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1. INTRODUCTION

In recent years, the increasing popularity and low cost of e-mail have attracted
direct marketers. Bulk mailing software and lists of e-mail addresses harvested
from Web pages, newsgroup archives, and service provider directories are readily
available, allowing messages to be sent blindly to millions of recipients at essen-
tially no cost. Resources of this kind are a temptation for amateur advertisers and
opportunists. Consequently, it is increasingly common for users to receive large
quantities of unsolicited commercial e-mail (uce), advertising anything, from vaca-
tions to get-rich schemes. The term spam, that originally denoted Usenet messages
cross-posted to numerous newsgroups, is now also used to refer to unsolicited, mas-
sively posted e-mail messages. Spam is actually a broader term than uce, since
spam e-mail is not necessarily commercial (e.g., spam messages from religious cults).
Non-uce spam messages, however, are rare, to the extent that the two terms can
be used interchangeably. Note that messages sent by viruses are not considered
spam, although they, too, can be sent blindly to large numbers of users.

Spam messages are extremely annoying to most users, as they clutter their mail-
boxes and prolong dial-up connections. They also waste the bandwidth and cpu

time of isps, and often expose minors to unsuitable (e.g., pornographic) content.
Following anti-spam campaigns by volunteer organizations1, most respectable com-
panies now seek the consent of potential customers before sending them adver-
tisements by e-mail, usually by inviting them to tick check boxes when visiting
their Web pages. Unfortunately, it does not take many irresponsible advertisers to
flood the Internet with spam messages. A 1997 study reported that spam messages
constituted approximately 10% of the incoming messages to a corporate network
[Cranor and LaMacchia 1998]. Public comments made by aol in 2002 indicated
that of an estimated 30 million e-mail messages daily, about 30% on average was
spam; and Jupiter Media Matrix predicted that the number of spam messages users
receive would more than double from 2002 to 2006, exceeding 1600 messages per
user per year in 2006.2 The situation seems to be worsening, and without appro-
priate counter-measures, spam messages may undermine the usability of e-mail.

Legislative counter-measures are gradually being adopted in the United States,
Europe, and elsewhere [Gauthronet and Drouard 2001], but they have had a very
limited effect so far, as evidenced by the number of spam messages most users
receive daily. Of more direct value are anti-spam filters, software tools that attempt
to identify incoming spam messages automatically. Most commercially available
filters of this type currently appear to rely on white-lists of trusted senders (e.g.,

1Consult http://www.cauce.org/, http://www.junkemail.org/, and http://spam.abuse.net/.
2Sources: cauce site, September 2002, and zdnet, July 9th, 2002, respectively.
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as listed in each user’s address book), black-lists of known spammers (typically
provided and updated by the filters’ developers), and hand-crafted rules that block
messages containing specific words or phrases (e.g., “be over 21” in the message’s
body) or other suspicious patterns in the header fields (e.g., empty “To:” field).

White-lists reduce the risk of accidentally blocking non-spam, hereafter called
legitimate, messages, but they have to be combined with other techniques to dis-
criminate between spam messages and legitimate messages from senders not in the
white-list (e.g, first-time correspondents). Black-lists containing e-mail addresses
or domain names are of little use, as spammers typically use fake sender addresses.
Black-lists in the form of continuously updated on-line databases of ip numbers that
have or could be used by spammers (e.g., open smtp relays) are more effective.3

However, spammers can bypass them by sending messages from new ip numbers.
Furthermore, black-lists can victimize innocent users, or even entire domains, when
addresses or ip numbers are used by spammers without the consent of their owners.
Hand-crafted rules are also problematic: rules that are common across users (e.g.,
the default rules of a filter) can be studied by spammers, who can adjust their
messages to avoid triggering the rules. To avoid this problem and be more effec-
tive, rules need to be tuned for individual users or groups. This is a tedious task
requiring time and expertise, which has to be repeated periodically to account for
changes in the content and wording of spam e-mail [Cranor and LaMacchia 1998].

The success of machine learning techniques in text categorization [Sebastiani
2002] has led researchers to explore learning algorithms in anti-spam filtering. A su-
pervised learning algorithm [Mitchell 1997] is given a corpus of e-mail messages that
have been classified manually as spam or legitimate, and builds a classifier, which
is then used to classify new incoming messages to the two categories. Apart from
collecting separately spam and legitimate training messages, the learning process is
fully automatic, and can be repeated to tailor the filter to the incoming messages
of particular users or groups, or to capture changes in the characteristics of spam
messages. Viewed in this way, anti-spam filtering becomes a problem of text cate-
gorization, although the categories of anti-spam filtering (legitimate or spam) are
much less homogeneous in terms of topics than those of most text categorization
applications, including other e-mail and news categorization systems [Lang 1995;
Cohen 1996; Payne and Edwards 1997]. A further complication is that anti-spam
filtering is a cost-sensitive problem: the cost of accidentally blocking a legitimate
message can be higher than letting a spam message pass the filter, and this differ-
ence must be taken into account during both training and evaluation.

In previous work, Sahami et al. [1998] experimented with an anti-spam filter based

3See http://www.mail-abuse.org/, http://www.ordb.org, http://www.spamhaus.org/, and
http://www.spews.org/ for examples of such lists.
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on a Naive Bayes classifier [Mitchell 1997]. In similar anti-spam experiments, Pantel
and Lin [1998] found Naive Bayes to outperform Ripper [Cohen and Singer 1999],
while Gomez Hidalgo and Mana Lopez [2000] reported that C4.5 [Quinlan 1993]
and part [Frank and Witten 1998] performed on average better than Naive Bayes
and k-Nearest Neighbor [Cover and Hart 1967; Aha and Albert 1991]. Drucker et
al. [1999] experimented with Ripper, Rocchio’s classifier [Rocchio 1971; Joachims
1997], Support Vector Machines (svms) [Cristianini and Shawe-Taylor 2000], and
boostexter, a version of C4.5 with boosting [Schapire and Singer 2000], with
results showing that svms and C4.5 with boosting achieve very similar error rates,
both outperforming Rocchio’s classifier. A direct comparison of these previous
results, however, is impossible, as they are based on different and not publicly
available datasets. Furthermore, the reported figures can be misleading, as they
are not formulated within a cost-sensitive framework.

To address these shortcomings, we made publicly available two mixed collections
of manually classified legitimate and spam messages, Ling-Spam and pu1, that can
be used as benchmarks, along with suitable cost-sensitive evaluation measures. In
previous work, we used the two collections and the proposed measures in experi-
ments with a Naive Bayes and a k-Nearest Neighbor learner, respectively; both al-
gorithms achieved comparable results [Androutsopoulos et al. 2000a; 2000b; 2000c;
Sakkis et al. 2003b]. Our benchmark corpora and measures have received a lot
of attention. Carreras and Marquez [2001] used pu1 and our evaluation measures
in experiments that showed the positive effect of boosting in decision-tree filters.
Kolcz and Alspector [2001] employed an extension of our evaluation methodology
in an exploration of svm-based anti-spam filtering. Gomez Hidalgo [2002] used
Ling-Spam and our measures to compare filters based on C4.5, Naive Bayes, part,
Rocchio, and svms; the results showed no clear winner, but svms had most fre-
quently the best results. Schneider [2003] used Ling-Spam and pu1 to study the
effect of different event models in Naive Bayes, along with different versions of
attribute selection measures based on information gain.

Continuing our previous work, this paper presents what is, to the best of our
knowledge, the most extensive exploration of learning approaches to anti-spam
filtering to date. We use the same evaluation framework as in our previous work,
but apart from pu1, we introduce three additional message collections, pu2, pu3,
and pua, each deriving from a different user. Furthermore, unlike previous work,
this article is not limited to corpus experiments. We describe the architecture
and functionality of a fully implemented and publicly available learning-based anti-
spam filter that incorporates the key findings of our experiments. We also present
an assessment of its performance in real-life, including a study of its errors.

In terms of learning algorithms, our exploration includes Naive Bayes, which
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despite its simplicity has proven particularly effective in previous experiments, an
enhanced version of Naive Bayes, called Flexible Bayes [John and Langley 1995],
that performs particularly well with continuous attributes, an svm implementation
based on Sequential Minimal Optimization [Platt 1999], and a boosting algorithm,
LogitBoost [Friedman et al. 2000], with regression stumps as weak learners. We
chose regression stumps, a form of decision trees of unary depth, as weak learners
in the boosting experiments after witnessing unacceptable training times in initial
experiments with J48 as the weak learner.4 Drucker et al. [1999] make a similar
observation, while the results of Carreras and Marquez [2001] indicate that boosting
with decision stumps still leads to good results. Overall, our experiments include
the learning algorithms, or variations of them, that have been reported to produce
the most promising results to date. Unlike previous work, however, we shed light
to the effect of several parameters, including the size of the training corpus, the
size of the attribute set, and the effect of n-gram attributes.

We note that learning-based components are also beginning to appear in some
e-mail clients and public domain filters; Section 6 below provides related informa-
tion. Most of these components, however, are so far limited to flavors of Naive
Bayes, and do not appear to have been subjected to rigorous experimental inves-
tigation. On the other hand, one of their interesting characteristics is that they
employ a variety of additional attributes, that do not examine only the text of
the messages. For example, there may be attributes examining whether or not the
message was posted from a suspicious domain or by night, whether or not it carries
attachments of particular types, colored text, or links, and attributes of this kind
can provide additional clues on whether or not the message is spam. In contrast,
the investigation of this paper considers only the text in the subjects and bodies of
the messages, ignoring other headers, html markup, non-textual attributes, and
attachments. This is a limitation of our work, that was introduced for a variety of
practical reasons; for example, devising non-textual attributes requires a detailed
study of the characteristics of spam messages and the habits of spammers, while
the attributes we used can be selected in a fully automatic manner; processing
attachments requires obtaining and invoking readers for the various attachment
types; and processing headers is not trivial when messages originate from different
e-mail servers and clients. Despite this limitation, we believe that the work of this
paper is useful, in that it provides a detailed investigation of what can be achieved
using only the text of the messages, thereby acting as a solid basis on which fur-
ther improvements can be tried. In fact, our experimental results indicate that
effective learning-based anti-spam filters can be built even when only the text of

4Our corpus experiments were performed using Weka version 3.1.9. Weka is available from
http://www.cs.waikato.ac.nz/ml/weka/. J48 is Weka’s implementation of C4.5.
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the messages is examined, and, as we discuss in Section 6, there are still several
improvements that can be made in the way the text of the messages is handled, to
confront tricks that spammers employ to confuse anti-spam filters.

The remainder of this paper is organized as follows. Section 2 presents the mes-
sage collections of our experiments, and how they compare to previous collections.
Section 3 discusses the learning algorithms that we used and the preprocessing that
was applied to the collections to turn them into the representation the learning al-
gorithms require. Section 4 shows how the notion of cost can be embedded in usage
scenarios for anti-spam filters, it defines our cost-sensitive evaluation measures, and
explains how learning algorithms can be made sensitive to cost. Section 5 presents
our corpus experiments and their results. Section 6 presents the architecture of our
prototype filter, along with an assessment of its performance in real life. Finally,
Section 7 concludes and suggests further directions.

2. BENCHMARK CORPORA FOR ANTI-SPAM FILTERING

Research on text categorization has benefited significantly from the existence of
publicly available, manually categorized document collections, like the Reuters cor-
pora, that have been used as standard benchmarks.5 Producing similar corpora for
anti-spam filtering is more complicated, because of privacy issues. Publicizing spam
messages does not pose a problem, since spam messages are distributed blindly to
very large numbers of recipients, and, hence, they are effectively already publicly
available. Legitimate messages, however, in general cannot be released without
violating the privacy of their recipients and senders.

One way to bypass privacy problems is to experiment with legitimate messages
collected from freely accessible newsgroups, or mailing lists with public archives.
Ling-Spam, the earliest of our benchmark corpora, follows this approach. It consists
of 481 spam messages received by the first author, and 2412 legitimate messages
retrieved from the archives of the Linguist list, a moderated – and, hence, spam-
free – list about linguistics.6 Ling-Spam has the disadvantage that its legitimate
messages are more topic-specific than the legitimate messages most users receive.
Hence, the performance of a learning-based anti-spam filter on Ling-Spam may
be an over-optimistic estimate of the performance that can be achieved on the
incoming messages of a real user, where topic-specific terminology may be less
dominant among legitimate messages. In that sense, Ling-Spam is more appropriate
to experiments that explore the effectiveness of filters that guard against spam
messages sent to topic-specific mailing lists [Sakkis et al. 2003b].

The SpamAssassin public mail corpus is similar to Ling-Spam, in that its legiti-

5See http://about.reuters.com/researchandstandards/corpus/.
6Ling-Spam and the pu corpora are available at http://www.iit.demokritos.gr/skel/i-config/.
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mate messages are publicly available.7 It contains 1897 spam and 4150 legitimate
messages, the latter collected from public fora or donated by users with the un-
derstanding that they may be made public. The corpus is less topic-specific than
Ling-Spam, but its legitimate messages are again not indicative of the legitimate
messages that would arrive at the mailbox of a single user, this time for the opposite
reason. Many of the legitimate messages that a user receives contain terminology
reflecting his/her profession, interests, etc. that is rare in spam messages (see Sec-
tion 3.1 below), and part of the success of personal learning-based filters is due to
the fact that they learn to identify this user-specific terminology. In a concatenation
of legitimate messages from different users this user-specific terminology becomes
harder to identify. Hence, the performance of a learning-based filter on the Spa-
mAssassin corpus may be an under-estimate of the performance that a personal
filter can achieve.

