticated models that would
jointly consider document and snippet retrieval.
This is important as the snippet retrieval model is
trained under the condition that it only sees rele-
vant documents. So accounting for the rank/score
of the document itself helps to correctly bias the
snippet model.

4 Overall System Architecture

Figure 6 outlines the general architecture that we
used to piece together the various components. It
consists of retrieving the top N documents per
query using BM25 (Robertson et al., 1995); re-
ranking the topN documents using one of the doc-
ument retrieval models (Section 2) and retaining
(up to) the top Kd documents; scoring all candi-
date snippets of the top Kd documents via a snip-
pet retrieval model (BCNN, Section 3.1) and retain-
ing (up to) the top Ks snippets; re-ranking the Ks

snippets by the relevance scores of the documents
they came from (Section 3.2).9

We set Kd = Ks = 10 as it was dictated by
the BioASQ challenge. We set N = 100 as we
found that with this value, BM25 returned the ma-
jority of the relevant documents from the train-
ing/development data sets. SettingN to larger val-
ues had no impact on the final results. The reason
for using a pre-retrieval model based on BM25 is
that the deep document retrieval models we use
here are computationally expensive. Thus, run-
ning them on every document in the index for ev-
ery query is prohibitive, whereas running them on
the top N = 100 documents from a pre-retrieval
system is easily achieved.

5 Experiments

All retrieval components (PACRR-, DRMM-,
BCNN-based) were augmented to combine the
scores of the corresponding deep model with a
number of traditional IR features, which is a com-
mon technique (Severyn and Moschitti, 2015). In

9The last step was used only in batches 3–5.

TERM-PACRR, the additional features are fed to
the linear layer that combines the q-term scores
(Fig. 1). In ABEL-DRMM, an additional linear
layer is used that concatenates the deep learning
document relevance score with the traditional IR

features. In BCNN, the additional features are in-
cluded in the final linear layer (Fig. 5). The addi-
tional features we used were the BM25 score of the
document (the document the snippet came from,
in snippet retrieval), word overlap (binary and IDF

weighted) between the query and the document
or snippet; bigram overlap between the query and
the document or snippet. The latter features were
taken from Mohan et al. (2017). The additional
features improved the performance of all models.

5.1 Data Resources and Pre-processing

The document collection consists of approx. 28M
‘articles’ (titles and abstracts only) from the
‘MEDLINE/PubMed Baseline 2018’ collection.10

We discarded the approx. 10M articles that con-
tained only titles, since very few of these were an-
notated as relevant. For the remaining 18M arti-
cles, a document was the concatenation of each
title and abstract. These documents were then in-
dexed using Galago, removing stop words and ap-
plying Krovetz’s stemmer (Krovetz, 1993).11 This
served as our pre-retrieval model.

Word embeddings were pre-trained by applying
word2vec (Mikolov et al., 2013) to the 28M ‘ar-
ticles’ of the MEDLINE/PubMed collection. IDF

values were computed over the 18M articles that
contained both titles and abstracts. We used the
GenSim implementation of word2vec (skip-gram
model), with negative sampling, window size set
to 5, default other hyper-parameter values, to pro-
duce word embeddings of 200 dimensions.12 The
word embeddings were not updated when training
the document relevance ranking models. For tok-
enization, we used the ‘bioclean’ tool provided by
BioASQ.13 In snippet retrieval, we used NLTK’s

10Available from https://www.nlm.nih.gov/
databases/download/pubmed_medline.html.

11We used Galago version 3.10. Consult http://www.
lemurproject.org/galago.php.

12Consult https://radimrehurek.com/gensim/
models/word2vec.html. We used Gensim v. 3.3.0.
The word embeddings and code of our experiments
are available at https://github.com/nlpaueb/
aueb-bioasq6.

13The tool accompanies an older set of embeddings pro-
vided by BioASQ. See http://participants-area.
bioasq.org/tools/BioASQword2vec/.

https://www.nlm.nih.gov/databases/download/pubmed_medline.html
https://www.nlm.nih.gov/databases/download/pubmed_medline.html
http://www.lemurproject.org/galago.php
http://www.lemurproject.org/galago.php
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://github.com/nlpaueb/aueb-bioasq6
https://github.com/nlpaueb/aueb-bioasq6
http://participants-area.bioasq.org/tools/BioASQword2vec/
http://participants-area.bioasq.org/tools/BioASQword2vec/


PubMed 
Index

Query

Deep
Document
Ranking

Top N documents
by BM25

Up to 
Top 10

Candidate Snippets

Deep
Snippet
Ranking

Top 10
Snippets

Final
System
Output

Resort by 
Document

Score

Figure 6: Overall architecture of document and snippet retrieval systems.

