
Generating Natural Language Descriptions fromOWLOntologies: A
Detailed Presentation of the NaturalOWLSystem

Ion Androutsopoulos,1,2 Gerasimos Lampouras1 and Dimitrios Galanis1

1Department of Informatics, Athens University of Economics and Business, Greece
2Digital Curation Unit – imis, Research Centre “Athena”, Athens, Greece

Abstract

We present Naturalowl, an open-source natural language generation system that produces texts describing individuals
(e.g., products, museum exhibits) or classes of individuals from owl ontologies optionally associated with linguistic
and user modeling resources. Unlike simpler owl verbalizers, which typically express a single axiom of the ontology
at a time in controlled and often not entirely fluent natural language mostly for the benefit of domain experts,
we aim to generate fluent, coherent, and interesting multi-sentence texts appropriate for end-users (e.g., customers,
museum visitors). A key benefit of using a system like Naturalowl on the Semantic Web is that it becomes possible to
publish information in the form of owl ontologies, and rely on natural language generation to automatically produce
personalized texts in multiple languages from the ontologies, thus making the information easily accessible not only
to computer programs and domain experts, but also to end-users. We discuss Naturalowl’s processing stages of
generating texts, the optional domain-specific linguistic and user modeling resources that can be used at each stage,
why such resources are useful, and how they can be created and represented. We also report on trials we performed to
measure the effort that is required to configure Naturalowl for new ontologies, and the quality of the resulting texts.

Key words: Semantic Web; natural language generation; ontologies; owl verbalizers; language resources; user modeling.

1. Introduction

The Semantic Web [20,155,6] is an effort to estab-
lish standards and mechanisms that will allow com-
puters to reason more easily about the semantics
of the Web’s resources (documents, data etc.), en-
abling them and ultimately their users to share, lo-
cate, and integrate resources more easily. Ontologies
play a central role in this endeavour. Each ontology
provides a conceptualization of a knowledge domain
(e.g., consumer electronics) by defining the classes
and subclasses of the domain’s individuals (entities),
the types of possible relations between them etc.

The current standard to specify ontologies for the
Semantic Web is owl, a formal language based on
description logics [8], rdf, and rdf schema, with

owl2 being owl’s latest version [65]. 1 Given an
owl ontology for a knowledge domain, it is possi-
ble to publish machine-readable datasets pertain-
ing to that domain (e.g., catalogues of products,
their prices, features etc.) on the Web, with the
data having formally defined semantics based on the
ontology’s conceptualization. It is also possible to
mark up Web resources (e.g., documents) with rich
machine-readable meta-data, again with formally
defined semantics, to describe their authors, content
etc. In both cases, the datasets or meta-data provide
instances of the ontology’s concepts (e.g., particu-

1 Unless otherwise stated, we adopt owl2; consult

http://www.w3.org/TR/2009/REC-owl2-primer-20091027/

for an introduction. For background information on rdf

and rdf schema, see http://www.w3.org/TR/rdf-primer/.

Preprint December 24, 2012

lar individuals of its classes, particular instances of
its relation types). Extensions of existing owl on-
tologies may also be published, for example to de-
fine finer classes, or to combine concepts from sev-
eral ontologies. Reasoning engines for owl are also
available [68,163,156,129], and they can be used, for
example, to deduce additional information.

Following common practice in Semantic Web re-
search, we use the term ontology to refer jointly
to (a) information that establishes a conceptualiza-
tion of a knowledge domain, often called termino-
logical knowledge or TBox, and (b) additional as-
sertional knowledge, ABox, that describes particu-
lar instances of the domain’s concepts. owl can ex-
press knowledge of both types. Several semantically
equivalent owl syntaxes have been developed. Peo-
ple unfamiliar with formal knowledge representa-
tion, however, often have difficulties understanding
them [143,53]. For example, the following statement
defines the class of St. Emilion wines, using owl’s
functional-style syntax, one of the easiest to under-
stand, which we also adopt throughout this article. 2

EquivalentClasses(:StEmilion

ObjectIntersectionOf(:Bordeaux

ObjectHasValue(:locatedIn :stEmilionRegion)

ObjectHasValue(:hasColor :red)

ObjectHasValue(:hasFlavor :strong)

ObjectHasValue(:madeFromGrape

:cabernetSauvignonGrape)

ObjectMaxCardinality(1 :madeFromGrape)))

The statement above defines StEmilion as the
intersection of: (i) the class of Bordeaux wines; (ii)
the class of all individuals whose locatedIn property
has (for each individual) stEmilionRegion among its
values (owl properties are generally many-valued);
(iii)–(v) the classes of individuals whose hasColor,
hasFlavor, and madeFromGrape property values include
red, strong, and cabernetSauvignonGrape, respectively,
without excluding wines that have additional values
in these properties; and (vi) the class of individuals
whose madeFromGrape property has exactly one value;
hence, a St. Emilion wine is made exclusively from
Cabernet Sauvignon grapes.

In this article, we provide a detailed description of
an open-source natural language generation (nlg)

2 Consult http://www.w3.org/TR/owl2-syntax/ for more

information on owl’s functional-style syntax. Naturalowl
actually uses owl’s rdf/xml syntax, which can be con-

verted to functional-style and vice versa; see, for exam-

ple, http://owl.cs.manchester.ac.uk/converter/. We of-
ten use examples loosly inspired from the Wine Ontology,

which we discuss in Section 4.1.

system, called Naturalowl, that produces texts de-
scribing classes or individuals of owl ontologies. 3

For example, the system can automatically generate
the following text from the owl statement above,
if the ontology has been annotated with domain-
specific linguistic resources (e.g., lexicon entries,
sentence plans) that we discuss below.

St. Emilion is a kind of Bordeaux from the St. Emilion

region. It has red color and strong flavor. It is made from

exactly one grape variety: Cabernet Sauvignon grapes.

Naturalowl currently supports both English and
Greek. 4 Hence, Greek texts can also be generated
from the same ontology, provided that it has also
been annotated with appropriate Greek linguistic
resources. For example, given the following prod-
uct description in owl, the English and Greek texts
shown below can be generated.

ClassAssertion(:Laptop :tecraA8)

ObjectPropertyAssertion(:manufacturedBy

:tecraA8 :toshiba)

ObjectPropertyAssertion(:hasProcessor

:tecraA8 :intelCore2)

DataPropertyAssertion(:hasMemoryInGB

:tecraA8 "2"^^xsd:nonNegativeInteger)

DataPropertyAssertion(:hasHardDiskInGB

:tecraA8 "110"^^xsd:nonNegativeInteger)

DataPropertyAssertion(:hasSpeedInGHz

:tecraA8 "2"^^xsd:float)

DataPropertyAssertion(:hasPriceInEuro

:tecraA8 "850"^^xsd:nonNegativeInteger)

Tecra A8 is a laptop, manufactured by Toshiba. It has

an Intel Core 2 processor, 2 gb ram and an 110 gb hard

disk. Its speed is 2 ghz and it costs 850 Euro.