An alternative solution to the privacy problem is to distribute information about
each message (e.g., the frequencies of particular words in each message) rather than
the messages themselves. The Spambase collection follows this approach.8 It con-
sists of 4601 vectors providing information about 1813 spam and 2788 legitimate
messages. Each vector contains the values of 57 pre-selected attributes, mostly
word frequencies; vector representations will be explained further in Section 3.1.
Spambase, however, is much more restrictive than Ling-Spam and the SpamAssas-
sin corpus, because its messages are not available in raw form, and, hence, it is
impossible to experiment with attributes other than those chosen by its creators.

A third approach, adopted in pu1, is to release benchmark corpora that each
consists of messages received by a particular user, after replacing each token by
a unique number throughout the corpus, as illustrated in Figure 1. The mapping
between tokens and numbers is not released, making it extremely difficult to recover
the original text.9 This bypasses privacy problems, while producing a form of the
messages that is very close, from a statistical point of view, to the original text.
For example, one can compute the frequency of any (anonymized) token across
the messages, the frequencies of particular sequences of tokens, or the probabilities
that particular tokens appear at certain parts of the messages (e.g., the first or last
paragraph). The same encoding scheme was used in pu2, pu3, and pua.

There is an additional issue to consider when constructing benchmark corpora

7SpamAssassin is a sophisticated anti-spam filter that will be discussed briefly in Section 6.3. The
SpamAssassin corpus was created by Justin Mason of Network Associates, and can be downloaded
from http://www.spamassassin.org/publiccorpus/.
8Spambase was created by M. Hopkins, E. Reeber, G. Forman, and J. Suermondt. It is available
from http://www.ics.uci.edu/∼mlearn/MLRepository.html.
9Decryption experts may be able to recover short sequences of common words based on statistical
analysis, but not proper names, addresses, and similar personal details.
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Fig. 1. A spam message after tokenization, and its encoded form.

Subject: unlimited cash and millions in your mail Subject: 40 9 7 24 18 45 21

dear friend , 10 13 1
this is one of the great money making programs 38 20 29 28 36 15 25 23 34
over the net and the only one i have earned 31 36 27 7 36 30 29 17 16 12
money with . the advantage of this program is 25 42 2 36 5 28 38 33 20
that all the money is directed to your mailing 35 6 36 25 20 11 39 45 22
address without intrusion of a third party . [. . . ] 4 43 19 28 3 37 32 2 [. . . ]
my best wishes to you , george 26 8 41 39 44 1 14

for learning-based anti-spam filtering. Typically, a large percentage of a user’s
incoming messages are from senders the user has regular correspondence with, rc

messages for brevity. Regular correspondents are unlikely to send spam messages,10

and their addresses are usually stored in the user’s address book. The latter can act
as a personal white-list: messages from senders in the address book can be catego-
rized immediately as legitimate, without invoking the learning-based component of
the anti-spam filter. That component, which is the focus of our experiments, will
be invoked to decide only upon messages from non-regular correspondents. Hence,
for the collection to be representative of the messages that the learning-based com-
ponent will be faced with, it must exclude rc messages. In the pu corpora, this
was achieved by retaining only the earliest five legitimate messages of each sender.
It is assumed that by the time the sixth legitimate message arrives, the sender will
have already been inserted in the recipient’s address book, and the learning-based
component will no longer need to examine messages from that sender.

Duplicate messages are another consideration. It is common for users to receive
multiple copies of a spam message on the same day, as a result of duplicate entries
or equivalent addresses in the spammers’ lists. Duplicates can cause problems in
cross-validation experiments (Section 3.1.2 below), as they can end up in both the
training and test parts of the collection, leading to over-optimistic results. In pu1

and pu2, duplicate spam messages received on the same day were removed manually.
In the more recent pu3 and pua, the process was automated using a flavor of unix’s
diff command. Two messages were taken to be different, if they differed in at least
five lines. All duplicates, regardless of when they were received, were removed, and
this mechanism was applied to both spam and legitimate messages.

Table I provides more information on the composition of the pu corpora. The
legitimate messages in pu1 are the English legitimate messages that the first au-
thor had received and saved over a period of 36 months, excluding self-addressed
messages; this led to 1182 messages. Legitimate messages with empty bodies and

10A possible exception are chain letters, but our view is that they are not spam, as they are resent
by different people, who are, at least partially, responsible for the waste of resources they cause.
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Table I. Composition and sizes of the pu collections. The third column shows the number of legit-
imate messages from regular correspondents (rc), while the fourth column counts the legitimate
messages that were discarded for other reasons (e.g., empty bodies or duplicates); in pu1 and
pu2 both types of legitimate messages were discarded in one step. The last column shows the
legitimate-to-spam ratio in the retained messages.

collection legitimate rc other legit. legitimate spam total L:S
name initially messages discarded retained retained retained ratio

pu1 1182 564 618 481 1099 1.28
pu2 6207 5628 579 142 721 4.01
pu3 8824 6253 258 2313 1826 4139 1.27
pua 980 369 40 571 571 1142 1

rc messages were then removed, the latter using the white-list emulation discussed
above; this left 618 legitimate messages. The spam messages in pu1 are all the
spam messages the first author had received over a period of 22 months, excluding
non-English messages and duplicates received on the same day; they are the same
as the spam messages of Ling-Spam. pu2 was constructed in the same way, starting
from the legitimate and spam messages that a colleague of the authors had received
over a period of 22 months. The vast majority of his legitimate messages were rc.

pu3 and pua contain the legitimate messages that the second author and another
colleague, respectively, had saved up to the time of our experiments; unlike pu1 and
pu2, non-English (e.g., Greek) legitimate messages were not removed. As neither of
the two persons had saved the spam messages they had received, in both collections
we used a pool of 1826 duplicate-free spam messages deriving from pu1, additional
spam messages received by the first author, the SpamAssassin corpus, and spam
messages donated to us.11 In pua, only 571 of the pool’s messages were used, the
same as the number of retained legitimate messages. The legitimate-to-spam ratio
(Table I) of pu3 is approximately the same as that of the earlier pu1, except that
pu3 is almost four times larger. In pu2, there is only one spam message for every
four non-rc legitimate messages, while in pua a message from a sender outside the
white-list has equal a priori probability to be legitimate and spam.

In all pu collections, attachments, html tags, and header fields other than the
subject were removed, and the messages were then encoded as discussed above.
Unlike earlier experiments [Androutsopoulos et al. 2000c] no lemmatizer or stop-
list was used, as their effect is controversial. Punctuation and other special symbols
(e.g., “!”, “$”) were treated as tokens. Many of these symbols are among the best
discriminating attributes in the pu corpora, because they are more common in spam
messages than legitimate ones; related discussion follows in Section 3.1.

11The donation was from F. Sebastiani. Orasan and Krishnamurthy have recently made available
a similar spam collection; see http://clg.wlv.ac.uk/projects/junk-email/. For a more recent
attempt to create a large public spam archive, see http://www.spamarchive.org/.
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3. LEARNING ALGORITHMS

This section describes the four learning algorithms that we examined in the ex-
periments of this paper. Each algorithm can be viewed as searching for the most
appropriate classifier in a search space that contains all the classifiers it can learn.
We focus on the following characteristics of the algorithms, which bias their search:

Instance representation. In our case, the representation of the messages that is
used during the training and classification stages.

Model representation. The model the algorithm uses to represent the classifiers
it can learn. Classifiers that cannot be represented are not considered, and, hence,
cannot be learnt. This introduces a bias towards the classifiers that the model can
represent, the model bias. The more restrictive the model representation is, the
strongest the model bias.

Search method. The search method, including classifier selection criteria, that the
algorithm adopts to find a good classifier among the ones it can learn. The search
method introduces its own bias, the search bias; for example, it may disregard whole
areas of the search space, thus favoring some classifiers against other possibly more
appropriate ones.

The discussion aims to provide a clear picture of the algorithms that we used, for
the benefit of readers not familiar with them, but also to clarify their differences and
the limitations that the choices of representations and search methods introduce
as implicit biases [Mitchell 1997]. Furthermore, we examine the computational
complexity of each algorithm, both at the learning and classification stages, speed
being an important factor in the design of on-line anti-spam filters.

The rest of this section is structured as follows. Subsection 3.1 describes the
representation of instances, which is the same in all of the learning algorithms
we considered. Subsections 3.2 to 3.5 then describe the four learning algorithms,
each in terms of its model and search bias. Subsection 3.6 summarizes the most
important differences among the algorithms.

3.1 Instance representation

3.1.1 Attribute vectors. All four learning algorithms require the same instance
representation. In our case, where the instances are messages, each message is
transformed into a vector 〈x1, . . . , xm〉, where x1, . . . , xm are the values of the at-
tributes X1, . . . , Xm, much as in the vector space model in information retrieval
[Salton and McGill 1983]. In the simplest case, each attribute represents a single
token (e.g., “adult”), and all the attributes are Boolean: Xi = 1 if the message
contains the token; otherwise, Xi = 0. All previous experiments with Ling-Spam
and pu1 had adopted this representation.
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The experiments of this paper explored richer vector representations. First, in-
stead of Boolean attributes, frequency attributes were used. With frequency at-
tributes, the value of Xi in each message d is xi = ti(d)

l(d) , where ti(d) is the number
of occurrences in d of the token represented by Xi, and l(d) is the length of d

measured in token occurrences.12 Frequency attributes are more informative than
Boolean ones. For example, reporting simply that the token “$” is present in a
message, as in the case of Boolean attributes, may not be enough to raise suspi-
cions that the message is spam, especially if the message is very long; but if a very
high proportion of “$” tokens is present in the message, a fact that can be repre-
sented with frequency attributes, this may be a good indicator that the message
is spam. The additional information of frequency attributes usually comes at the
cost of extra complexity in the learning algorithms, which is needed to allow them
to cope with attributes whose values are real numbers.

In a second enhancement of the attribute vector representation, we have exam-
ined attributes that represent not only single tokens, but more generally n-grams
of tokens with n ∈ {1, 2, 3}, i.e., sequences of tokens of length 1, 2, or 3. In that
case, ti(d) is the number of occurrences in message d of the n-gram represented
by Xi, while l(d) remains the number of token occurrences in d. Although the
effectiveness of n-gram attributes in text categorization is controversial [Sebastiani
2002], spam messages often contain particularly characteristic phrases (e.g., “to be
removed”), and, thus, there is reason to expect that some n-gram attributes (n > 1)
may discriminate particularly well between spam and legitimate messages. Unfor-
tunately, the number of possible distinct n-grams in a corpus grows exponentially
to n, which makes subsequent computations involving n-grams prohibitive, unless
n is kept small; this is why values of n greater than 3 were not explored.

3.1.2 Attribute selection. Using every single token or n-gram as an attribute is
impractical, especially when using n-grams, as it leads to vectors of very high dimen-
sionality, slowing down significantly the learning algorithms. Hence, an attribute
selection phase is commonly employed before invoking the learning algorithms,
which detects the attributes that discriminate best between the categories. In our
experiments, attribute selection was performed in three steps, discussed below.

Step 1: A pool of candidate attributes was formed. In experiments where at-
tributes represented single tokens, the pool contained a candidate attribute for each
token in the training corpus. In experiments where attributes represented n-grams,
the pool contained a candidate attribute for each token sequence of length 1, 2, or

12The values of frequency attributes are similar to the tf scores commonly used in information
retrieval; an idf component could also be added, to demote tokens that are common across the
messages of the training collection.
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3 in the training corpus.
Step 2: Candidate attributes corresponding to tokens or n-grams that did not

occur at least 4 times in the training corpus were removed from the pool. This
removed a large number of very low frequency tokens or n-grams that were too rare
to be useful in a general classifier, speeding up the attribute selection process and
lowering memory requirements.

Step 3: The information gain IG(X, C) of each remaining candidate attribute X

with respect to the category-denoting random variable C was computed, using the
Boolean values of the candidate attributes, as shown below; cL and cS denote the
legitimate and spam categories, respectively. The m candidate attributes with the
highest IG scores were then retained, with m depending on the experiment.

IG(X,C) =
∑

x∈{0,1}, c∈{cL,cS}
P (X = x ∧ C = c) · log2

P (X = x ∧ C = c)
P (X = x) · P (C = c)

(1)

The probabilities were estimated from the training corpus with m-estimates [Mitchell
1997], in order to avoid zero probabilities. It can be shown that IG(X, C) mea-
sures the average reduction in the entropy of C given the value of X [Manning and
Schutze 1999]. Intuitively, it shows how much knowing X helps us guess correctly
the value of C. Yang and Pedersen [1997] have found experimentally information
gain to be one of the best attribute selection measures. Schneider [2003] experi-
mented with alternative versions of information gain attribute selection, intended
to be more suitable to frequency-valued attributes, instead of using their Boolean
forms. However, he observed no significant improvement of the resulting filters.