English sentence splitter.14

To train and tune the models we used years 1–5
of the BioASQ data, using batch 5 of year 5 as de-
velopment for the final submitted models, specif-
ically when selecting optimal model epoch. We
report test results (F1, MAP, GMAP) on batches 1–
5 of year 6 from the official results table.15 De-
tails on the three evaluation metrics are provided
by Tsatsaronis et al. (2015). They are standard,
with the exception that MAP here always assumes
10 relevant documents/snippets, which is the max-
imum number of documents/snippets the partici-
pating systems were allowed to return per query.

5.2 Hyperparameters

All DRMM-based models were trained with Adam
(Kingma and Ba, 2014) with a learning rate of 0.01
and β1/β2 = 0.9/0.999. Batch sizes were set to
32. We used a hinge-loss with a margin of 1.0
over pairs of a single positive and a single nega-
tive document of the same query. All models used
a two-layer MLP to score q-terms (dense layers
of Fig. 2), with leaky-RELU activation functions
and 8 dimensions per hidden layer. For context-
sensitive term encodings (Fig. 3), a single layer
was used, again with leaky-RELU as activation.
For the density-based extension of ABEL-DRMM

(Section 2.2.2), lw = 20. For the confidence ex-
tension of ABEL-DRMM, td = 100, tc = 0.01.

TERM-PACRR was also trained with Adam, with
a learning rate of 0.001 and β1/β2 = 0.9/0.999
with batch size equal to 32. Following Hui et al.
(2018), we used binary log-loss over pairs of a sin-
gle positive and a single negative document of the

14We used NLTK v3.2.3. See https://www.nltk.
org/api/nltk.tokenize.html.

15Available at http://participants-area.
bioasq.org/results/6b/phaseA/. The names of
our systems have been modified for the blind review.

same query. Maximum query length lq was set to
30 and maximum document length ld was set to
300. Maximum kernel size (lg × lg) was set to
(3 × 3) with 16 filters per size. Row-wise k-max
pooling used k = 2. TERM-PACRR used a two-
layer MLP with RELU activations and hidden lay-
ers with 7 dimensions to independently score each
document-aware query-term encoding.

BCNN was trained using binary log-loss and
AdaGrad (Duchi et al., 2011), with a learning rate
of 0.08 and L2 regularization with λ = 0.0004.
We used 50 convolution kernels (filters) of width
w = 4 in each convolution layer, and two convo-
lution/pooling blocks. Finally, batch sizes were
set to 200. Snippets were truncated to 40 tokens.
Questions were never truncated.

5.3 Official Submissions
We submitted 5 different systems to the BioASQ
challenge, all of which consist of components de-
scribed above.

• AUEB-NLP-1: Combo of 10 runs of TERM-
PACRR for document retrieval (§2.1) followed
by BCNN for snippet retrieval (§3).

• AUEB-NLP-2: Combo of 10 runs of ABEL-
DRMM (§2.2) for document retrieval followed
by BCNN for snippet retrieval.

• AUEB-NLP-3: Combo of 10 runs of TERM-
PACRR and 10 runs of ABEL-DRMM followed
by BCNN for snippet retrieval.

• AUEB-NLP-4: ABEL-DRMM with density ex-
tension (§2.2.2) for document retrieval fol-
lowed by BCNN for snippet retrieval.

• AUEB-NLP-5: ABEL-DRMM with both den-
sity and confidence extensions (§2.2.2) for
document retrieval followed by BCNN for

https://www.nltk.org/api/nltk.tokenize.html
https://www.nltk.org/api/nltk.tokenize.html
http://participants-area.bioasq.org/results/6b/phaseA/
http://participants-area.bioasq.org/results/6b/phaseA/


snippet retrieval. This system was submitted
for batches 2-5 only.

In combination (combo) systems, we obtained
10 versions of the corresponding model by retrain-
ing it 10 times with different random seeds, and we
then used a simple voting scheme. If a document
was ranked at position 1 by a model it got 10 votes,
position 2 was 9 votes, until position 10 where it
got 1 vote. Votes were then aggregated over all
models in the combination. While voting did not
improve upon the best single model, it made the
results more stable across different runs.