O Tecra A8 eÐnai ènac forhtìc upologist c, kataskeuasmè-

noc apì thn Toshiba. Diajètei epexergast Intel Core 2,

2 gb ram kai sklhrì dÐsko 110 gb. H taqÔtht� tou eÐnai

2 ghz kai kostÐzei 850 Eur¸.

For readers unfamiliar with owl, we note that
an object property (e.g., manufacturedBy) maps an in-
dividual (e.g., tecraA8) to one or more individuals
(e.g., toshiba), whereas a datatype property (e.g.,
hasMemoryInGB) maps an individual to one or more
datatype values (e.g., strings, numbers). We follow
the convention that class identifiers start with capi-
tals, whereas the identifiers of individuals and prop-
erties start with lower-case letters. To save space, we
omit the definitions of common namespaces; for ex-

3 A much shorter description of an earlier version of Natu-
ralowl has also been published [60]. An earlier version of the
system has been demonstrated at major conferences [86,61].
4 We welcome collaborations to support other languages.

2

ample, xsd is a common abbreviation for the names-
pace http://www.w3.org/2001/XMLSchema.

The examples above illustrate how nlg can help
publish information on the Web both as owl state-
ments and as texts generated from the owl state-
ments; the generated texts can also be turned into
html pages, including images of the individuals etc.
This way, information becomes easily accessible to
both computer applications, which can process the
owl statements, and end-users speaking different
languages. Changes in the owl statements can be
automatically reflected in the texts by regenerating
them. Other well-known benefits of nlg include the
ability to tailor the texts per user type. For example,
in a machine-generated text describing a medicine
[30], doctors may wish to see more specialized in-
formation than non-experts, who may need texts
with more background knowledge, expressed in sim-
pler terms. The texts can also vary depending on
the user’s interaction history, for example to avoid
repeating information or to include comparisons to
previously encountered individuals. 5

Although nlg from symbolic information is an es-
tablished area [116,145,16,100], Naturalowl is cur-
rently one of the very few nlg systems for owl;
we compare to related systems below. We also note
that Naturalowl aims to generate fluent, coherent,
and interesting multi-sentence texts appropriate for
end-users (e.g., museum visitors, customers of on-
line shops), unlike simpler systems often called on-
tology verbalizers [151]. The latter usually translate
the ontology’s axioms (in our case, owl statements)
one by one to controlled and often not entirely flu-
ent English statements, typically without consider-
ing the coherence of the resulting texts, the inter-
ests of the readers, or their interaction histories, and
mostly for the benefit of domain experts. Convey-
ing the exact meaning of all the axioms is consid-
ered more important in ontology verbalizers than
composing fluent, coherent, and interesting texts.
By contrast, Naturalowl may not express informa-
tion that a particular end-user presumably already
knows, and it may opt for more fluent, but techni-
cally less precise phrasings. Furthermore, it includes
mechanisms to order sentences, aggregate them into
longer ones, generate referring expressions etc. We
return to owl verbalizers below, where we also com-
pare Naturalowl’s texts to those of a verbalizer.

5 We do not discuss how Naturalowl generates compar-
isons in this article, but see Milosavljevic [126], Isard [81],

Karakatsiotis [85], and Marge et al. [115] for related work.

Naturalowl is intended to generate texts describ-
ing individuals (or classes of individuals) such as
physical objects, organizations, or persons. It is not
intended to describe sequences of events [10,91], nor
to produce instructions to perform tasks [75,76,167],
or reports from numerical data [179,17]. Also, we
do not discuss generating spoken descriptions [162],
although Naturalowl was recently used in spoken
dialogues with robotic museum guides [96,169,97].
Our work is based on ideas from ilex [132] and m-
piro [82]. The ilex project developed an nlg sys-
tem that was demonstrated mostly with museum ex-
hibits, but did not support owl; Dale et al. [38] and
Dannels [43] also discuss nlg for museums. The m-
piro project produced a multilingual extension of
ilex’s system, which was tested in several domains,
including museum exhibits and computing equip-
ment [4]. Attempts to use m-piro’s generator with
owl ontologies, however, ran into problems, because
of incompatibilities between owl and m-piro’s on-
tological model [2]. By contrast, Naturalowl was
especially developed for owl.

Naturalowl can be used with different domain
ontologies, but the resulting texts may not sound
fluent, coherent, or interesting enough, until appro-
priate domain-specific linguistic and user modeling
resources, hereafter called domain-dependent gen-
eration resources, have been created. For example,
the ontology’s classes can be mapped to natural lan-
guage names, the ontology’s properties to sentence
plans, other resources may indicate which sentence
plans to prefer per user type etc. The domain-
dependent generation resources are created by a
person we call the domain author, when the system
is configured for a new ontology. Similar resources
are used in most nlg systems for symbolic informa-
tion. Naturalowl’s domain-dependent generation
resources can be created using a plug-in of the
Protégé ontology editor. 6 The plug-in also allows
Naturalowl to be invoked within Protégé (Figure
1). We do not discuss the plug-in in any detail in this
article, since it is very similar to m-piro’s authoring
tool, which has been presented elsewhere [4]. 7

6 See http://protege.stanford.edu/ for information on
Protégé. Naturalowl and its Protégé plug-in are freely avail-

able from http://nlp.cs.aueb.gr/software.html.
7 We describe Naturalowl version 2 in this article. Version 1

used a less principled representation of its domain-dependent
generation resources. m-piro’s authoring tool, now called
eleon [23], can currently be used only with Naturalowl

version 1; see http://users.iit.demokritos.gr/∼eleon/.

3

Figure 1. Invoking Naturalowl within Protégé. An English

description of an individual has been generated.

Different nlg systems often adopt different lin-
guistic theories, generation algorithms, and user
models, thus requiring different domain-dependent
generation resources. There is currently little con-
sensus on exactly what information the domain-
dependent generation resources should capture, or
how this information should be represented. In the
spirit of the Semantic Web, however, it seems rea-
sonable to expect that when generating texts from
owl ontologies, the domain-dependent generation
resources themselves should be instances of other
owl ontologies, with each ontology of the latter
kind defining the types of resources required by
a particular nlg system. To avoid confusion, we
hereafter use the term domain ontology to refer to
the ontology whose individuals and classes are de-
scribed, as opposed to the generation resources on-
tology that defines the types of domain-dependent
generation resources a particular nlg system, in our
case Naturalowl, requires. 8 By representing the
domain-dependent generation resources in owl, it
becomes easier to publish them on the Web, reuse
them, check them for inconsistencies using owl
reasoners etc. as with other owl ontologies.
owl ontologies often use English words or con-

catenations of words (e.g., manufacturedBy) as identi-
fiers of classes, properties, and individuals. Hence,
some of the domain-dependent generation resources