Selecting m attributes from a pool of M candidate attributes and N training
vectors requires O(MN) time to compute the probabilities, then O(M) to compute
the information gain scores, and O(M log M) to sort the candidate attributes on
their information gain scores and retain the m best. Thus, the selection process is
linear to the number of vectors and log-linear to the number of candidate attributes.

All of the experiments were performed using stratified ten-fold cross-validation.
That is, each message collection was divided into ten equally large parts, main-
taining the original distribution of the two classes in each part. Each experiment
was repeated ten times, reserving a different part for testing at each iteration, and
using the remaining parts for training. The results were then averaged over the ten
iterations, producing more reliable results, and allowing the entire corpus to be ex-
ploited for both training and testing. The attribute selection process was repeated
anew at each iteration of the cross-validation. When we refer to the training corpus
of cross-validation experiments, we mean the nine parts that were used for training
at each iteration.

For illustrative purposes, Table II lists, in non-encoded form, the n-grams that
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correspond to the attributes with the highest IG scores in the entire pu1. A large
proportion of the first author’s incoming legitimate messages, that were used in pu1,
concern natural language research. Hence, many of the best attributes correspond
to words or phrases that are common in those messages and rare in spam messages
(e.g., “research”, “speech”, “natural language”) or vice versa (e.g., “only $”, “be
removed”). Approximately half of the n-grams in Table II are 2-grams or 3-grams,
which indicates that there are many phrases that discriminate well between the two
categories.

3.2 Naive Bayes

3.2.1 Model representation. The Naive Bayes learner is the simplest and most-
widely used algorithm that derives from Bayesian Decision Theory [Duda and Hart
1973]. From Bayes’ theorem and the theorem of total probability, the probability
that a message with vector ~x = 〈x1, . . . , xm〉 belongs in category c is:

P (C = c | ~X = ~x) =
P (C = c) · P ( ~X = ~x | C = c)∑

c′∈{cL,cS} P (C = c′) · P ( ~X = ~x | C = c′)
. (2)

The optimal choice for ~x is the category c that maximizes equation (2). The de-
nominator does not affect this choice, as it remains the same for all categories.
What matters are the a priori probabilities of the categories and the a posteriori
probabilities of the vectors given the category, which need to be estimated from the
training data. The number of possible vectors (combinations of attribute values),
however, is very large, and many of the vectors will be rare or may not even occur
in the training data, making it difficult to obtain reasonable estimates of the re-
quired a posteriori probabilities. Hence, a simplifying assumption is made, leading
to the Naive Bayes classifier: attributes X1, . . . , Xm are considered conditionally
independent given the category C. This allows (2) to be rewritten as (3), where
now only the much fewer a posteriori probabilities P (Xi = xi | C = c) have to
be estimated. Along with the a priori probabilities P (C = c), they constitute the
model that Naive Bayes uses to represent a classifier.

P (C = c | ~X = ~x) =
P (C = c) ·∏m

i=1 P (Xi = xi | C = c)∑
c′∈{cL,cS} P (C = c′) ·∏m

i=1 P (Xi = xi | C = c′)
(3)

Although the independence assumption is in most cases over-simplistic, studies
in several domains, including anti-spam filtering, have found Naive Bayes to be
surprisingly effective [Langley et al. 1992; Domingos and Pazzani 1996; Pantel and
Lin 1998; Sahami et al. 1998; Androutsopoulos et al. 2000a; 2000b; 2000c].

When Boolean, or more generally discrete, attributes are used, it can be shown
[Duda and Hart 1973] that Naive Bayes can only address linearly separable prob-
lems. That is, the classifiers that Naive Bayes can learn can each be viewed as a
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Table II. The n-grams with the highest information gain scores in pu1, for n ∈ {1, 2, 3}, ranked
by decreasing score. Also shown are the a priori and conditional probabilities of the n-grams, as-
suming Boolean attributes. Shaded and non-shaded rows indicate n-grams that are more frequent
in the spam and legitimate category, respectively.

i n-gram P (Xi = 1) P (Xi = 1 | cL) P (Xi = 1 | cS)

1 ! ! 0.231607 0.001612 0.527950
2 ! 0.484105 0.216129 0.828157
3 $ 0.257947 0.040322 0.538302
4 ! ! ! 0.181653 0.001612 0.414078
5 language 0.247956 0.440322 0.002070
6 money 0.163487 0.001612 0.372670
7 remove 0.146230 0.001612 0.333333
8 free 0.309718 0.104838 0.573498
9 . 00 0.141689 0.001612 0.322981

10 fax : 0.174386 0.309677 0.002070
11 university 0.219800 0.374193 0.022774
12 click 0.118982 0.001612 0.271221
13 mailing 0.169845 0.029032 0.351966
14 natural 0.156221 0.277419 0.002070
15 the internet 0.110808 0.001612 0.252587
16 removed 0.110808 0.001612 0.252587
17 research 0.281562 0.445161 0.072463
18 university of 0.154405 0.274193 0.002070
19 % 0.128973 0.009677 0.283643
20 : + 0.152588 0.270967 0.002070
21 natural language 0.144414 0.256451 0.002070
22 , 000 0.156221 0.029032 0.320910
23 # 0.126248 0.012903 0.273291
24 ! you 0.099000 0.001612 0.225672
25 ion 0.138964 0.246774 0.002070
26 speech 0.138056 0.245161 0.002070
27 days 0.148955 0.027419 0.306418
28 applications 0.134423 0.238709 0.002070
29 fax : + 0.134423 0.238709 0.002070
30 development 0.133514 0.237096 0.002070
31 removed from 0.094459 0.001612 0.215320
32 never 0.094459 0.001612 0.215320
33 for you 0.166212 0.040322 0.329192
34 today 0.160762 0.037096 0.320910
35 on your 0.092643 0.001612 0.211180
36 now ! 0.091734 0.001612 0.209109
37 only $ 0.091734 0.001612 0.209109
38 1999 0.128973 0.229032 0.002070
39 . you 0.218891 0.079032 0.399585
40 thousands 0.090826 0.001612 0.207039
41 papers 0.127157 0.225806 0.002070
42 tel 0.125340 0.222580 0.002070
43 you can 0.265213 0.117741 0.455486
44 linguistics 0.123524 0.219354 0.002070
45 pay 0.087193 0.001612 0.198757
46 ! this 0.087193 0.001612 0.198757
47 be removed 0.087193 0.001612 0.198757
48 save 0.086285 0.001612 0.196687
49 . you can 0.086285 0.001612 0.196687
50 000 0.170753 0.05 0.327122



Learning to Filter Unsolicited Commercial E-Mail · 15

linear discriminant, a function of the following form, where the weights wi and w0

can be expressed in terms of the probabilities P (C) and P (Xi | C).13

f(~x) =
m∑

i=1

wi · xi + w0 (4)

The equality f(~x) = 0 corresponds to a hyperplane in the vector space, which in
our case aims to separate the legitimate from the spam messages of the training
corpus. Hence, when using discrete attributes, an alternative view of Naive Bayes’
model is that it is a hyperplane in the vector space.

In the case of continuous attributes, which is more relevant to this paper, each a
posteriori probability P (Xi = xi | C = c) can be modeled by a normal (Gaussian)
probability density function g(xi; µi,c, σi,c).14 Thus, equation (3) becomes:

P (C = c | ~X = ~x) =
P (C = c) ·∏m

i=1 g(xi;µi,c, σi,c)∑
c′∈{cL,cS} P (C = c′) ·∏m

i=1 g(xi;µi,c′ , σi,c′)
(5)

g(x; µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (6)

The mean and typical deviation of each density function are estimated from the
training corpus. The resulting classifier is a quadratic function of the attributes,
which is reduced to a linear discriminant under the assumption of homoscedacity,
i.e., same variance for all categories [Duda and Hart 1973]. The latter assumption,
however, is uncommon in the Naive Bayes literature, and is not adopted in the
implementation of Naive Bayes that we used. Hence, for our purposes, an alterna-
tive view of Naive Bayes’ probability model, when using continuous attributes, is
that it is a quadratic surface in the vector space, which attempts to separate the
legitimate from the spam messages of the training corpus.

3.2.2 Search method. In addition to its strong model bias, Naive Bayes has a
very strong search bias, as it does not perform any search at all. The parameters
of the model, i.e., the a priori probabilities of the categories and the a posteriori
probabilities of the attribute values given the category (with continuous attributes,
the mean and typical deviation of the corresponding Gaussian distributions), are
calculated simply as maximum-likelihood estimates from the training data.

The strong search bias of Naive Bayes makes it very efficient during training:
O(mN) time is needed to estimate the a posteriori probabilities, where m ≤ M is

13A recent proof [Jaeger 2003] shows that the reverse is also true: any linear discriminant can
be translated into a probability model of Naive Bayes. In practice, however, the ability of Naive
Bayes’ probability model to approximate any linear discriminant is restricted by the probability
estimation method.
14This approach is different from the multinomial model [McCallum and Nigam 1998], which is
appropriate only for integer frequency-valued attributes. Schneider [2003] explores alternative
event models for Naive Bayes in anti-spam filtering.
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the number of selected attributes and N the number of training messages. At run
time, Naive Bayes uses formula (5), which requires O(m) computations for each
test message.

3.3 Flexible Bayes

3.3.1 Model representation. The Flexible Bayes learner [John and Langley 1995]
provides an alternative approach to Naive Bayes for continuous attributes. Instead
of using a single normal distribution, the a posteriori probabilities of each attribute
Xi given the category c are modeled by the average of Li,c normal distributions,
with different mean values but common typical deviation:

P (Xi = xi | C = c) =
1

Li,c
·

Li,c∑

l=1

g(xi;µi,c,l, σi,c). (7)

More information on the choice of Li,c, and the parameters µi,c,l and σi,c will be
provided in Section 3.3.2. From the viewpoint of model, the use of a mixture
of normal distributions extends significantly the space of classifiers that can be
represented: Flexible Bayes’ probability model can approximate discriminants of
any order, potentially much more complex than the quadratic discriminants of
Naive Bayes. That is, it can separate the vector space into areas of rather arbitrary
shape, and assign each area to one of the two categories.

3.3.2 Search method. The weaker model bias of Flexible Bayes expands consid-
erably its search space. To make the search (i.e., parameter estimation) tractable,
the following assumptions are made in [John and Langley 1995], which introduce a
search bias:

(1) The number of distributions Li,c that is used to model Xi in equation (7) is set
to the number of different values the attribute takes in the training instances
of category c. Each of these values is used as the mean µi,c,l of a distribution
in the corresponding category.

(2) All the distributions in a category c are taken to have the same typical deviation,
which is estimated as 1√

Nc
, where Nc is the number of training messages in c.

Equation (7) becomes (8), where Li,c is now the number of different values of Xi

in the training data of category c. This modeling is based on Parzen estimation
[Fukunaga 1990].

P (Xi = xi | C = c) =
1

Li,c
·

Li,c∑

l=1

g(xi; µi,c,l,
1√
Nc

) (8)

Despite its weaker model bias, the computational complexity of Flexible Bayes
during training is the same as that of Naive Bayes, i.e., O(mN), thanks to the
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Fig. 2. Linear discrimination with svms in a linearly separable case.
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simplifying approach of Parzen estimation. However, there is an increase in the
number of computations at run time: in the worst case, where each attribute has
a different value in each message, O(mN) computations are needed for each test
message, instead of O(m) in the case of Naive Bayes, because of the need to sum
the Li,c distributions in equation (8).

3.4 Support Vector Machines

3.4.1 Model representation. Support Vector Machines [Cristianini and Shawe-
Taylor 2000] are based on the idea that every solvable classification problem can
be transformed into a linearly separable one by mapping the original vector space
into a new one, using non-linear mapping functions. More formally, svms learn
generalized linear discriminant functions of the following form:

f(~x) =
m′∑

i=1

wi · hi(~x) + w0 (9)

where m′ is the dimensionality of the new vector space, and hi(~x) are the non-linear
functions that map the original attributes to the new ones. The higher the order
of the hi(~x) functions, the less linear the resulting discriminant. The type of hi(~x)
functions that can be used is limited indirectly by the algorithm’s search method
(Section 3.4.2), but the exact choice is made by the person who configures the
learner for a particular application. The function f(~x) is not linear in the original
vector space, but it is linear in the transformed one.

3.4.2 Search method. Given the functions hi(~x), which translate the original
problem into one that is more likely to be linearly separable, the search space
for svms is the set of linear discriminant functions, or else hyperplanes, in the
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new vector space. The search method of svms aims to select the hyperplane that
separates with the maximum distance the training instances (messages) of the two
categories (Figure 2). This target hyperplane is found by selecting two parallel
hyperplanes that are each tangent to a different category, i.e., they include at least
one training instance of a different category, while providing perfect separation
between all the training instances of the two categories. The training instances
that lie on, and thus define, the two tangential hyperplanes are the support vectors.
The distance between the two tangential hyperplanes is the margin. Once the
margin has been maximized, the target hyperplane is in the middle of the margin.