5.4 Results

Results are given in Table 1. There are a num-
ber of things to note. First, for document retrieval,
there is very little difference between our submit-
ted models. Both PACRR- and DRMM-based mod-
els perform well (usually at the top or near the
top) with less than 1 MAP point separating them.
These systems were all competitive and for 4 of
the 5 batches one was the top scoring system in the
competition. On average the experimental ABEL-
DRMM system (AUEB-NLP-4) scored best amongst
AUEB submissions and in aggregate over all sub-
missions, but by a small margin (0.1053 average
MAP versus 0.1016 for TERM-PACRR). The excep-
tion was the high precision system (AUEB-NLP-5)
which did worse in all metrics except F1, where it
was easily the best system for the 4 batches it par-
ticipated in. This is not particularly surprising, but
impacted snippet selection, as we will see.

For snippet selection, all systems did well
(AUEB-NLP-[1-4]) and it is hard to form a pat-
tern that a base document retrieval model’s results
are more conducive to snippet selection. The ex-
ception is the high-precision document retrieval
model of AUEB-NLP-5, which had by far the best
scores for AUEB submissions and the challenge
as a whole. The main reason for this is that the
snippet retrieval component was trained assuming
only relevant documents as input. Thus, if we fed
it all 10 documents, even when some were not
relevant, it could theoretically still rank a snippet
from an irrelevant document high since it is not
trained to combat this. By sending the snippet re-
trieval model only high precision document sets it
focused on finding good snippets at the expense of
potentially missing some relevant documents.

6 Related Work

Document ranking has been studied since the
dawn of IR; classic term-weighting schemes were
designed for this problem (Sparck Jones, 1972;
Robertson and Sparck Jones, 1976). With the
advent of statistical NLP and statistical IR, prob-
abilistic language and topic modeling were ex-
plored (Zhai and Lafferty, 2001; Wei and Croft,
2006), followed recently by deep learning IR

methods (Lu and Li, 2013; Hu et al., 2014; Palangi
et al., 2016; Guo et al., 2016; Hui et al., 2017).

Most document relevance ranking methods fall
within two categories: representation-based, e.g.,
Palangi et al. (2016), or interaction-based, e.g., Lu
and Li (2013). In the former, representations of the
query and document are generated independently.
Interaction between the two only happens at the fi-
nal stage, where a score is generated indicating rel-
evance. End-to-end learning and backpropagation
through the network tie the two representations to-
gether. In the interaction-based paradigm – which
is where the models studied here fall – explicit en-
codings between pairs of queries and documents
are induced. This allows direct modeling of exact-
or near-matching terms (e.g., synonyms), which is
crucial for relevance ranking. Indeed, Guo et al.
(2016) showed that the interaction-based DRMM

outperforms previous representation-based meth-
ods. On the other hand, interaction-based models
are less efficient, since one cannot index a doc-
ument representation independently of the query.
This is less important, though, when relevance
ranking methods rerank the top documents re-
turned by a conventional IR engine, which is the
scenario we consider here.

In terms of biomedical document and snippet
retrieval, several methods have been proposed for
BioASQ (Tsatsaronis et al., 2015), mostly based
on traditional IR and ML techniques. For example,
the system of Jin et al. (2017), which is the top
scoring one for previous incarnations of BioASQ
(UTSB team), uses an underlying graphical model
for scoring coupled with a number of traditional
IR techniques like pseudo-relevance feedback.

The most related work from the biomedical do-
main is that of Mohan et al. (2017), who use a
deep learning architecture for document ranking.
Like our systems they use interaction-based mod-
els to score and aggregate q-term matches relative
to a document, however using different document-
aware q-term representations – namely best match



DOCUMENT RETRIEVAL
System F1 MAP GMAP

Batch 1
AUEB-NLP-1 0.2546 0.1246 0.0282
AUEB-NLP-2 0.2462 0.1229 0.0293
AUEB-NLP-3 0.2564 0.1271 0.0280
AUEB-NLP-4 0.2515 0.1255 0.0235
Top Competitor 0.2216 0.1058 0.0113

Batch 2
AUEB-NLP-1 0.2264 0.1096 0.0148
AUEB-NLP-2 0.2473 0.1207 0.0200
AUEB-NLP-3 0.2364 0.1178 0.0161
AUEB-NLP-4 0.2350 0.1182 0.0161
AUEB-NLP-5 0.3609 0.1014 0.0112
Top Competitor 0.2265 0.1201 0.0183

Batch 3
AUEB-NLP-1 0.2345 0.1122 0.0101
AUEB-NLP-2 0.2345 0.1147 0.0108
AUEB-NLP-3 0.2350 0.1135 0.0109
AUEB-NLP-4 0.2345 0.1137 0.0106
AUEB-NLP-5 0.4093 0.0973 0.0062
Top Competitor 0.2186 0.1281 0.0113