8 See also Cimiano et al. [34], Montiel-Ponsoda et al. [127],
and Gracia et al. [64] for discussion on associating liguistic

resources with ontologies. Mellish [119] suggests represent-
ing in owl the abstract nlg architecture of rags [123]. The
resources of every rags-compliant nlg system could then

be represented in owl, using specializations of abstract con-
cepts from rags’s architecture. We note, however, that the

rags architecture is deliberatively very high level, and sub-

stantial work would be necessary to establish exactly how
the processing stages and resources of Naturalowl or other

nlg systems relate to rags concepts.

can often be extracted from the domain ontologies.
For example, Sun and Mellish [159,160] use Word-
Net [56] and some heuristics to split the identifiers
of classes and properties into English words, and to
assign them part-of-speech (pos) tags. This allows
guessing that a class identifier like Laptop in our ear-
lier example is a noun that can be used to refer to
that class, or that a statement of the form:

ObjectPropertyAssertion(:manufacturedBy X Y)

should be expressed in English as a sentence of the
form “X was manufactured by Y ”. Most owl ver-
balizers follow the same strategy.

If domain-dependent generation resources are
not provided, Naturalowl adopts a similar behav-
ior. It attempts to guess the resources from the
domain ontology, or it uses generic resources. The
resulting texts, however, are of lower quality, com-
pared to those generated with appropriate domain-
dependent generation resources, and closer to the
output of ontology verbalizers. For example, the
laptop description of page 2 becomes:

Tecra A 8 is a laptop. Tecra A 8 manufactured by Toshiba.

Tecra A 8 has processor Intel Core 2. Tecra A 8 has

memory in gb 2. Tecra A 8 has hard disk in gb 110. Tecra

A 8 has speed in ghz 2. Tecra A 8 has price in Euro 850.

The sentences are now less fluent, because they are
based on templates (e.g., “X has price in Euro Y ”)
extracted directly from the domain ontology, instead
of better sentence plans that would have been spec-
ified by a domain author (e.g., “X costs Y Euro”).
Sentences with the same subject and verb are no
longer aggregated, because Naturalowl does not
know which words are verbs, information that would
be present in the sentence plans and lexicon entries
provided by the author. Without appropriate lexi-
con entries, the system also no longer knows the gen-
der of laptops; hence, it refrains from using personal
pronouns (e.g., “it”). Furthermore, Greek texts can-
not be generated, because the domain ontology’s
identifiers are English-like.

Extracting domain-dependent generation re-
sources from the domain ontology reduces the
effort needed to configure Naturalowl for a new
domain; hence, this approach is appealing when
the texts do not need to be particularly fluent,
coherent, nor personalized, and a single language
suffices. On the other hand, most of Naturalowl’s
domain-dependent generation resources are asso-
ciated with classes and properties of the domain
ontology (TBox), rather than individuals (ABox);

4

consequently, when there are relatively few classes
and properties, many more individuals, and the
texts need to be fluent, coherent, personalized, or
in multiple languages, authoring domain-dependent
generation resources may be preferable. There is a
tradeoff between investing less effort to construct
domain-dependent generation resources and ob-
taining higher-quality texts in multiple languages.

To the best of our knowledge, this article is the
first detailed description of a complete general-
purpose nlg system for owl, excluding simpler
ontology verbalizers. The article also discusses trials
we conducted with two independently created owl
domain ontologies to assess our system’s porta-
bility to ontologies created by others, the effort
that is required to construct Naturalowl’s domain-
dependent generation resources, and the gain in
text quality, as opposed to using a verbalizer or
Naturalowl without domain-dependent generation
resources. We believe these trials are also novel.

Overall, the main contributions of this article
are: (i) it is the first (excluding verbalizers) de-
tailed description of a complete, general-purpose,
open-source nlg system for owl domain ontolo-
gies; (ii) it shows how the same system can produce
rough-quality texts for end-users directly from owl
domain ontologies, but also how additional domain-
dependent generation resources can improve the
quality of the texts, help personalize them, and gen-
erate them in multiple languages; (iii) it shows how
the domain-dependent generation resources them-
selves can be represented in owl; (iv) it reports on
trials with two independently created owl domain
ontologies, where the texts of our system, with and
without domain-dependent generation resources,
were compared against those of a simpler verbalizer.
The article does not present novel algorithms from
a theoretical nlg perspective. In fact, some of the
algorithms that Naturalowl employs are of a much
narrower scope, compared to more fully-fledged nlg
algorithms. Nevertheless, the trials show that the
system produces texts of reasonable quality, espe-
cially when domain-dependent generation resources
are provided. We hope that if Naturalowl con-
tributes towards a wider adoption of nlg methods
on the Semantic Web, other researchers may wish to
develop improved components of the system, based
on more elaborate algorithms. 9 To this end, we

9 A collaborative source code repository for Naturalowl is

available at http://naturalowl.sourceforge.net/.

propose several ways to extend the current system,
also pointing to the prominent relevant literature.

Section 2 below explains how Naturalowl gener-
ates texts; it also discusses the domain-dependent
generation resources. Section 3 presents related
work. Section 4 describes the trials we performed.
Section 5 concludes and proposes future work.

2. Processing stages and resources

Naturalowl adopts a pipeline architecture, which
is common in nlg [145], though the number and ex-
act purpose of the pipelined components often vary
[123]. Our system generates texts in three stages,
document planning, micro-planning, and surface re-
alization, discussed in the following sections.

2.1. Document planning

Document planning consists of two sub-stages:
content selection, where the system selects the logi-
cal facts to convey, and text planning, where it plans
the structure of the text to be generated.

2.1.1. Content selection
In content selection, the system retrieves from the

domain ontology candidate facts, it converts them
to message triples, which are easier to express as
sentences, and it then selects among the candidate
message triples the ones to be expressed.

Candidate facts for individual targets
Let us first consider content selection when Natu-

ralowl is asked to describe an individual (an entity),
and let us call target the individual being described.
The system scans the owl statements of the domain
ontology, looking for statements of the forms listed
in Table 1, which are considered candidate facts, i.e.,
facts that could be mentioned. 10 We have already
used most kinds of statements of Table 1 in the
laptop example of page 2; SameIndividual(X Y) and
DifferentIndividuals(X Y) signal that X and Y denote
the same or different individuals. 11 Negative prop-
erty assertions (e.g., stating that a particular lap-
top is not manufactured by a particular company)

10Naturalowl scans the domain ontology using owl api;

consult http://owlapi.sourceforge.net/.
11These statements and some others that we show as having
two arguments can actually have more arguments, but they

can be converted to binary statements.