More formally, let us first consider the case where the mapping functions map
each ~x to itself (i.e., there is no transition to a new vector space) and the problem
is linearly separable. The target hyperplane will satisfy equation (10), where ~w and
w0 can be rescaled at will, so that the instances closest to the target hyperplane,
the support vectors, will satisfy |~w · ~x + w0| = 1. Then, each of the tangential
hyperplanes satisfies one of equations (11) and (12), and the distance between the
two hyperplanes, i.e., the margin, is 2/||~w||, where || · || is the Euclidean norm.

m∑

i=1

wi · xi + w0 = ~w · ~x + w0 = 0 (10)

m∑

i=1

wi · xi + w0 = ~w · ~x + w0 = 1 (11)

m∑

i=1

wi · xi + w0 = ~w · ~x + w0 = −1 (12)

Minimizing ||~w||2/2, subject to the constraint that all the training instances are
classified correctly, leads to the maximum-margin solution.

In order to handle situations where no hyperplane can fully separate the training
instances of the two categories and allow for misclassified training instances, instead
of ||~w||2/2 we minimize ||~w||2/2 + C ·∑j ξj , where there is an ξj for each training
instance ~xj . Intuitively, each ξj measures how far ~xj is from where it should be;
more precisely, the distance is ξj/|~w|. For training instances that are both classified
correctly by the linear discriminant of equation (10) and fall outside the margin
area between the two tangential hyperplanes, ξj = 0. For all the other training
instances, ξj/||~w|| is the distance of the instance from the tangential hyperplane of
its category (Figure 3). For training instances that are correctly classified by the
linear discriminant but fall in the margin, 0 ≤ ξj ≤ 1. C is a user-defined parameter
that determines the amount of error to be tolerated. The smaller the value of C

is, the less important misclassifications become in the choice of linear discriminant.
Following extensive experimentation, we chose C = 1.

In the non-linearly separable case, the optimization problem above is difficult
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Fig. 3. Linear discrimination with svms in a case that is not linearly separable.
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to handle directly. Instead, it can be transformed [Burges 1998] into its dual La-
grangian formulation, which maximizes quantity (13) under constraints (14), where
~xj , ~xk are all the training instances, and yj , yk ∈ {1,−1} depending on the cate-
gories of ~xj , ~xk; the category whose tangential hyperplane satisfies equation (11) is
represented by 1, and the other one by −1. The multipliers aj , known as Langrange
multipliers, are the parameters that need to be estimated by the search method.

LD =
∑

j

αj − 1
2
·
∑

j,k

αj · αk · yj · yk · ~xj · ~xk (13)

0 ≤ aj ≤ C and
∑

j

aj · yj = 0 (14)

For the dual Langrangian problem to be equivalent to the primal one, a set of condi-
tions, known as Karush-Kuhn-Tucker (kkt) conditions, need to be satisfied [Burges
1998]. Constraints (14) and the kkt conditions lead to the following constraints
that guide the search towards the optimal linear discriminant:

(1) aj = 0, for all the training instances ~xj that are both correctly classified and
fall outside the marginal area (yj · (~w · ~xj + w0) > 1),

(2) 0 < aj < C, for the support vectors (yj · (~w · ~xj + w0) = 1),

(3) aj = C, for the instances in the marginal area and those that are misclassified
(yj · (~w · ~xj + w0) < 1).

When the mapping functions hi(~x) cause a transition to a new vector space,
~h(~x) = 〈h1(~x), . . . , hi(~x), . . . , hm′(~x)〉 has to be used instead of ~x in the equations
above. The most interesting property of the dual Lagrangian formulation is that
the quantity to be maximized, now equation (15), is expressed in terms of a dot
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product between instances in the new vector space. Equation (15) can be rewritten
as (16), where K(~xj , ~xk) is a function, called kernel, that computes the dot product.

LD =
∑

j

αj − 1
2
·
∑

j,k

αj · αk · yj · yk · ~h(~xj) · ~h(~xk) (15)

LD =
∑

j

αj − 1
2
·
∑

j,k

αj · αk · yj · yk ·K(~xj , ~xk) (16)

In fact, we can use any function K(~xj , ~xk), provided that it is indeed a kernel,
i.e., that it can be proven to compute the dot product of ~xj , ~xk in some new vector
space, without defining that new vector space and the mapping functions explicitly.

A range of kernel functions have been used in the literature, e.g., polynomial
kernels, such as K(~xj , ~xk) = (x0 + ~xj · ~xk)n. The choice of kernel affects the
model bias of the algorithm. For instance, the higher the degree n of a polynomial
kernel, the higher the order of the discriminant function that can be discovered in
the original vector space. However, research in text classification has shown that
simple linear svms usually perform as well as non-linear ones [Joachims 1998]. This
was also observed in our experiments, where after experimenting with polynomial
kernels of various degrees, we finally decided to use a linear svm, i.e., an svm that
uses a dot product in the original vector space as its kernel.

The solution of the dual Lagrange maximization problem requires numerical op-
timization, usually through a quadratic programming algorithm. The optimization
algorithm we used is called Sequential Minimal Optimization, and avoids some of
the computational cost of quadratic programming by breaking the problem down
into smaller ones that can be solved analytically; see Platt [1999] for details.

Once the Lagrange multipliers have been estimated, the classification of an unseen
instance ~x into category +1 or −1 at run time follows the sign of function (17),
where ~xj are the training instances with aj > 0 (ideally only the support vectors).
The constant w0 can be computed from the kkt conditions.

f(~x) = ~w · ~h(~x) + w0 =
∑

j

αj · yj ·K(~xj , ~x) + w0, (17)

The smo algorithm is relatively time and memory efficient, in comparison to other
optimization algorithms for svms. Nevertheless, this efficiency is not reflected in
its worst-case computational complexity. During training, smo iteratively identifies
“good pairs of instances”, which leads to a worst-case complexity that is quadratic
to the number of instances, i.e., O(mN2). This is misleading, however, since the
choice of instance pairs is highly optimized in the average case, emphasizing the
role of the iterative optimization process in the computational cost of the algorithm.
Clearly, the number of iterations is hard to quantify in terms of N , in order to be
included meaningfully in the worst-case estimate. At run time, the complexity of
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smo is O(mN). However, this figure corresponds to the worst case, where all the
training instances receive aj > 0; this is a very unusual situation, which does not
seem to occur in text classification. Furthermore, with linear svms, i.e., if there is
no transition to a new vector space, it is possible to improve this estimate to O(m).

3.5 LogitBoost with regression stumps

3.5.1 Model representation. LogitBoost [Friedman et al. 2000] belongs in the
class of boosting algorithms, which, like svms, learn generalized linear discriminants
of the form of equation (18).

f(~x) =
m′∑

i=1

wi · hi(~x) + w0 (18)

In boosting algorithms, however, the mapping functions hi(~x) are themselves learnt
from data by another learning algorithm, known as weak learner. Typically, the
same weak learner is used to learn all the mapping functions, but at each i, the
learning data are modified, leading to a different mapping function hi(~x). As with
svms, the resulting discriminant is generally non-linear in the original vector space.

A common weak learner is decision stump induction [Holte 1993], which con-
structs a one-level decision tree that uses a single attribute from the original at-
tribute set to classify the instance ~x to one of the two categories. In the case of
continuous attributes, as those used in this paper, the decision tree is a thresh-
old function on one of the original attributes. LogitBoost requires that the weak
learner perform regression, rather than classification; i.e., the weak learner hi(~x) is
required to approximate a function zi(~x). In that case, the decision stumps become
regression stumps of the following form, where ai(~x) is the value of the attribute
checked by the stump, and ti is a threshold:

hi(~x) =

{
ri, if ai(~x) > ti

qi, if ai(~x) ≤ ti
, (19)

where ri =
1
|R|

∑

~xj∈R

zi(~xj), qi =
1
|Q|

∑

~xj∈Q

zi(~xj),

and R = {~xj | ai(~xj) > ti}, Q = {~xj | ai(~xj) ≤ ti}.
The threshold ti partitions the training instances in two parts, R and Q. The values
ri, qi of the regression stump are the mean values of zi(~xj) in the two parts.

3.5.2 Search method. The mapping functions hi(~x) are learnt by applying iter-
atively (for i = 1, . . . , m′) the weak learner, in our case regression stump induction,
to an enhanced form of the training set, where each training instance ~xj carries a
weight vi(~xj). At each iteration, the weights of the training instances are updated,
and, hence, applying the weak learner leads to a different mapping function hi(~x).
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This iterative process is common to all boosting methods, where each hi(~x) can be
thought of as a weak classifier that specializes on classifying correctly training in-
stances that the combination of the previous weak classifiers hk(~x) (k = 1, . . . , i−1})
either misclassifies or places close to the classification boundary. This is similar to
the behavior of svms, which focus on instances that are misclassified or support
the tangential hyperplanes. At run time, equation (18) combines the opinions of
the weak classifiers by computing a weighted sum of their confidence scores. Log-
itBoost sets w0 = 0 and wi = 0.5 (equal weights to all weak classifiers), leading to
discriminants of the form:

f(~x) =
1
2
·

m′∑

i=1

hi(~x) (20)

Unlike other boosting methods, LogitBoost modifies the target function zi(~xj), in
addition to the instance weights vi(~xj), during training. At iteration i, the weight
and the target value of each training instance ~xj is computed as in (21) and (22),
where c is one of the two categories, treated as the positive one, and y(~xj) = 1 if
~xj belongs in c, and y(~xj) = 0 otherwise.

vi(~xj) = P (C = c | ~xj) · (1− P (C = c | ~xj)) (21)

zi(~xj) =
y(~xj)− P (C = c | ~xj)

vi(~xj)
(22)

The probability P (C = c | ~xj) is estimated by applying a sigmoid function, known
as Logit transformation, to the response f(~xj) of the weak classifiers that have been
learnt so far, as in (23). The sigmoid function maps f(~xj) on the (0, 1) interval.

P (C = c | ~xj) =
ef(~xj)

1 + ef(~xj)
, where f(~xj) =

1
2
·

i−1∑

k=1

hk(~xj). (23)

The target function zi(~xj) provides a weighted estimate of the error of the current
combined classifier that hi(~x) is intended to improve. The weight in (21) is largest
when P (C = c | ~xj) = 1 − P (C = c | ~xj) = 0.5 (maximum uncertainty regarding
the category of ~xj), and becomes smaller as P (C = c | ~xj) approaches its maximum
or minimum value (maximum certainty). Hence, it amplifies more the error of (22)
when the current classifier is more certain of its decision (smaller denominator).

Once the target function zi(~xj) and the weights vi(~xj) of iteration i have been
computed, the parameters of the new weak classifier hi(~x), in our case the threshold
ti and the attribute αi that the stump examines, are chosen using weighted least-
square regression on the training data, with zi(~xj) as the working response. This
leads to the regression stump that models best the errors of the current classifier
on the training set, a process known as fitting of residuals.

The search for the optimal stump considers only threshold values that are values
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of the stump’s attribute in the training data. In the worst case, the attribute has
a different value in each training instance. Hence, it takes O(mN2) time at each
iteration to consider O(mN) candidate stumps and compute the responses over the
N training instances, and the overall complexity of LogitBoost during learning is
O(m′mN2). At run time, computing the response of each stump takes constant
time, and, thus, the complexity of LogitBoost is O(m′). In our experiments, we
set m′ = 20, as the LogitBoost implementation that we used was too slow during
training to explore larger numbers of iterations.

3.6 Comparison of the learning methods

This section summarizes the main differences and similarities of the four learning
algorithms, with respect to their model and search biases. It also compares their
computational complexity at training and run time.

3.6.1 Model representation. As explained at the beginning of Section 3, the
choice of model introduces a bias, which restricts the space of classifiers that a
learning algorithm considers. The more restrictive the model representation is, the
strongest the model bias. The four algorithms vary significantly in terms of their
model bias. Naive Bayes has the strongest one, restricting its search, in the case of
continuous attributes, to quadratic discriminants. The other three algorithms can
all learn higher-order non-linear discriminants. svms and LogitBoost both learn
generalized linear discriminants in a transformed vector space, which are generally
non-linear in the original space; they use, however, very different mapping functions
between the two spaces. Flexible Bayes uses a mixture of Gaussian distributions,
which allows it to approximate discriminants of any order.

The common feature of the four algorithms is that they can all learn non-linear
discriminants. However, the need for non-linearity has been challenged in the lit-
erature, especially for text classification [Joachims 1998; Zhang et al. 2003]. The
skepticism is based on the very high dimensionality and sparseness of most text
classification training sets, which can often be modeled adequately by linear dis-
criminants. In classification problems of the latter kind, a stronger model bias that
limits the search space to linear discriminants may help the search method find a
good discriminant, leading to improved classification accuracy.

3.6.2 Search method. The method that each algorithm uses to search the space
of classifiers it can learn introduces its own bias. The two Bayesian methods have
the strongest search biases. With continuous attributes, Naive Bayes simply uses
maximum likelihood to estimate the mean and typical deviation of the Gaussian
distributions it uses, in effect performing no search. Flexible Bayes makes strong
assumptions about the number and parameters of its Gaussian distributions, which,
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Table III. Computational complexity of the four learning algorithms. N is the number of train-
ing messages, m ≤ M the number of selected attributes, and m′ the number of iterations in
LogitBoost.

algorithm training classification

Naive Bayes O(mN) O(m)

Flexible Bayes O(mN) O(mN)

svm with smo O(mN2) O(mN)

linear svm with smo O(mN2) O(m)

LogitBoost with regression stumps O(m′mN2) O(m′)

again, allow it to estimate the parameters with no search. The other two algorithms
search the space of classifiers by performing optimization. They both focus on
training instances that are misclassified or are close to the classification boundary,
which can also be seen as introducing a strong search bias.