Batch 4
AUEB-NLP-1 0.2136 0.0971 0.0070
AUEB-NLP-2 0.2148 0.0996 0.0069
AUEB-NLP-3 0.2134 0.1000 0.0068
AUEB-NLP-4 0.2094 0.0995 0.0064
AUEB-NLP-5 0.3509 0.0875 0.0044
Top Competitor 0.2044 0.0967 0.0073

Batch 5
AUEB-NLP-1 0.1541 0.0646 0.0009
AUEB-NLP-2 0.1522 0.0678 0.0013
AUEB-NLP-3 0.1513 0.0663 0.0010
AUEB-NLP-4 0.1590 0.0695 0.0012
AUEB-NLP-5 0.1780 0.0594 0.0008
Top Competitor 0.1513 0.0680 0.0009

SNIPPET RETRIEVAL
System F1 MAP GMAP

Batch 1
AUEB-NLP-1 0.1296 0.0687 0.0029
AUEB-NLP-2 0.1347 0.0665 0.0026
AUEB-NLP-3 0.1329 0.0661 0.0028
AUEB-NLP-4 0.1297 0.0694 0.0024
Top Competitor 0.1028 0.0710 0.0002

Batch 2
AUEB-NLP-1 0.1329 0.0717 0.0034
AUEB-NLP-2 0.1434 0.0750 0.0044
AUEB-NLP-3 0.1355 0.0734 0.0033
AUEB-NLP-4 0.1397 0.0713 0.0037
AUEB-NLP-5 0.1939 0.1368 0.0045
Top Competitor 0.1416 0.0938 0.0011

Batch 3
AUEB-NLP-1 0.1563 0.1331 0.0046
AUEB-NLP-2 0.1494 0.1262 0.0034
AUEB-NLP-3 0.1526 0.1294 0.0038
AUEB-NLP-4 0.1519 0.1293 0.0038
AUEB-NLP-5 0.2744 0.2314 0.0068
Top Competitor 0.1877 0.1344 0.0014

Batch 4
AUEB-NLP-1 0.1211 0.0716 0.0009
AUEB-NLP-2 0.1307 0.0821 0.0011
AUEB-NLP-3 0.1251 0.0747 0.0009
AUEB-NLP-4 0.1180 0.0750 0.0009
AUEB-NLP-5 0.1940 0.1425 0.0017
Top Competitor 0.1306 0.0980 0.0006

Batch 5
AUEB-NLP-1 0.0768 0.0357 0.0003
AUEB-NLP-2 0.0728 0.0405 0.0004
AUEB-NLP-3 0.0747 0.0377 0.0004
AUEB-NLP-4 0.0790 0.0403 0.0004
AUEB-NLP-5 0.0778 0.0526 0.0003
Top Competitor 0.0542 0.0475 0.0001

Table 1: Performance on BioASQ Task 6b, Phase A (batches 1–5) for document and snippet retrieval (left and
right tables, respectively). Systems described in Section 5.3. The italicised system is the top scoring system from
AUEB’s entries and if also in bold, is the top from all official entries in that batch. Top is by MAP, the official
metric of BioASQ. Top Competitor is the top scoring entry – by MAP– that is not among AUEB’s submissions.

d-term distance scores. Also unlike our work, they
focus on user click data as a supervised signal,
and they use context-insensitive representations of
document-query term interactions.

There are several studies on deep learning sys-
tems for snippet selection which aim to improve
the classification and ranking of snippets extracted
from a document based on a specific query. Wang
and Nyberg (2015) use a stacked bidirectional
LSTM (BILSTM); their system gets as input a ques-
tion and a sentence, it concatenates them in a sin-
gle string and then forwards that string to the input
layer of the BILSTM. Rao et al. (2016) employ a
neural architecture to produce representations of
pairs of the form (question, sentence) and to learn
to rank pairs of the form (question, relevant sen-
tence) higher than pairs of the form (question, ir-
relevant sentence) using Noise-Contrastive Esti-
mation. Finally, Amiri et al. (2016) use autoen-

coders to learn to encode input texts and use the
resulting encodings to compute similarity between
text pairs. This is similar in nature to BCNN, the
main difference being the encoding mechanism.

7 Conclusions

We presented the models, experimental set-up,
and results of AUEB’s submissions to the docu-
ment and snippet retrieval tasks of the sixth year of
the BioASQ challenge. Our results show that deep
learning models are not only competitive in both
tasks, but in aggregate were the top scoring sys-
tems. This is in contrast to previous years where
traditional IR systems tended to dominate. In fu-
ture years, as deep ranking models improve and
training data sets get larger, we expect to see big-
ger gains from deep learning models.
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