5

√
ClassAssertion(Class target)

√
ObjectPropertyAssertion(objProp target indiv)

√
DataPropertyAssertion(dataProp target dataValue)

× negative property assertions
√

DifferentIndividuals(target indiv)

√
DifferentIndividuals(indiv target)

√
SameIndividual(target indiv)

√
SameIndividual(indiv target)

Table 1
owl statements used (

√
) or not (×) as candidate facts,

when generating a text for an individual whose identifier
is target . Class is either a class identifier or an expression

constructing an unnamed class using the operators of Ta-

ble 2; objProp and dataProp stand for object and datatype
properties, respectively; indiv is the identifier of an individ-

ual; and dataValue is a datatype value.

are also allowed in owl2, but they are currently not
supported by Naturalowl; they are also rarely used.

We note that ClassAssertion(Class target) state-
ments may be quite complex, because Class is not
necessarily a class name. It may also be an expres-
sion that constructs a new, unnamed class using op-
erators from Table 2, as in the following example.

ClassAssertion(

ObjectIntersectionOf(:Wine

ObjectHasValue(:locatedIn :stEmilionRegion)

ObjectHasValue(:hasColor :red)

ObjectHasValue(:hasFlavor :strong)

ObjectHasValue(:madeFromGrape

:cabernetSauvignonGrape)

ObjectMaxCardinality(1 :madeFromGrape))

:chateauTeyssier2007)

The statement above says that chateauTeyssier2007

is an individual wine with the same characteris-
tics as the StEmilion wines of page 2, except that it
is not necessarily a Bordeaux. Notice that here the
statement mentions the broader class Wine, instead
of its subclass Bordeaux; it also uses an unnamed
class as the first argument of the ClassAssertion. As-
suming that the target is chateauTeyssier2007, Natu-
ralowl could express the owl statement above by
generating a text like the following. The exact text
would depend on the domain-dependent generation
resources.

The 2007 Chateau Teyssier is a wine from the Saint-

Emilion region. It has red color and strong flavor. It is

made from exactly one grape variety: Cabernet Sauvignon

grapes.

Notice that a single ClassAssertion gives rise to mul-
tiple sentences. The order of the sentences is not nec-
essarily the same as that of the corresponding owl

(i) Multi-class operators (MultiClassOper):
√

ObjectIntersectionOf(

{NamedClass | SingleClassOper }+)

× ObjectIntersectionOf(... MultiClassOper ...)

√
ObjectUnionOf({NamedClass | SingleClassOper }+)

× ObjectUnionOf(... MultiClassOper ...)

(ii) Single-class operators (SingleClassOper):
√

ObjectComplementOf(NamedClass)

× ObjectComplementOf(UnnamedClass)

√
ObjectOneOf(indiv+)

√
ObjectHasValue(objProp indiv)

√
ObjectHasValue(dataProp dataValue)

√
ObjectHasSelf(objProp)

√
ObjectMaxCardinality(number prop [NamedClass])

× ObjectMaxCardinality(number prop UnnamedClass)

√
ObjectMinCardinality(number prop [NamedClass])

× ObjectMinCardinality(number prop UnnamedClass)

√
ObjectExactCardinality(number prop [NamedClass])

× ObjectExactCardinality(number prop UnnamedClass)

√
ObjectSomeValuesFrom(objProp NamedClass)

× ObjectSomeValuesFrom(objProp UnnamedClass)

√
ObjectAllValuesFrom(objProp NamedClass)

× ObjectAllValuesFrom(objProp UnnamedClass)

Table 2

owl operators that may (
√

) or may not (×) be used to
construct unnamed classes when using Naturalowl. Ex-

pressions marked with ‘+’ may be repeated, ‘|’ denotes a dis-

junction, and square brackets indicate optional arguments.
NamedClass is a class identifier; UnnamedClass is an expres-

sion constructing an unnamed class; MultiClassOper and
SingleClassOper are expressions starting with operators of

the corresponding types; objProp is an object property,

dataProp a datatype property, prop any property, indiv an
individual’s identifier, and dataValue a datatype value.

expressions inside the ClassAssertion; sentences are
ordered during text planning.

owl allows arbitrarily many nested ObjectUnionOf

(class union) and ObjectIntersectionOf (class inter-
section) operators, which may lead to statements
that are very difficult to express in natural language.
To simplify text generation and to ensure that the
resulting texts are reasonably easy to comprehend,
we do not allow nested ObjectIntersectionOf and
ObjectUnionOf operators in the domain ontologies
that Naturalowl is used to generate texts from. In
Table 2 (part i), this restriction is enforced by not
allowing what we call multi-class operators (opera-

6

tors with more than one class arguments), namely
ObjectIntersectionOf and ObjectUnionOf) inside the
arguments of other multi-class operators. For the
same reasons, i.e., to simplify the generation process
and produce texts that are easier to comprehend,
we do not allow unnamed classes inside some other
operators, as shown again in Table 2 (part ii). If a
domain-ontology violates the constraints of Table 2,
it can be easily modified to comply with the con-
straints by defining new named classes for nested
unnamed classes. The owl ontologies we have en-
countered so far did not violate the constraints.
See Power et al. [137,141] for a study of the owl
statements ontology authors use most frequently.

For the benefit of readers unfamiliar with owl,
let us quickly explain the operators of Table 2
we have not used so far. ObjectComplementOf con-
structs the class of all individuals not in the original
class. ObjectOneOf constructs a class by enumer-
ating all of its individuals. ObjectHasValue(objProp

indiv) denotes the class of individuals that have
indiv among the values of their objProp property;
recall that owl’s properties are generally many-
valued. As a special case, ObjectHasSelf(objProp)

is the class of individuals that have themselves as
one of the (possibly many) values of their objProp .
ObjectMaxCardinality(number prop) denotes the class
of individuals that have (each) no more than number

values in their prop property. ObjectMinCardinality

and ObjectExactCardinality are similar, but they
specify the minimum or exact number of values.
In all three cardinality operators, an optional third
argument specifying a class may be present; then
the restriction refers to values from the third ar-
gument’s class. For example, the following is the
class of individuals that are made from at most one
Italian grape and any number of other grapes.

ObjectMaxCardinality(1 :madeFromGrape :ItalianGrape)

Finally, ObjectSomeValuesFrom(objProp Class) is the
class of individuals that have at least one member
of Class among the values of their objProp . For ex-
ample, the following is the class of individuals that
manufacture (each) at least one laptop.

ObjectSomeValuesFrom(:manufactures :Laptop)

Similarly, ObjectAllValuesFrom(objProp Class) is the
class of individuals that do not have values out-
side Class in their objProp , including individuals that
have no values at all in objProp .

Recall that Naturalowl’s texts are intended to be
read by end-users. Hence, we prefer to generate texts
that may not emphasize enough, from a knowledge

representation point of view, some of the subtleties
of owl’s statements, in order to produce more read-
able texts. An owl expert might prefer, for ex-
ample, the following natural language description
of chateauTeyssier2007, which mirrors more closely
the corresponding owl statements, than the text of
page 6. The text below also makes it clearer that,
in the absence of other information, nothing rules
out the possibility that chateauTeyssier2007 may, for
example, have both a strong and another flavor.