3.6.3 Computational Complexity. Table III summarizes the computational com-
plexity estimates of the previous sections. At training, Naive Bayes and Flexible
Bayes appear to be the best. At run time, Naive Bayes and LogitBoost with regres-
sion stumps have the important property that their complexities do not depend on
the number of training messages, while the same is true for linear svms. Overall,
then, Naive Bayes appears to be the best in terms of computational complexity.
One should keep in mind, however, that these are worst-case estimates. In prac-
tice, the number of steps each algorithm takes may grow at more conservative rates.
We return to this point when presenting the results of our corpus experiments in
Section 5.

4. COST SENSITIVE CLASSIFICATION

Mistakenly treating a legitimate message as spam can be a more severe error than
treating a spam message as legitimate, i.e., letting it pass the filter. This section
explains how we took this unbalanced misclassification cost into account in our
experiments. We first discuss different usage scenarios for anti-spam filtering, and
how each can be captured in a cost matrix. We then turn to the issue of making
learning algorithms sensitive to a cost matrix. Finally, we discuss why evaluation
measures that are in accordance to the cost matrix are needed, and present the
evaluation measures that we used.

4.1 Cost scenarios

Let L → S and S → L denote the two error types, whereby a legitimate message is
classified as spam, and vice versa, respectively. Invoking a decision-theoretic notion
of cost, let us assume that L → S is λ times more costly than S → L, where λ

depends on the usage scenario; for example, whether the filter deletes messages it
classifies as spam, or simply flags them as low-priority. More precisely, we use the
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Table IV. The cost matrix used in this paper.

classified as legitimate classified as spam

legitimate message c(L → L) = 0 c(L → S) = λ
spam message c(S → L) = 1 c(S → S) = 0

cost matrix of Table IV, where L → L and S → S denote the cases where the
filter classifies correctly a legitimate or spam message, respectively. Here, cost is
intended to reflect the effort that users waste to recover from failures of the filter.15

Correctly classifying a message is assigned zero cost, since no user effort is wasted.
Misclassifying a spam message (S → L) is assigned unary cost, and misclassifying a
legitimate message (L → S) is taken to be λ times more costly.16 This cost model
assumes that the effort to recover from the misclassification of a legitimate message
is always the same, regardless of its sender or subject. This is a simplification that
will allow us to reach some useful initial conclusions.

In the experiments of this paper, we used two different usage scenarios. In the
first one, the anti-spam filter simply flags messages it considers to be spam, without
removing them from the user’s mailbox, to help the user prioritize the reading of
incoming messages. In this case, λ = 1 seems reasonable, since none of the two error
types (L → S or S → L) is graver than the other. The second scenario assumes
that messages classified as spam are returned to the sender. An extra paragraph in
the returned message explains that the message was blocked by a filter, and asks
the original sender to repost the message, this time including a special string in
the subject that instructs the filter to let the message pass. The string can be the
answer to a frequently changing user-specific riddle (e.g., “the capital of France”),
which spamming software cannot guess. In this scenario, λ is set to 9, reflecting the
assumption that, if the sender’s extra work is counted, recovering from a blocked
legitimate message, i.e., reposting the message as instructed, requires as much extra
effort as deleting manually approximately 9 spam messages that passed the filter.

In previous work [Androutsopoulos et al. 2000a; 2000b; 2000c], we had also con-
sidered a scenario where messages classified as spam were deleted without further
action. In that scenario, the cost of recovering from an accidentally misclassified
legitimate message was very high; we had used λ = 999. However, our previous
results indicated that the third scenario was too difficult for both learning-based
filters and filters with hand-crafted rules, and we decided not to study it further.

15In a more general case, cost could take into account the wasted resources of the Internet provider.
16Kolcz and Alspector [2001] argue for a more fine-grained specification of the cost of erroneously
blocked legitimate messages. They divide the legitimate category to subcategories, such as business
mail, or sensitive personal mail, and propose different costs for each subcategory.
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4.2 Cost-sensitive learning

We now examine how learning algorithms can be made sensitive to a cost matrix.
The optimal strategy [Duda and Hart 1973] is to classify an incoming message
represented by ~x as spam iff the expected cost of classifying it as legitimate exceeds
that of classifying it as spam, i.e., iff inequality (24) holds.

P (C = cS | ~x) · c(S → L) + P (C = cL | ~x) · c(L → L) >

P (C = cL | ~x) · c(L → S) + P (C = cS | ~x) · c(S → S) (24)

With classifiers whose decisions are accompanied by confidence scores, the scores
can be used as estimates of the probabilities in (24). Let WL(~x) and WS(~x) be the
confidence scores of the classifier that the incoming message is legitimate or spam,
respectively. Then, provided that the confidence scores are good estimates of the
corresponding probabilities, inequality (24) becomes (25).

WS(~x)·c(S → L)+WL(~x)·c(L → L) > WL(~x)·c(L → S)+WS(~x)·c(S → S) (25)

According to the cost matrix of Table IV, this is equivalent to WS(~x) > WL(~x) · λ.
Hence, assuming that both confidence scores are within the (0, 1) interval and their
sum is 1, the best strategy is to classify the message as spam iff the two equivalent
criteria (26) are satisfied, where t is a classification threshold.

WS(~x)
WL(~x)

> λ, or WS(~x) > t, with t =
λ

1 + λ
(26)

Unfortunately, many learning algorithms were designed with cost-insensitive tasks
in mind. In cost-insensitive tasks, returning confidence scores that are good esti-
mates of the corresponding probabilities is not crucial, as long as the correct cat-
egory is assigned the greatest confidence score. As a result, the learned classifiers
often produce unreliable estimates, e.g., based on small samples, or no estimates at
all. Hence, relying on criteria (26) is not always the best strategy.

An alternative strategy is to classify each unseen instance to the category with the
highest confidence score, as in a cost-insensitive setting, but to weigh the training
instances according to the misclassification cost of the category they belong to.
This biases the learner towards the category with the highest misclassification cost,
helping it avoid the most costly errors. In our case, legitimate training messages
are assigned λ times greater weights than spam ones to avoid L → S errors that
cost λ times more than S → L ones. The implementations of Naive Bayes and
Flexible Bayes that we used can weigh the training instances according to a formula
presented by Ting [1998]. In our case, this assigns to each spam training instance
a weight wS = NS+NL

NS+λ·NL
, where NS and NL are the number of spam and legitimate

training instances, respectively; legitimate messages are assigned a weight wL =
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λ · wS . The advantage of this weighting scheme is that the total weight of the
instances remains NS + NL, irrespective of the value of λ.

The svm and LogitBoost implementations that we used cannot handle weighted
training instances. Instead, we used weighted resampling to simulate training in-
stance weighting. This generates a new training set of the same size as the original
one by randomly resampling the original instances according to their weights. In
our case, this means that some messages, mostly legitimate ones, appear several
times in the new set, and others, mostly spam ones, do not appear at all.

Preliminary experiments with λ = 9 indicated that LogitBoost performed bet-
ter with criteria (26) than with weighted resampling. In contrast, the svm per-
formed better with weighted resampling, and Flexible Bayes performed better with
weighted training instances. With all three algorithms, we chose the method that
led to the best results.17 In the case of Naive Bayes, weighting the training in-
stances is equivalent to applying criteria (26), because all the training instances
in a particular category receive the same weights. Hence, the means and typical
deviations µi,c and σi,c in each category (equation (5)) are not affected, and the a
posteriori probabilities (Gaussian distributions) remain the same. The weighting
affects only the a priori probability of the legitimate category multiplying it by λ,
which is equivalent to using criteria (26).

4.3 Cost-sensitive evaluation

We have already considered ways to make the classifiers sensitive to the cost dif-
ference between the two types of misclassification errors. In a similar manner, this
cost difference must be taken into account when evaluating the performance of anti-
spam filters. In classification tasks, performance is usually measured in terms of
accuracy (Acc) or error rate (Err = 1 − Acc). Let RL and RS be the numbers of
legitimate and spam messages to be classified at run time, |L → S| and |S → L|
be counters of the L → S and S → L errors at run time, and |S → S| and |L → L|
be counters of the correctly classified spam and legitimate messages, respectively.
Accuracy and error rate are defined as follows:

Acc =
|L → L|+ |S → S|

RL + RS
and Err =

|L → S|+ |S → L|
RL + RS

.

To make Acc and Err sensitive to the cost difference between the two error types,
we treat, for evaluation purposes, each legitimate message in the testing corpus as
if it were λ messages. Misclassifying a legitimate message counts as λ errors, while
classifying it correctly counts as λ successes. Spam messages are treated as single
messages. This is similar to instance weighting during training, and leads to the

17We also experimented with MetaCost [Domingos 1999], but found it computationally expensive,
without significant gains in classification performance. This agrees with Hidalgo [2002].
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following definitions of weighted accuracy and weighted error rate:

WAcc =
λ · |L → L|+ |S → S|

λ ·RL + RS
, WErr = 1−WAcc =

λ · |L → S|+ |S → L|
λ ·RL + RS

.

In terms of cost, the numerator of WErr above is equal to the total cost incurred
by using the filter on the RL+RS messages, while the denominator is a normalizing
factor equal to the incurred cost of the worst possible filter, which misclassifies all
the messages. WAcc is simply the complement of the normalized incurred cost.

The Acc and Err scores, or their weighted versions, are often misleadingly high
or low, respectively. To get a clearer picture of the classifier’s performance, it
is common to compare them to those of a simplistic baseline. In this paper, the
baseline is the case where no filter is used: legitimate messages are (correctly) never
blocked, and spam messages (mistakenly) always pass the filter. Its scores are:

WAccb =
λ ·RL

λ ·RL + RS
and WErrb =

RS

λ ·RL + RS
.

For the benefit of readers familiar with information retrieval and extraction, the
results will also be shown in terms of recall (R) and precision (P), defined below:

R =
|S → S|

RS
and P =

|S → S|
|S → S|+ |L → S| .

Recall measures how many of the spam messages the filter managed to block (in-
tuitively, its effectiveness), whereas precision measures how many of the messages
that the filter classified as spam were indeed spam (intuitively, its safety). Despite
their intuitiveness, it is difficult to compare the performance of different filters using
recall and precision. Each filter yields a different pair of recall and precision scores;
and without a single measure, like WAcc, that incorporates the cost difference
between the two error types, it is difficult to decide which pair is better.18

Finally, in order to get a feeling of how well the learning algorithms perform
against simple hand-crafted rules that look for particular keywords, the default
anti-spam rules of Microsoft Outlook 2000, hereafter hand-crafted rules, were also
tested.19 They are 58 rules, looking for particular keywords in the body or header
of the messages (e.g., “body contains ‘,000’ and body contains $”).

5. CORPUS EXPERIMENTS

We now move on to the presentation of our corpus experiments, which were per-
formed using the pu1, pu2, pu3, and pua collections. All the experiments were

18The F -measure, commonly used in information retrieval and extraction to combine recall and
precision, cannot be used here, because its β factor cannot be related to λ. An alternative proposed
by Hidalgo [2002] is to plot roc curves for variable λ values.
19The on-line documentation of Microsoft Outlook 2000 points to a file that contains its default
anti-spam rules. The results reported in this paper are for a case-insensitive version of these rules,
which performed better than the original case-sensitive ones.
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performed using stratified 10-fold cross-validation (Section 3.1).
The corpus experiments served several goals. First, to explore the degree to

which a learning-based anti-spam filter improves, if at all, upon the baseline (no
filter) and the hand-crafted rules of Section 4.3; both cost scenarios of Section
4.1 were considered. A second goal was to investigate if some of the learning
algorithms lead to consistently better performance, identifying the conditions under
which particular algorithms excel. A third, intertwined goal was to investigate the
effect of the following parameters: the size of the attribute set, the nature of the
attributes (whether they represent single tokens or sequences of tokens), and the
size of the learning corpus. The findings of these experiments guided the design of
our prototype filter, that will be presented in Section 6.

5.1 Experiments with 1-gram attributes

The first experiments used only 1-gram attributes, i.e., each attribute corresponded
to one token. The best m attributes were retained, as in Section 3.1, with m ranging
from 40 to 600 by 40. The experiments were repeated for λ = 1 and λ = 9.

Figure 4 shows the WAcc results for λ = 1.20 All the learning algorithms clearly
outperform both the baseline and the hand-crafted rules, even in pu2 where the
baseline is very high. There is no clear winner, however, among the learning algo-
rithms: the svm classifier is the only one that is consistently among the two best,
but the differences in WAcc among the four learnt classifiers are generally small, and
their rankings vary across the collections. Readers wishing to implement real-life
filters for this cost scenario are, therefore, advised to select among the four algo-
rithms taking into account other factors, such as their complexities (Table III) and
the availability of efficient implementations, rather than their rankings in Figure 4.

As an indication of the computational efficiency of the particular implementations
that we used, Figure 5 shows the average learning and classification times per
training and test message, respectively, as recorded in our experiments on pua for
λ = 1.21 In almost all cases, there is a significant increase in both learning and
classification time as more attributes are retained (notice the logarithmic vertical
scale). Hence, in a real-life application one should be skeptical about using large
attribute sets, especially since, as shown in Figure 4, retaining large numbers of
attributes does not always lead to significant improvements in accuracy. We will
explore this point further in Section 5.2.

Figure 5 implies that there is a tradeoff between training and classification time.
The training time of LogitBoost was clearly the worst, by at least an order of

20The results of Naive Bayes on pu1 differ from those published in our earlier work, because we
now use frequency-valued attributes.
21All the corpus experiments were performed on a computer with a 1.7 GHz Intel Pentium 4
processor and 512 mb ram running Microsoft Windows 2000 and Java sdk v.1.4.
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Fig. 4. WAcc results with varying number of 1-gram attributes, for λ = 1.
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Fig. 5. Average training and classification time on pua, with 1-gram attributes, for λ = 1.
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magnitude, making it almost impractical to use. Its classification speed, however,
was the best. Similarly, the training speed of svm was the second worst, while its
classification speed was the second best. The Bayesian classifiers were the fastest in
terms of training time, and the worst in terms of classification time; Flexible Bayes
was significantly slower than Naive Bayes in classification, because of the additional
computations needed to average over its kernels (Section 3.3.2).

The recorded times appear to be compatible with, but generally less pessimistic
than the worst-case complexity figures of Table III, which predicted, for varying
m, constant classification time for LogitBoost, and linear time in all other cases.
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Fig. 6. WAcc results with varying number of 1-gram attributes, for λ = 9.
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However, the important differences in the efficiency of the algorithms, both during
training and testing, do not seem to be fully predictable by the complexity esti-
mates. As a result, we conclude that worst-case predictions are an insufficient guide
for the choice of learning algorithm.

Moving on to the λ = 9 scenario, Figure 6 shows the corresponding WAcc results
for 1-gram attributes. It can be seen from Figure 6 that svm, Flexible Bayes, and
LogitBoost consistently outperform both the baseline and the hand-crafted rules,
even in pu2 where the baseline is extremely high due to the large legitimate-to-
spam ratio and the fact that each legitimate message is counted nine times when
computing WAcc. In contrast, the performance of Naive Bayes is much worse,
very often below the baseline; this is mostly the effect of a higher number of L → S

errors, which are penalized more heavily than S → L ones. Flexible Bayes performs
clearly better than Naive Bayes, suggesting that the normal distribution assumption
in Naive Bayes is violated.

Table V sheds more light on the experiments with 1-gram attributes: it shows
the WAcc results that were obtained in both cost scenarios on the four collections
with 600 attributes, along with the corresponding precision and recall figures. Naive
Bayes achieves the best recall in all cases, at the expense of generally lower precision;
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Table V. Precision, recall, and WAcc (%), with 600 1-gram attributes.

λ = 1 λ = 9

learner precision recall WAcc precision recall WAcc

pu1

baseline − − 55.96 − − 91.96
hand-crafted rules 95.15 53.01 78.25 95.15 53.01 94.32
Naive Bayes 89.58 99.38 94.59 89.81 98.75 91.61
Flexible Bayes 96.92 97.08 97.34 99.03 84.79 98.17
svm 93.96 95.63 95.32 97.97 85.83 97.50
LogitBoost 95.22 93.13 94.86 98.02 81.46 97.03

pu2

baseline − − 80.28 − − 97.34
hand-crafted rules 85.33 45.39 87.62 85.33 45.39 96.65
Naive Bayes 80.77 90.00 93.66 82.96 90.71 94.80
Flexible Bayes 90.57 79.29 94.22 97.78 62.14 98.65
svm 88.71 79.29 93.66 97.50 52.14 98.39
LogitBoost 89.46 77.86 93.66 93.82 62.86 97.99

pu3

baseline − − 55.93 − − 91.95
hand-crafted rules 96.31 40.03 72.87 96.31 40.03 94.05
Naive Bayes 93.59 94.84 94.79 93.59 94.78 94.76
Flexible Bayes 95.78 90.55 94.04 99.34 59.29 96.44
svm 96.48 94.67 96.08 98.13 87.75 97.78
LogitBoost 94.31 92.42 94.14 98.65 78.52 97.47

pua

baseline − − 50.00 − − 90.00
hand-crafted rules 92.97 41.68 69.26 92.97 41.68 91.33
Naive Bayes 95.11 94.04 94.47 95.11 94.04 94.82
Flexible Bayes 96.75 91.58 94.21 98.75 77.19 96.77
svm 92.83 93.33 92.89 97.10 82.11 96.00
LogitBoost 89.62 90.88 89.82 96.75 75.79 95.21

i.e., it makes few S → L errors and more L → S ones. In the λ = 1 scenario, where
the two types of error are equally severe, Naive Bayes’ high recall balances its
overall lower precision. In the λ = 9 scenario, however, where L → S errors are
more severe than S → L ones, precision is more important than recall; yet, Naive
Bayes continues to favor recall, which leads to low WAcc scores.

A related observation is that Naive Bayes does not appear to adapt to any sig-
nificant extent to the different values of λ in the two scenarios, unlike the other
learners. The precision and recall of Naive Bayes are almost the same across the
two scenarios in all four datasets. This is due to a skew in the probability estimates
of Naive Bayes, which causes the values of P (C = cS | ~x) to be very close to 0 or 1;
hence, moving the classification threshold (Section 4.2) from t = 0.5 (when λ = 1)
to t = 0.9 (when λ = 9) has a very limited effect. An alternative, which we have
not explored, might be to follow Carreras and Marques [2001], and set the classifi-
cation threshold experimentally, using a separate validation part of each collection,
instead of using the theoretical value t = λ

1+λ of criteria (26), which is optimal only
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when the estimates of P (C| ~X) of the classifier are accurate. This approach might
have allowed Naive Bayes to adapt better to the cost scenarios.

The results we obtained on pu1 are generally worse than those of Carreras and
Marquez [2001], who experimented with pu1 and AdaBoost, another boosting algo-
rithm. In the λ = 1 scenario, Carreras and Marquez reported 97.48% precision and
96.47% recall when using decision stumps as weak learners, with results reaching
98.73% precision and 97.09% recall when using decision trees as weak learners (cf.
Table V). For λ = 9, their best results were 99.08% precision and 89.60% recall
(WAcc = 98.58%) with decision stumps, and 99.35% precision and 94.80% recall
(WAcc = 99.14%) with decision trees as weak learners. Apart from using a differ-
ent boosting algorithm and setting the classification threshold experimentally, as
discussed above, the other main differences between the setting of our experiments
and that of Carreras and Marquez were that the latter performed no attribute se-
lection (they used all the candidate 1-gram attributes of Section 3.1.2) and used
hundreds of boosting iterations (their λ = 1 results above were obtained using 525
and 450 iterations, respectively), compared to the 20 iterations of our experiments
with LogitBoost. As shown in Figure 5, the LogitBoost implementation we used
is particularly slow during training, and, hence, we were unable to explore if us-
ing more iterations would allow LogitBoost to approach the results of Carreras
and Marquez. The issue of using much larger attribute sets was explored in the
experiments that will be presented in Section 5.2 below.

It is also interesting to observe (Table V) that the hand-crafted rules perform well
in terms of precision. Their weakness lies in recall, where their performance is well
below that of the learning algorithms. This allows the hand-crafted rules to achieve
higher WAcc scores in the λ = 9 scenario, where precision is more important.

5.2 Experiments with extended attribute sets

In this section we present a second set of experiments, which employed attribute
sets that were extended in two ways: first, the attributes now corresponded to n-
grams (n ∈ {1, 2, 3}), as opposed to using 1-grams only, and, second, the number of
retained attributes was larger, up to 3000 attributes, compared to a maximum of
600 attributes in the previous experiments. Note that if an n1-gram (e.g., “removed
from”) subsumes an n2-gram (e.g., “removed”), with n1 > n2, both can be retained
as attributes, provided that their rankings are sufficiently high.

As observed in Section 3.1 (Table II), a large number of 2-grams and 3-grams score
high in terms of information gain score. Columns 2–5 of Table VI show that the
majority of the 600 n-gram attributes with the highest information gain scores are 2-
grams and 3-grams in all four collections. It is, thus, reasonable to expect that using
n-grams instead of 1-grams may lead to improved accuracy. The motivation for also
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Table VI. Number of 1-grams, 2-grams, and 3-grams (Columns 2–4) among the best 600 n-grams
(n ∈ {1, 2, 3}). Column 5 sums the previous two columns. Column 6 shows how many of the
2-grams and 3-grams in the best 600 n-grams subsume 1-grams that are also in the best 600
n-grams. Column 7 shows how many of the 3-grams in the best 600 n-grams subsume 2-grams
that are also in the best 600 n-grams. All numbers are averaged over the cross-validation folds.

(1) (2) (3) (4) (5) (6) (7)
2/3-grams 3-grams

corpus 1-grams 2-grams 3-grams 2/3-grams subsuming subsuming
1-grams 2-grams

pu1 246 (41%) 265 (44%) 88 (15%) 353 (59%) 229 (38%) 82 (14%)
pu2 154 (26%) 291 (49%) 154 (26%) 445 (74%) 262 (44%) 116 (19%)
pu3 226 (38%) 271 (45%) 101 (17%) 372 (62%) 323 (54%) 98 (16%)
pua 170 (28%) 245 (41%) 184 (31%) 429 (72%) 352 (59%) 179 (30%)

exploring larger numbers of attributes came from the experiments of Carreras and
Marquez (Section 5.1), who performed no attribute selection, and experiments by
Kolcz and Alspector [2001], who retained 10,000 word attributes after attribute
selection. In Section 5.1, we observed a significant increase in both learning and
classification time as more attributes were retained, and we noticed that using
larger attributes sets did not always lead to significant improvements in weighted
accuracy. We wanted to explore the significance of the improvements when the size
of the attribute set is in the order of thousands.

Figures 7 and 8 show the results with extended attribute sets. We used only
the svm learner, one of the best ones in the experiments of Section 5.1. svms are
also known to be able to take advantage of large numbers of attributes [Joachims
1998], which was particular important in the experiments of this section. Up to
600 attributes, we used a step of 40 attributes, as in the 1-gram experiments;
from 600 to 3000 attributes the step was 200. A first striking observation is that
using n-grams, instead of only 1-grams, does not improve WAcc, despite the large
numbers of 2-grams and 3-grams with high information gain scores. The only sign
of improvement was observed in pua for λ = 9 (Figure 8), but otherwise n-grams
led to insignificant changes or inferior results. A comparison between columns 5
and 6 of Table VI reveals that most of the 2-grams and 3-grams among the best
600 n-grams subsume 1-grams that are also included in the best 600 n-grams. A
similar phenomenon occurs with 3-grams and 2-grams: columns 4 and 7 show that
the vast majority of 3-grams in the best 600 n-grams subsume 2-grams that are also
in the best 600 n-grams. This can be problematic in that the subsuming n-gram
(e.g., “removed from”) may not be adding much to the discriminating power of
the subsumed one (e.g., “removed”). In that case, the subsuming n-gram may be
displacing from the attribute set other more useful candidate attributes, without
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Fig. 7. WAcc results with extended attribute sets, for λ = 1.
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offering any significant benefit.22 The lack of improvement, then, may be due to
the redundancy that n-grams introduce to the attribute set.

As a first step towards reducing the redundancy of the attribute set, we exper-
imented on pu2 with a simplistic extension of the attribute selection method of
Section 3.1. First, the information gain score of each n-gram was computed, and
the set S of the m n-grams with the highest information gain scores was formed.
Any n-grams in S that subsumed other n-grams also in S were then removed, and
they were replaced by the next best n-grams that had not been included in S. This
was followed by a new removal and replacement phase, up to a maximum number of
iterations. On pu2 with m = 600, this process had converged after 10 iterations to
an attribute set of 201 1-grams, 292 2-grams, and 107 3-grams, averaging over the
folds of the cross-validation. There was still no improvement in weighted accuracy,
however, compared to the results of the 1-gram experiments of Section 5.1.

It may be the case that the attribute selection process we used is too crude. A
refined version of this process that would not eliminate a subsuming n-gram when
its information gain score is significantly higher that that of the subsumed one
might perform better. It may also be possible to employ algorithms that assess
sets of attributes, and add new attributes only when the discriminating power of
the attribute set as a whole increases [Liu and Setiono 1996; Hall 1999]. Further

22With the Bayesian learners, there are also severe violations of their independence assumptions.
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Fig. 8. WAcc results with extended attribute sets, for λ = 9.
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research is needed on this issue. The existing results, however, provide no evidence
that anti-spam filters can benefit from n-gram attributes.

Regarding the effect of retaining large numbers of attributes, Table VII shows
that in most cases the precision, recall, and weighted accuracy of the svm learner
were higher when using 3,000 attributes than with 600 attributes. The only excep-
tions were pu3 and pua for λ = 9, where the increase in recall did not counter-
balance the decrease of precision, leading to marginally lower weighted accuracy.
As Figures 7 and 8 show, however, some of the differences in Table VII are the
effect of minor fluctuations, and in most cases the weighted accuracy curves are
almost horizontal after the first few hundreds of attributes, which implies that one
can often obtain very similar results with much fewer attributes. The most notable
exception is pu1 for λ = 9, where the svm learner appeared to benefit significantly
up to approximately 2,400 attributes. On the other extreme, in pu3 for λ = 9 there
were signs of overfitting after approximately 1,400 attributes.