The 2007 Chateau Teyssier is a member of the intersec-

tion of the following classes: (a) the class of wines, (b) the

class of individuals from (not necessarily exclusively) the

St. Emilion region, (c) the class of individuals that have

(not necessarily exclusively) red color, (d) the class of in-

dividuals that have (not necessarily exclusively) strong

flavor, (e) the class of individuals that are made exclu-

sively from Cabernet Sauvignon grapes.

Stricter texts of this kind, however, seem inappro-
priate for end-users. In fact, it could be argued that
mentioning that the 2007 Chateau Teyssier is made
from exactly one grape variety in the text of page 6
is also inappropriate for end-users. Naturalowl can
be instructed to avoid mentioning this information
via user modeling annotations, discussed below.

Candidate facts for class targets
We have so far discussed how Naturalowl se-

lects candidate facts when asked to describe an in-
dividual. If the system is asked to describe a class,
it scans the domain ontology for statements of the
forms of Table 3; the class to be described must be a
named one, meaning that it must have an owl iden-
tifier, and Target is its identifier. 12 A statement of
the form DisjointClasses(Class1 Class2) signals that
Class1 and Class2 can never have a common individ-
ual. Again, to simplify the generation process and to
avoid producing complicated texts, we require both
arguments of DisjointClasses to be named classes.
Statements violating this restriction can be trans-
formed by defining new named classes.

In texts describing classes, it is difficult to express
informally the difference between EquivalentClasses

and SubClassOf. EquivalentClasses(Class1 Class2)

12SubClassOf(NamedClass Target) statements could also be

selected as candidate facts. They would lead to sentences
naming subclasses of Target , as in the following text where

the target is the class of vases: “A vase was used to store food

or liquids. Known types of vases are: hydriae, amphorae, and
lekythoi.” Similarly, known individuals of a target class (or

some of them) could be mentioned.

7

√
EquivalentClasses(Target Class)

√
EquivalentClasses(Class Target)

√
SubClassOf(Target Class)

√
DisjointClasses(Target NamedClass)

× DisjointClasses(Target UnnamedClass)

√
DisjointClasses(NamedClass Target)

× DisjointClasses(UnnamedClass Target)

Table 3
owl statements used (

√
) or not (×) as candidate facts when

generating a text for a class whose identifier is Target . Class
can be either a class identifier or an unnamed class con-

structed with the operators of Table 2. Statements marked

with ‘×’ can be tranformed to use named classes.

means that any individual of Class1 also belongs in
Class2 , and vice versa. By contrast, SubClassOf(Class1
Class2) means that any member of Class1 also be-
longs in Class2 , but the reverse is not necessarily
true. If we replace EquivalentClasses by SubClassOf

in the definition of StEmilion of page 2, as shown
below, then any member of StEmilion is still neces-
sarily also a member of the intersection, but a wine
with all the characteristics of the intersection is not
necessarily a member of StEmilion.

SubClassOf(:StEmilion

ObjectIntersectionOf(:Bordeaux

ObjectHasValue(:locatedIn :stEmilionRegion)

ObjectHasValue(:hasColor :red)

ObjectHasValue(:hasFlavor :strong)

ObjectHasValue(:madeFromGrape

:cabernetSauvignonGrape)

ObjectMaxCardinality(1 :madeFromGrape)))

Consequently, one should perhaps add sentences like
the ones shown in italics below, when expressing
EquivalentClasses and SubClassOf, respectively. 13

St. Emilion is a kind of Bordeaux from the St. Emilion

region. It has red color and strong flavor. It is made from

exactly one grape variety: Cabernet Sauvignon grapes.

Every St. Emilion has these properties, and anything that

has these properties is a St. Emilion.

St. Emilion is a kind of Bordeaux from the St. Emilion

region. It has red color and strong flavor. It is made from

exactly one grape variety: Cabernet Sauvignon grapes.

Every St. Emilion has these properties, but something may

have these properties without being a St. Emilion.

13Power and Third [141] use “X is defined as” with

EquivalentClasses, and presumably expressions like “every
X is a” with SubClassOf. Cregan et al. [36] use “is fully de-
fined as” and “is partly defined as”, respectively. We suspect

that the difference would still be unclear to end-users.

Although it is trivial to add the sentences shown
in italics, Naturalowl currently produces the same
texts, without the sentences in italics, for both
EquivalentClasses and SubClassOf, in order to avoid
generating texts that sound too formal. Further-
more, the system may not mention some of the
domain ontology’s information about a target class
(e.g., that a St. Emilion has strong flavor), when
user modeling indicates that this information is
already known or that the text should not exceed
a particular length. Hence, strictly speaking the
resulting texts generally express necessary, not suf-
ficient conditions for individuals to belong in the
target class. This behavior is consistent with the
fact that when asked to describe an individual,
rather than a class, the system does not necessarily
convey all the information it knows about the in-
dividual, in order to comply with space constraints
and other user modeling requirements.

Additional candidate facts
In some applications, expressing additional facts

that are indirectly related to the target may be desir-
able. Let us assume, for example, that the target is
an individual whose identifier is exhibit24, and that
the content selection mechanisms discussed above
have retrieved the following candidate facts from the
domain ontology. Naturalowl would express them
by generating a text like the one below.

ClassAssertion(:Aryballos :exhibit24)

ObjectPropertyAssertion(:locationFound

:exhibit24 :heraionOfDelos)

ObjectPropertyAssertion(:creationPeriod

:exhibit24 :archaicPeriod)

ObjectPropertyAssertion(:paintingTechniqueUsed

:exhibit24 :blackFigureTechnique)

ObjectPropertyAssertion(:currentMuseum

:exhibit24 :delosMuseum)

This is an aryballos, found at the Heraion of Delos. It

was created during the archaic period and it was deco-

rated with the black-figure technique. It is currently in

the Museum of Delos.

The natural language names of classes and individ-
uals can be shown as hyperlinks to indicate that
they can be used as subsequent targets. Clicking
on a hyperlink would be a request to describe the
corresponding class or individual. 14 Alternatively,
we may retrieve the candidate facts of these possi-

14Similar hyperlinks were used, for example, in demonstra-

tors of ilex and m-piro [132,82,4], the system described by
Dale et al. [38], and that of Halaschek-Wiener et al. [69].

They are also used by some owl verbalizers [178].

8

ble subsequent targets in advance and add them to
those of the current target.

More precisely, assuming that the target is an
individual, the subsequent possible targets, called
second-level targets, are taken to be the target’s
class, provided that it is a named one, and the
individuals the target is directly linked to via ob-
ject properties. Naturalowl considers second-level
targets only when the current target is an individ-
ual, because expressing information about possible
subsequent targets when the current target is a
class often leads to complicated texts. The system
can be set to retrieve candidate facts for both the
current and the second-level targets (when applica-
ble), or only for the current target; we say that the
maximum fact distance is two or one, respectively.