Figure 9 shows the average training and classification time per message we
recorded on pua for λ = 1. There is a significant increase in both learning and
classification time as more attributes are retained, though one should keep in mind
that the curves of Figure 9 pertain to the particular svm implementation we used.
We conclude, as in Section 5.1, that one should be skeptical about using large at-
tribute sets, because the increase in training and classification time may not justify
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Table VII. Precision, recall, and WAcc (%) of the svm, using 600 and 3,000 1-gram attributes.

λ = 1 λ = 9

learner precision recall WAcc precision recall WAcc

pu1

svm 600 attributes 93.96 95.63 95.32 97.97 85.83 97.50
svm 3,000 attributes 95.60 97.08 96.70 98.25 89.58 97.96

pu2

svm 600 attributes 88.71 79.29 93.66 97.50 52.14 98.39
svm 3,000 attributes 90.85 87.86 95.49 98.75 56.43 98.67

pu3

svm 600 attributes 96.48 94.67 96.08 98.13 87.75 97.78
svm 3,000 attributes 95.60 95.88 96.20 97.53 89.84 97.51

pua

svm 600 attributes 92.83 93.33 92.89 97.10 82.11 96.00
svm 3,000 attributes 94.56 93.86 94.04 96.67 83.33 95.65

Fig. 9. Avg. training and classification time of the svm on pua, with 1-gram attributes, for λ = 1.
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the improvement in accuracy.

5.3 The effect of the size of the training corpus

In a third set of experiments, we explored the effect of the size of the training
corpus. As in the previous sections, stratified 10-fold cross-validation was used.
This time, however, only the first x% messages of each of the nine training parts
were used at each iteration, maintaining the original legitimate-to-spam ratio, with
x ranging from 10 to 100 by 10. The experiments were performed with Flexible
Bayes, LogitBoost and svm, using 700 1-gram attributes. We excluded Naive Bayes,
since the experiments of Section 5.1 suggested that Flexible Bayes performs better.

Figure 10 shows the results we obtained in the λ = 1 scenario. All learning
algorithms easily outperformed both the baseline and the hand-crafted rules, even
with small numbers of training messages. In pu2, the smallest of our corpora, the
learning algorithms outperformed the hand-crafted rules with only 20% of training
messages, which corresponds to 26 spam and 104 legitimate messages; in the other
three, larger corpora, using only 10% of the training messages was enough. This
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Fig. 10. WAcc results for varying size of training corpus, with 700 1-gram attributes, for λ = 1.
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suggests that learning-based anti-spam filtering is viable in this cost scenario even
with training collections that are much smaller than the corpora of our experiments.

Figure 11 shows the average training and classification time per message, on pua

for λ = 1. As in the experiments of Figure 5, there appears to be a tradeoff be-
tween training and classification time, with LogitBoost being the worst in terms of
training time and the best in terms of classification time. With all learning algo-
rithms, the average training time increases rapidly as more training messages are
used, which provides additional motivation against using large training collections.
(The reader is reminded that we advocate the use of personal anti-spam filters,
trained on messages received by the particular users they are intended to protect,
and that the filters will have to be retrained occasionally to adapt to changes in
the content and wording of spam messages.) With Flexible Bayes, the average
classification time also increases as more training messages are used, because each
training message gives rise to an additional Gaussian distribution (Section 3.3.1).
The average classification time of the svm is largely insensitive to the number of
training messages. Similarly, the classification time of LogitBoost is insensitive
(modulo minor fluctuations probably due to memory management) to the number
of training messages (see Table III).

Figure 12 shows the results we obtained in the λ = 9 scenario. As with λ = 1,
all three learners outperform both the baseline and the hand-crafted rules, even
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Fig. 11. Average training and classification time for varying size of training corpus, with 700
1-gram attributes, on pua, for λ = 1.
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Fig. 12. WAcc results for varying size of training corpus, with 700 1-gram attributes, for λ = 9.
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for small numbers of training messages, despite the fact that the baseline is now
significantly higher, especially in pu2.

6. IMPLEMENTATION

The results of Section 5 guided the design and implementation of a fully func-
tional learning-based anti-spam filter, named Filtron, whose source code is publicly
available; see also [Michelakis et al. 2004]. Filtron uses the weka machine learn-
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ing platform.23 In Section 6.1 we discuss Filtron’s architecture, as an example of
how the techniques of the previous sections can be embedded in operational filters.
The second author used Filtron in real life for seven months. In Section 6.2, we
present an evaluation of Filtron’s performance over that period, including a study
of the messages it misclassified. Finally, Section 6.3 examines how Filtron relates
to other available anti-spam filter implementations we are aware of, focusing on
learning-based filters and novel alternative approaches.

6.1 Architecture

Figure 13 depicts Filtron’s architecture. The training subsystem tailors the filter
to the particular user it is intended to protect, by treating messages previously
received by the user as training examples. Thereafter, when a new message for the
user arrives, the classification subsystem is invoked to classify it.

Filtron’s training subsystem comes with its own collection of duplicate-free spam
messages, which are used when users do not have their own collection of spam
messages they have received. We update this collection regularly, and it currently
contains 2559 spam messages. Spam messages are typically sent blindly, without
considering the professions, interests, etc. of the recipients. Hence, training Fil-
tron on spam messages not received by its particular user does not seem to be
harmful. When using Filtron’s pool of spam messages, the user can choose the
number of spam messages to be included in the training collection, to approximate
the legitimate-to-spam ratio of incoming messages he/she is experiencing, which
can lead to more accurate classifiers. We have not investigated how well Filtron
performs when trained on legitimate messages not received by its particular user,
but Section 3.1 suggests that this would be worse, since many of the best attributes
correspond to terminology characteristic of the user’s legitimate messages.

The corpus preprocessor (Figure 13) scans the training messages, removes dupli-
cates, attachments, and html tags, and retains only the first five messages from
each sender, as explained in Section 2. It can also replace tokens by unique numbers
to make a collection publicly available. The messages can be provided in a variety
of formats, including folders of several popular email clients. The preprocessor also
builds automatically a white-list with the addresses the user has received legitimate
messages from, and a black-list with the addresses of the senders of all spam mes-
sages, though, as discussed in Section 1, black-lists of this form are of little use.
The user can inspect and edit both lists. In future versions we will offer the option
to include the addresses of the user’s address book in the white-list.

The attribute selector identifies the best attributes, as in Section 3.1.2. Following
the conclusions of Section 5.2, Filtron uses 1-gram attributes only. The number

23See Section 1. Filtron will be available from http://www.iit.demokritos.gr/skel/i-config/.
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Fig. 13. Filtron’s architecture.
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of attributes to retain can be set at will. The optimal number of attributes, in
terms of accuracy, training, and classification speed, will vary per user, and is hard
to specify without user-specific experiments. The results of Sections 5.1 and 5.2,
however, suggest that using a few hundreds of attributes is a good compromise.

Once the attributes have been selected, the vectorizer converts the training mes-
sages to vectors, as in Section 3.1. The training vectors are then passed to the
learning component, that accepts as additional input the value of λ (Section 4.1).
In the learning component, the user can choose any of the learning algorithms of
weka. The default choice is the svm implementation of Section 5, which demon-
strated a good combination of accuracy, consistency, and speed. The learning com-
ponent produces a user-specific classifier, and this is saved along with the user’s
white-list and black-list in Filtron’s user model. In the case of the svm learner,
saving the classifier amounts to saving the non-zero Langrange multipliers αj , the
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corresponding training vectors ~xj , and the threshold w0 of equation (17). The user
model is then copied to the computer where the classification subsystem will be
used, if this is a different machine.

Filtron’s training subsystem is implemented in tcl/tk and Java, and can be
used on any computer that supports the two languages; for example, a pc where the
user downloads his/her e-mail. The classification subsystem is implemented in the
same languages, but resides on the user’s incoming e-mail server, and is currently
compatible only with smtp servers running unix. The classification subsystem
intercepts the user’s messages before they reach his/her mailbox using Procmail, an
e-mail processor that accompanies most unix distributions. The interceptor (Figure
13) invokes Filtron’s spam detector, passing it as inputs the incoming message and
the user’s model. If the sender is in the user’s white-list or black-list, the spam
detector classifies the message as legitimate or spam, respectively, without further
processing. Otherwise, it relies on the decision of the user-specific classifier. In any
case, the only effect of the spam detector is that it adds the prefix “[Spam?]” to
the subject of the messages it considers spam.

In Filtron’s typical configuration, the user writes rules in his/her e-mail client to
identify messages that carry the “[Spam?]” prefix and delete them, move them to
a special folder, change their priority, ask their sender to repost them, etc. Writing
such rules is easy in most modern e-mail clients. Alternatively, a Procmail-based
post-interceptor (Figure 13) can be set up by the e-mail server’s administrator, to
intercept messages that carry the “[Spam?]” prefix before they reach the user’s
mailbox. The post-interceptor can be configured to perform similar actions as the
rules of the e-mail client. Users that download their e-mail through slow lines may
prefer this option, as it avoids downloading messages suspected to be spam.

The training subsystem can be re-invoked periodically to adjust the classifier to
changes in the content and wording of spam messages, and to exploit larger training
collections the user may have accumulated. A graphical interface is also provided,
to help users train Filtron.

6.2 Real-use evaluation

To explore how well a learning-based filter performs in real life, the second author
used Filtron for seven months. The training subsystem was applied to pu3, which
contains the legitimate messages the second author had saved and what was Fil-
tron’s collection of spam messages at that time (Table I). We used the svm learner,
as it had exhibited good performance on pu3. The filter was configured for the
λ = 1 scenario, where messages suspected to be spam are simply flagged to help
the user prioritize the reading of incoming messages (Section 4.1). An e-mail client
rule was used to move messages tagged as spam to a special folder, which was occa-
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Table VIII. Real-life evaluation results of Filtron, using the svm with 520 1-gram attributes, for
λ = 1. The svm was trained on pu3. Bracketed precision, recall, and WAcc scores are the
corresponding scores we had obtained with 10-fold cross validation on pu3.

days used 212
messages received 6732 (avg. 31.75 per day)

spam messages received 1623 (avg. 7.66 per day)
legitimate messages received 5109 (avg. 24.10 per day)

legitimate-to-spam ratio 3.15

correctly classified legitimate messages (L → L) 5057
incorrectly classified legitimate messages (L → S) 52 (avg. 1.72 per week)

correctly classified spam messages (S → S) 1450
incorrectly classified spam messages (S → L) 173 (avg. 5.71 per week)

precision 96.54% (pu3: 96.43%)
recall 89.34% (pu3: 95.05%)
WAcc 96.66% (pu3: 96.22%)

sionally inspected for misclassified legitimate messages. The number of attributes
was set to 520, based on the results of Figures 4 and 7. No black-list was used,
since a preliminary trial indicated that its contribution was insignificant.

Table VIII presents the overall results of the seven-month evaluation. Since no
black-list was used, all the messages that were classified as spam were caught by
the learnt classifier. Precision (96.54%) was very similar to the corresponding score
we had obtained with 10-fold cross-validation on pu3 (96.43% for 520 attributes)
in the experiments of Sections 5.1 and 5.2. Recall, however, was lower (89.34% as
opposed to 95.05%). The analysis of the misclassified messages of the seven months
below sheds more light on this issue. Although similar, the two WAcc scores are not
directly comparable, since the WAcc of the real-use evaluation (96.66%) is computed
on all the incoming messages, i.e., it includes the effect of both the white-list and
the learnt classifier. In contrast, since rc messages were removed from pu3 (Section
2), the WAcc of the cross-validation (96.22%) in effect measures the performance of
the learnt classifier alone. Thus, we would have expected the WAcc of the real-use
evaluation to be higher than that of the cross-validation. The fact that it is not is
due to the lower recall of the real-use evaluation.

Overall, Filtron’s performance was satisfactory for the chosen scenario, though
there is scope for improvement. The e-mail client rule that moved messages tagged
as spam to the special folder left on average fewer spam messages per week (5.71) in
the second author’s inbox than he received in a single day (7.66). The downside was
that approximately two (1.72) legitimate messages were incorrectly moved to the
special folder each week. The second author developed the habit of checking that
folder at the end of each week, which made the misclassifications easier to accept.
He also felt that in many cases the misclassified legitimate messages were rather
indifferent to him (e.g., subscription verifications, commercial newsletters, etc.),
an observation that the analysis of the misclassified messages below confirms. We
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note that Filtron was never retrained during the seven months, because the training
process had not been fully automated by that time. Retraining would have allowed
the system to gradually exploit more training data, and keep its white-list updated,
presumably leading to better results. Throughout the seven months, Filtron caused
no noticeable delay in e-mail delivery.

We now turn to the analysis of the misclassified messages, starting from the 173
misclassified spam messages. A 30% of those were “hard spam”, i.e., messages
with very little or no text, containing mostly hyperlinks, messages whose text was
sent as images or was hidden in attachments, messages containing tricks to confuse
simple tokenizers (e.g., html tags within words), and messages carefully written
to avoid words, phrases, and punctuation patterns that are common in spam mes-
sages. Many of these messages could have been caught by using a more elaborate
preprocessor; this will be discussed further in Section 6.3. Overall, however, they
are indicative of an arms race between spammers and developers of anti-spam filters.
Future anti-spam filters may well have to incorporate optical character recognition
to cope with messages sent as images, and they may have to follow hyperlinks to
Web pages to cope with spam messages that contain only hyperlinks and no text.
Additional support for the latter point comes from the observation that a further
8% of the misclassified spam messages were advertisements of pornographic sites,
carefully written as friendly letters with no pornographic vocabulary, but contain-
ing hyperlinks to sites that a Web filter like the one described by Chandrinos et al.
[2000] would have no difficulty classifying as adults-only content.

Another 23% of the misclassified spam messages were written in languages other
than English, mostly German and Spanish. Non-English spam messages were rare
at the time the pu corpora were assembled, but appear to have become more fre-
quent thereafter. Hence, they are under-represented in pu3, which was the training
collection of the real-use evaluation. (The same holds for the other pu corpora,
especially pu1 and pu2 where non-English spam messages were manually removed;
see Section 2.) We believe that a large number of these misclassified messages
would have been caught if Filtron had been frequently retrained during the seven
months. This would have allowed Filtron to select non-English words as attributes
as non-English spam messages were becoming more common. Filtron’s collection
of spam messages now includes non-English messages.

A further 30% of the misclassified spam messages were written in base64 or
quoted printable format, which Filtron could not handle at that time; appropriate
support has now been added. Messages in these formats were very rare in the
second author’s legitimate messages, and, hence, the problem affected only spam
messages. Filtron classified all the spam messages that were written in the two
formats as legitimate, because the encoding did not allow it to detect any attribute
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tokens. In pu3, messages of this kind had been excluded, which partially explains
the higher recall score. Another factor that contributed to the higher recall of the
cross-validation is that spam messages that contained only attachments, hyperlinks,
and no text were removed when pu3 was constructed, because the preprocessor con-
verted them to empty messages. In the real-use evaluation, Filtron’s preprocessor
again turned spam messages of this kind to empty messages, but this time they
were classified as legitimate, which lowered recall.

Another 6% of the misclassified spam messages were formal long letters adver-
tising tremendous business opportunities or asking for financial aid. Since spam
messages of this kind are very common and contain many cliche phrases, it came as
a surprise that Filtron did not manage to detect so many of them. It appears that
the main reason these messages were misclassified is that they contained several
occurrences of the second author’s name, apparently to make their messages sound
more personal. This was uncommon in pu3, where the user’s name was among the
best legitimate-denoting attributes. Again, retraining would have allowed Filtron
to diminish its confidence to this attribute as the user’s name was becoming more
common in spam messages.

The remaining 3% of misclassified spam messages contained very unusual content,
and, hence, they were very different from the spam messages Filtron had been
trained on. Interestingly enough, some of these messages were quite relevant to
the second author’s scientific interests (e.g., search engines for research articles,
natural language processing platforms, etc.), which may be an indication of an
attempt made by spammers to target particular user groups (e.g., by collecting
user names from particular scientific newsgroups, or customer lists of particular
vendors). Personalized messages of this kind are more difficult to detect, as their
vocabulary and content is very similar to those of the user’s legitimate messages,
but at least appear to be more interesting to read.

Overall, then, there are indications that regular retraining and encoding im-
provements that have now been made would have allowed Filtron to achieve higher
recall. More elaborate pre-processing and the addition of a Web filter might allow
learning-based filters to perform even better, though there are also signs of an arms
race between spammers and filter developers.

Turning to the 52 misclassified legitimate messages, it is comforting that 52% of
them were automatically generated messages (e.g., subscription verifications, virus
warnings), or commercial newsletters whose content was very similar to spam mes-
sages. A further 22% were very short messages (3-5 words) containing attachments
and hyperlinks. Again, this emphasizes the need to process these elements in future
anti-spam filters. Retraining would also have helped, because the senders of some
of these messages were recent colleagues not in the user’s white-list. The remaining
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26%, were short messages (1-2 lines), with no attachments or hyperlinks, written in
a very casual style that is often exploited by spammers. As in the previous category,
retraining would have placed the senders of some of these messages in the user’s
white list. Non-textual attributes indicating that the incoming messages contained
no attachments and hyperlinks might also have helped, since it is uncommon for
spammers to send such sort messages with no attachments and hyperlinks.

6.3 Other implementations

The majority of commercial anti-spam filters currently appear to rely on black-lists,
white-lists, and hand-crafted rules that search for particular keywords, phrases, or
suspicious patterns in the headers. As noted in Section 1, black-lists have evolved
to continuously updated databases of suspicious ip numbers; hence, they are more
powerful than Filtron’s black-lists, which simply store the addresses the user has
received spam from. On the white-list side, some commercial filters send replies
to senders not in the user’s white-list, asking them to answer a simple question in
order to rule out spamming robots.24 This is similar to a suggestion we made in
Section 4.1 for the λ = 9 scenario, but since there is no learning component to admit
messages whose content looks legitimate, it may lead to a frustrating proliferation
of automatic answer-seeking replies.

Following research publications (Section 1), the developers of anti-spam filters are
becoming increasingly aware of the potential of machine learning. Consequently,
there is a growing number of filter implementations that incorporate learning-based
components, mostly Naive Bayes classifiers.25 For example, an anti-spam filter
based on a flavor of Naive Bayes was recently added to Mozilla’s e-mail client.26

The filter is trained on legitimate and spam messages of its particular user, and
can be configured to perform actions such as moving incoming messages suspected
to be spam to a special folder. Unlike Filtron, Mozilla’s filter supports incremental
learning, i.e., the user can correct the category of misclassified messages, and the
probabilities of the Bayesian filter are adjusted accordingly, without retraining on
the entire message collection.

popfile is similar to Mozilla’s filter, in that it also resides on the client com-
puter, employs Naive Bayes, and supports incremental learning. However, it is a
more general filter, which apart from detecting spam messages can also classify

24Examples are MailFrontier’s Matador (http://www.mailfrontier.com/) and Altebia’s Spam-
Pepper (http://www.spampepper.com/).
25Many of these were presented at the 2003 Spam Conference; see http://spamconference.org/.
26Mozilla uses a version of Naive Bayes suggested by Paul Graham; see http://www.

paulgraham.com/spam.html. Other Naive Bayes filters we are aware of are K9, Spammuni-
tion, and Bogofilter; see http://keir.net/k9.html, http://www.upserve.com/spammunition/,
and http://bogofilter.sourceforge.net/. For popfile see http://popfile.sourceforge.net/,
and for crm114 consult http://crm114.sourceforge.net/.
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legitimate messages into different categories. Written in Perl, it acts as an e-mail
proxy for pop3 servers, and adds tags to messages it considers spam. The tags
can then trigger rules of the e-mail client, much as in Filtron. One of the most
interesting characteristics of popfile is its elaborate preprocessor, which attempts
to confront tricks spammers are beginning to use to confuse anti-spam filters; for
example, inserting spaces, other characters, or html comments and formatting
tags between letters to fool tokenizers (as in “g e t r*i*c*h f-a-s-t”, “vi<!-- 45

-->agra”, “s<b>e</b>x”).27 popfile shows how important preprocessing will be
in future anti-spam filters, as opposed to Filtron’s current simple tokenizer.

Mailfilter is part of crm114, a system that can be used to process incoming
e-mail, logs, and other data streams. Mailfilter is also based on Naive Bayes, and
supports incremental learning. It resides on the e-mail server, and can be invoked
through Procmail, like Filtron, or via a forward file in the user’s home directory.
Its attribute set, however, is very different. Each message is mapped to a set of
32-bit hash values, one hash value for each order-preserving sequence of up to 5
(not necessarily adjacent) tokens of the message. For example, the message “click
here to get rich” is mapped to a set containing a hash value for each one of the
sequences “click”, “click here”, “click to”, “click here to”, etc. The hashing allows
the presence or absence of all possible sequences to be represented using 232 Boolean
attributes, one for each possible hash value. To reduce the size of the attribute set
further, the hash values are folded to one million values via the modulo function,
leading to one million attributes. Unlike the experiments with n-gram attributes
in Section 5.2, then, Mailfilter’s n-grams are not necessarily composed of adjacent
tokens, they can be longer (1 ≤ n ≤ 5), and no attribute selection is applied to
them; instead Mailfilter reduces dimensionality via hashing.

An interesting alternative to learning-based anti-spam filters is Vipul’s Razor,
a form of collaborative filtering, which relies on a network of servers that store
signatures of spam messages.28 The users of the network report to its servers
spam messages they receive, and at the same time they use screening software that
compares their incoming messages to the spam messages other users have reported.
To make the comparison fast, the reported spam messages are stored as signatures,
in the simplest case a hash value for each message. When an incoming message
arrives at the mailbox of a user, the screening software computes its signature and
compares it to the signatures in the network’s servers. If a match is found, the
message is moved to a special folder. If a spam message escapes the matching, the
user can report it to the network, and this helps other users avoid it. Unfortunately,

27See the “Spammer’s Compendium” by John Graham-Cumming at http://www.jgc.org/tsc/.
28Consult http://razor.sourceforge.net/, http://www.cloudmark.com/, and http://pyzor.

sourceforge.net/. See also http://www.rhyolite.com/anti-spam/dcc/ for a similar approach.
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spammers can defeat simple signatures by introducing random changes to the copies
of the messages they send (e.g., inserting a random string, or replicating randomly
parts of the message), which causes the signatures to be different and the matching
to fail. Hence, much of the work in this area is devoted to devising signatures that
are insensitive to such changes.

Spam messages can be collected automatically via spam traps, e-mail accounts
that are created for the sole purpose of attracting spam messages. The addresses
of spam traps are included in newsgroup postings and Web pages, making it clear
to humans that messages sent to them will be considered spam. The software that
spammers use to harvest e-mail addresses cannot distinguish between normal and
spam trap addresses, and, hence, the latter end up in their mailing lists.29

In the long run, the spam problem is more likely to be solved by a combination of
several techniques. The SpamAssassin filter is a good example of such a combina-
tion.30 It incorporates elaborate hand-crafted rules, white-lists, on-line black-lists,
Vipul’s Razor, and a Naive Bayes classifier. Users can add their own rules, white-
lists, and black-lists, and they can retrain the Naive Bayes classifier, or modify a set
of weights that specify how much SpamAssasin relies on each filtering technique.
A genetic algorithm can also be used to generate the weights automatically.

7. CONCLUSIONS

We presented a thorough investigation on the use of machine learning to construct
effective personalized anti-spam filters. The investigation considered a set of four
learning algorithms, selected to include the algorithms, or variations of them, that
previous work on anti-spam filtering had found most promising. Four corpora,
constructed from the mailboxes of different users, were used. Continuing our effort
to provide benchmarks in this area, we made the four corpora publicly available,
along with a fully implemented anti-spam filter that we developed based on the
findings of our corpus experiments. We also presented an assessment of that filter’s
performance in real life over a period of seven months.

Our investigation examined various aspects of the design of learning-based anti-
spam filters. Unlike our previous work, we used numeric attributes that represent
the frequencies of tokens, rather than Boolean attributes. Furthermore, we exam-
ined the role of attributes that represent the frequencies of n-grams, i.e., sequences
of tokens. Our conclusion was that, although many of these sequences are good
indicators of whether or not a message is spam, they rarely add significantly to the
performance of a classifier that uses attributes corresponding to single tokens.

We have also discussed the model and search biases of the four learning algo-

29See http://www.brightmail.com/ for a filter that relies substantially on spam traps.
30See http://www.spamassassin.org/.
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rithms, i.e., the type of classifier each method can construct, and the heuristics it
uses to search the space of possible classifiers, along with worst-case computational
complexity estimates. Our coprus-based experiments confirmed that a combination
of a strong model bias, such as learning linear discriminants, and an effective heuris-
tic, like the optimization method of svms, provides good performance at relatively
low computational cost. Our experiments also showed that the real-life computa-
tional cost is often lower than what the worst-case theoretical figures predict.

Another issue in anti-spam filtering is the cost of different misclassification errors.
After considering alternative ways to produce cost-sensitive classifiers, we tested
the performance of the four learning algorithms in two different cost scenarios:
one where messages classified as spam are simply flagged, and one where they are
returned to their senders for reposting, in a way that rules out responses from
spamming software. With the exception of Naive Bayes, the learning algorithms
adapted well to the uneven misclassification cost of the second scenario.

We also examined the effect of the size of the training and attribute set. Our cor-
pus experiments showed learning-based anti-spam filtering is viable even with very
small training collections, especially when the filter simply flags messages it suspects
to be spam. We also concluded that attribute selection based on information gain
leads to good performance with a few hundreds of attributes. Using much larger
attribute sets may lead to further improvements in accuracy, but the improvements
are usually small, and they are counter-balanced by increased computational cost.

The real-life use of our filter confirmed that machine learning can play a promi-
nent role in anti-spam filtering. There were signs, however, of an arms race between
spammers and developers of filters. Regular re-training seems necessary, but more
elaborate preprocessing is also needed to address the techniques that spammers are
beginning to use to fool content-based filters.

In the long run, mixtures of different filtering approaches, including collaborative
filtering, are more likely to be successful, and machine learning has a central role to
play in such mixed filters. Combining different learning algorithms also seems to be
promising, as different classifiers often make different errors [Sakkis et al. 2001a].
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