Returning to exhibit24, let us assume that the
maximum fact distance is two and that only the fol-
lowing candidate facts for second-level targets are
available; we explain the owl statements below. 15

SubClassOf(:Aryballos :Vase)

SubClassOf(:Aryballos

ObjectHasValue(:exhibitTypeCannedDescription

"An aryballos was a small spherical vase with a

narrow neck, in which the athletes kept the oil

they spread their bodies with"^^xsd:string))

DatatypePropertyAssertion(:periodDuration

:archaicPeriod "700 BC to 480 BC"^^xsd:string)

DatatypePropertyAssertion(:periodCannedDescription

:archaicPeriod "The archaic period was when the

Greek ancient city-states developed"^^xsd:string)

DataPropertyAssertion(:techniqueCannedDescription

:blackFigureTechnique "In the black-figure

technique, the silhouetes are rendered in black

on the pale surface of the clay, and details are

engraved"^^xsd:string)

Notice that we associated the Aryballos class with
the string “An aryballos. . . bodies with” by using
an ObjectHasValue inside a SubClassOf statement; in
effect, the statement says that every individual of
the Aryballos class has that string as the value of its
exhibitTypeCannedDescription property. We could not
have associated the class directly with the string via
a property assertion, as we did with the archaicPeriod

and blackFigureTechnique individuals, because owl’s
properties map only from individuals, not classes,
to datatype values or other individuals.

To express all the candidate facts, Naturalowl
would now generate a text like the following, which
may be preferable, if this is the first time the user
encounters an aryballos and archaic exhibits.

15Consult http://www.w3.org/TR/owl-time/ for more prin-

cipled representations of time in owl.

This is an aryballos, a kind of vase. An aryballos was

a small spherical vase with a narrow neck, in which the

athletes kept the oil they spread their bodies with. This

particular aryballos was found at the Heraion of Delos

and it was created during the archaic period. The archaic

period was when the Greek ancient city-states developed

and it spans from 700 bc to 480 bc. This aryballos was

decorated with the black-figure technique. In the black-

figure technique, the silhouetes are rendered in black on

the pale surface of the clay, and details are engraved. This

aryballos is currently in the Museum of Delos.

We note that in many domain ontologies it is im-
practical to represent all the information in purely
logical terms. In our example, it is much easier
to store the information that “An aryballos was
a small. . . spread their bodies with” directly as a
string, i.e., as a canned sentence in nlg terminol-
ogy, as opposed to defining classes, properties, and
individuals for spreading actions, bodies, athletes,
etc. and generating the sentence from a logical
meaning representation. Similar comments apply to
the other canned sentences in the example above. A
disadvantage of using canned sentences is that they
may have to be entered in multiple versions, if sev-
eral languages or user types need to be supported.
Some of the advantages of nlg are still available,
however, when the canned sentences are property
values of the domain ontology as above. For exam-
ple, the canned sentences can still be placed at ap-
propriate positions in the overall text, as with sen-
tences generated from purely logical facts, and some
of their referring expressions (e.g., pronouns) can
be automatically produced, as we discuss below. 16

Limitations of content selection
Apart from the restrictions of Tables 1–3, a fur-

ther limitation of Naturalowl’s content selection is
that it only retrieves information that is explicit in
the domain ontology. It cannot deduce additional in-
formation about the target from other statements
in the domain ontology; see Mellish et al. [122] for
mechanisms to deduce facts in content selection.

16 In Naturalowl, canned texts can also be entered as natural

language names (see Section 2.2.1) of pseudo-individuals; the
pseudo-individuals can then be used instead of the canned
texts in the domain ontology, provided that the correspond-

ing string-valued properties are converted to object proper-
ties. This way, canned texts can be entered (in the domain-

dependent generation resources) in multiple versions (for dif-

ferent languages and user types) as different versions of the
natural language names of the pseudo-individuals, without

cluttering up the domain ontology with multiple strings.

9

We also note that owl allows one to define the
broadest possible domain and range of a particular
property, using statements like the following.

ObjectPropertyDomain(:madeFromGrape :Wine)

ObjectPropertyRange(:madeFromGrape :Grape)

In practice, more specific range restrictions are then
imposed for particular subclasses of the domain. For
example, the following statements specify that when
madeFromGrape is used with individuals from the sub-
class GreekWine of Wine, the range (possible values)
of madeFromGrape should be restricted to individuals
from the subclass GreekGrape of Grape.

SubClassOf(:GreekWine :Wine)

SubClassOf(:GreekGrape :Grape)

SubClassOf(:GreekWine

AllValuesFrom(:madeFromGrape :GreekGrape))

Naturalowl considers AllValuesFrom and similar re-
strictions, but it ignores ObjectPropertyDomain and
ObjectPropertyRange statements. 17 Considering the
latter statements as well would be easy, but they
typically provide too general and, hence, uninterest-
ing information from the perspective of end-users.

More generally, Naturalowl does not consider
owl statements that express axioms about proper-
ties, meaning statements declaring that a property
is symmetric, asymmetric, reflexive, irreflexive,
transitive, functional, that its inverse is functional,
that a property is the inverse of, or disjoint with
another property, that it is subsumed by a chain of
other properties, or that it is a subproperty (more
specific) of another property. Statements of this
kind are mostly useful in consistency checks, in de-
duction, or when generating texts describing the
properties themselves (e.g., what being a grandpar-
ent of somebody means), cases that are not directly
relevant to the work of this article. 18

Converting candidate facts to message triples
Tables 4 and 5 list more exhaustively all the forms

of candidate facts that are considered when describ-
ing a target individual or class, i.e., all the candidate
facts that are admitted by Tables 1–3. Tables 4 and
5 also show how the candidate facts can be rewrit-
ten as triples of the form 〈S, P,O〉, where S is always
the target or a second-level target; O is an individ-
ual, a datatype value, a class, or a set of individuals,

17The only exception is when it expresses cardinality restric-
tions; see Table 7 of Section 2.2.1 below.
18Subproperties without sentence plans, discussed below,

could inherit sentence plans from their super-properties, but
in that case we automatically extract sentence plans from

the domain ontology instead.

:exhibit24

:Aryballos

:heraionOfDelos

:blackFigureTechnique

:archaicPeriod

:delosMuseum

:Vase

“An aryballos was a…”

“700 to 480 BC”

“The archaic period
was when…”

instanceOf

isA

:paintingTechniqueUsed

:locationFound

:currentMuseum

:exhibitTypeCannedDescription

:creationPeriod

:periodDuration
:periodCanned

Description

Figure 2. Graph view of message triples corresponding to

candidate facts. The target is the individual exhibit24.

datatype values, or classes that S is mapped to; P
specifies the kind of mapping. We call S the seman-
tic subject or owner of the triple, and O the seman-
tic object or filler ; the triple can also be viewed as a
field named P , owned by S, and filled by O. For ex-
ample, the candidate facts about exhibit24 on page
8, including the additional facts about the second-
level targets, are converted to the following triples.

<:exhibit24, instanceOf, :Aryballos>

<:exhibit24, :locationFound, :heraionOfDelos>

<:exhibit24, :creationPeriod, :archaicPeriod>

<:exhibit24, :paintingTechniqueUsed,

:blackFigureTechnique>

<:exhibit24, :currentMuseum, :delosMuseum>

<:Aryballos, isA, :Vase>

<:Aryballos, :exhibitTypeCannedDescription,

"An aryballos was a small spherical vase with a

narrow neck, in which the athletes kept the oil

they spread their bodies with"^^xsd:string>

<:archaicPeriod, :periodDuration,

"700 BC to 480 BC"^^xsd:string>

<:archaicPeriod, :periodCannedDescription,

"The archaic period was when the Greek ancient

city-states developed"^^xsd:string>

<:blackFigureTechnique,

:techniqueCannedDescription,

"In the black-figure technique, the silhouetes

are rendered in black on the pale surface of the

clay, and details are engraved"^^xsd:string>

More precisely, P can be: (i) a property of the do-
main ontology; (ii) one of the keywords instanceOf,
oneOf, differentIndividuals, sameIndividuals, isA; or
(iii) an expression of the form modifier(ρ), where
modifier may be not, maxCardinality etc. (see Tables
4 and 5) and ρ is a property of the domain ontol-
ogy. We hereafter call properties all three types of P ,
though types (ii) and (iii) are strictly not properties
in owl’s terminology. When we need to distinguish
between the three types, we use the terms property
of the domain ontology, domain-independent prop-
erty, and modified property, respectively.

For readers familiar with rdf, we note that the

10

candidate facts (for an individual target) as owl statements candidate facts as message triples

ClassAssertion(NamedClass target) <target, instanceOf, NamedClass >

ClassAssertion(ObjectComplementOf(NamedClass) target) <target, not(instanceOf), NamedClass >

ClassAssertion(ObjectOneOf(indiv1 indiv2 ...) target) <target, oneOf, or(indiv1, indiv2, ...)>

ClassAssertion(ObjectHasValue(objProp indiv) target) <target, objProp, indiv >

ClassAssertion(ObjectHasValue(dataProp dataValue) target) <target, dataProp, dataValue >

ClassAssertion(ObjectHasSelf(objProp) target) <target, objProp, target >

ClassAssertion(

ObjectMaxCardinality(number prop [NamedClass]) target)

<target, maxCardinality(prop),

number [:NamedClass]>

ClassAssertion(

ObjectMinCardinality(number prop [NamedClass]) target)

<target, minCardinality(prop),

number [:NamedClass]>

ClassAssertion(

ObjectExactCardinality(number prop [NamedClass]) target)

<target, exactCardinality(prop),

number [:NamedClass]>

ClassAssertion(

ObjectSomeValuesFrom(objProp NamedClass) target)

<target, someValuesFrom(objProp),

NamedClass >

ClassAssertion(

ObjectAllValuesFrom(objProp NamedClass) target)

<target, allValuesFrom(objProp),

NamedClass >

ClassAssertion(ObjectIntersectionOf(C1 C2 ...) target) convert (ClassAssertion(C1 target))

convert (ClassAssertion(C2 target)) . . .

ClassAssertion(ObjectUnionOf(C1 C2 ...) target) or(convert (ClassAssertion(C1 target)),

convert (ClassAssertion(C2 target)), ...)

ObjectPropertyAssertion(objProp target indiv) <target, objProp, indiv >

DataPropertyAssertion(dataProp target dataValue) <target, dataProp, dataValue >

DifferentIndividuals(target indiv) <target, differentIndividuals, indiv >

DifferentIndividuals(indiv target) <target, differentIndividuals, indiv >

SameIndividual(target indiv) <target, sameIndividual, indiv >

SameIndividual(indiv target) <target, sameIndividual, indiv >

Table 4
Candidate facts when generating a text for an individual (see also Tables 1 and 2), and how they can be converted to message

triples. Square brackets indicate optional arguments, and convert (ξ) denotes a recursive application of the conversion to ξ.

triples of Tables 4 and 5 are not exactly rdf triples.
Most notably, expressions of the form modifier(ρ)
cannot be used as P in rdf triples. Overall, each
triple produced by Tables 4 and 5 is intended to
be easily expressible as a single sentence, which is
not always the case with rdf triples representing
owl statements. To avoid confusion, we use the
term message triples to refer to the triples that Ta-
bles 4 and 5 generate, as opposed to rdf triples. 19

As with rdf triples, message triples can be viewed
as a graph, which is very similar to ilex’s con-

19Message triples correspond to Reiter and Dale’s [145] mes-

sages. Message triples can be converted to rdf triples.

tent potential [132]. Figure 2 shows a graph for the
message triples of exhibit24; to save space, we ex-
clude the triple that links blackFigureTechnique to a
canned sentence. The second-level targets are the
nodes of classes and individuals at distance one from
exhibit24. The graph for the rdf triples would be
more complex, and second-level targets would not
always be at distance one from the current target.

Notice that Table 5 converts EquivalentClasses and
SubClassOf statements to identical triples, where P is
isA, since Naturalowl produces the same texts from
both kinds of statements, as already discussed. As a
further example, owl statements like the following
two are mapped to identical message triples, apart

11

candidate fact (for a class target) as owl statements candidate facts as message triples

EquivalentClasses(Target Class) convert (SubClassOf(Target Class))

EquivalentClasses(Class Target) convert (SubClassOf(Target Class))

SubClassOf(Target NamedClass) <Target, isA, NamedClass >

SubClassOf(Target ObjectComplementOf(NamedClass)) <Target, not(isA), NamedClass >

SubClassOf(Target ObjectOneOf(indiv1 indiv2 ...)) <Target, oneOf, or(indiv1, indiv2, ...)>

SubClassOf(Target ObjectHasValue(objProp indiv)) <Target, objProp, indiv >

SubClassOf(Target ObjectHasValue(dataProp dataValue)) <Target, dataProp, dataValue >

SubClassOf(Target ObjectHasSelf(objProp)) <Target, objProp, Target >

SubClassOf(Target

ObjectMaxCardinality(number prop [NamedClass]))

<Target, maxCardinality(prop),

number [:NamedClass]>

SubClassOf(Target

ObjectMinCardinality(number prop [NamedClass]))

<Target, minCardinality(prop),

number [:NamedClass]>

SubClassOf(Target

ObjectExactCardinality(number prop [NamedClass]))

<Target, exactCardinality(objProp),

number [:NamedClass]>

SubClassOf(Target

ObjectSomeValuesFrom(objProp NamedClass))

<Target, someValuesFrom(objProp),

NamedClass >

SubClassOf(Target

ObjectAllValuesFrom(objProp NamedClass))

<Target, allValuesFrom(objProp),

NamedClass >

SubClassOf(Target ObjectIntersectionOf(C1 C2 ...)) convert (SubClassOf(C1 Target))

convert (SubClassOf(C2 Target)) . . .

SubClassOf(Target ObjectUnionOf(C1 C2 ...)) or(convert (SubClassOf(C1 Target)),

convert (SubClassOf(C2 Target)), ...)

DisjointClasses(Target NamedClass) <Target, not(isA), NamedClass >

DisjointClasses(NamedClass Target) <Target, not(isA), NamedClass >

Table 5

Candidate facts when generating a text for a class (see also Tables 2 and 3), and how they can be converted to message
triples. Square brackets indicate optional arguments, and convert (ξ) denotes a recursive application of the conversion to ξ.

from the identifiers of the individual and the class.

ClassAssertion(

ObjectMaxCardinality(1 :madeFromGrape)

:product145)

SubClassOf(:StEmilion

ObjectMaxCardinality(1 :madeFromGrape))

The resulting message triples, shown below, are in-
tended to reflect the similarity of the corresponding
sentences that Naturalowl would generate.

<:product145, maxCardinality(:madeFromGrape), 1>

Product 145 is made from at most one grape.

<:StEmilion, maxCardinality(:madeFromGrape), 1>

St. Emilion is made from at most one grape.

Tables 4 and 5 also discard ObjectIntersectionOf op-

erators, producing multiple message triples instead.
For example, the SubClassOf for StEmilion on page 8
would be converted to the following triples.

<:StEmilion, isA, :Bordeaux>

<:StEmilion, :locatedIn, :stEmilionRegion>

<:StEmilion, :hasColor, :red>

<:StEmilion, :hasFlavor, :strong>

<:StEmilion, :madeFromGrape,

:cabernetSauvignonGrape>

<:StEmilion, maxCardinality(:madeFromGrape), 1>

The triples correspond to the sentences below,
where subsequent references to StEmilion have been
replaced by pronouns. The sentences could be ag-
gregated into longer ones as discussed below.

St. Emilion is a kind of Bordeaux. It is from the St.

Emilion region. It has red color. It has strong flavor. It

12

is made from Cabernet Sauvignon grape. It is made from

at most one grape variety.

Tables 4 and 5 also replace ObjectUnionOf operators
by disjunctions of message triples. The assertion:

ClassAssertion(

UnionOf(

ObjectHasValue(:hasFlavor :strong)

ObjectHasValue(:hasFlavor :medium))

:houseWine)

becomes:

or(<:houseWine, :hasFlavor, :strong>,

<:houseWine, :hasFlavor, :medium>)

which corresponds to the following setence.

The house wine has strong flavor or it has medium flavor.

The need for interest scores
Conveying to an end-user all the message triples

of all the candidate facts is not always appropriate.
Let us assume, for example, that the maximum fact
distance is 2 and that a description of exhibit24 of
Figure 2 has been requested by a museum visitor.
It may be the case that the visitor has already en-
countered other exhibits of the archaic period, and
that the duration of that period was mentioned in
the previous descriptions. Repeating the archaic pe-
riod’s duration may, thus, be undesirable. We may
also want to exclude candidate facts that are unin-
teresting to particular types of users. For example,
there may be message triples providing bibliographic
references; archaeologists may find them interesting,
but children would probably not. Therefore, mecha-
nisms are needed to determine which candidate mes-
sage triples should be conveyed to each user.

Following ilex and m-piro, each message triple
is assigned an interest score, possibly different per
user type. The score is a non-negative integer indi-
cating how interesting a user of the corresponding
type will presumably find the triple’s information,
if the information has not already been conveyed to
the user. 20 Furthermore, personal user models, to
be discussed, keep track of the message triples the
system has expressed to each particular user.

In the museum projects Naturalowl was origi-
nally developed for, the interest scores ranged from
0 (completely uninteresting) to 3 (very interesting);
a different maximum score can also be used. The
scores were set by consulting museum curators,

20 ilex distinguishes between interest and importance, the
latter being the educational value of each fact, which may be

different from its interest [132]. We use only interest scores.

who were shown a list of all the properties of the
domain ontology (e.g., locationFound) that applied
to targets (exhibits) or second-level targets (e.g.,
historical periods), along with sample sentences
expressing message triples involving each property.
The curators were asked to specify how interesting
the information expressed by each property would
generally be per user type. 21 Each message triple
was then assigned the interest score of its prop-
erty. The user types (e.g., non-expert adult, expert
adult, child) were also suggested by the curators.
The curators later examined the generated texts
and suggested further refinements of the interest
score assignments, which would occasionally apply
to 〈S, P,O〉 message triples with a particular in-
dividual or class as their S, rather than to all the
messages triples that involved a particular property
P . Hence, we had to allow refinements of this kind.

We note that when large numbers of human-
authored texts describing individuals and classes
of the domain ontology are available, along with
the corresponding logical facts expressed by each
text, statistical and machine learning methods can
be employed to learn to automatically select or
assign interest scores to logical facts (or message
triples) [52,10,91,93,5]. Another possibility would
be to compute the interest scores with centrality
algorithms. Algorithms of this kind assign higher or
lower importance to a graph’s nodes by considering
how well connected they are and how important
their neighbors are. Demir et al. [45], for example,
applied a version of PageRank [29] to a graph that
had nodes standing for candidate logical facts, and
edges corresponding to relations between facts (e.g.,
showing that two facts share individuals, or that
they should or should not be selected together).

Let us now explain how message triples 〈S, P,O〉
are (manually) assigned interest scores in Natu-
ralowl. Three types of annotations of the domain
ontology can be used; we discuss them in turn.

Assigning interest scores by specifying P only
An annotation of this type applies to all the mes-

sage triples involving a particular P , regardless of S
and O. For example, let us assume that any triple
whose P is currentMuseum, like the one below, should
have an interest score of 1 when generating texts for
children; by contrast, the interest score should be 3
when generating texts for experts.

21Consult Reiter et al. [146] for a discussion of knowledge

acquisition methods that can be used in nlg.

13

_:node1

dgr:child

nlowl:forUserType

:currentMuseum

nlowl:forProperty

1
nlowl:AnnotationEvent

instanceOf nlowl:hasInterest

nlowl:UserType

instanceOf

_:node2

dgr:expert

nlowl:forUserType
nlowl:forProperty

3

instanceOf

instanceOf nlowl:hasInterest

Figure 3. Graph view of annotations providing interest
scores. Message triples involving the currentMuseum property

are assigned an interest of 1 for children and 3 for experts.

<:exhibit24, :currentMuseum, :delosMuseum>

The following annotations can be used. The annota-
tions themselves are also owl statements, and Fig-
ure 3 shows them as a graph.

AnnotationAssertion(nlowl:forProperty

_:node1 :currentMuseum)

ObjectPropertyAssertion(nlowl:forUserType

_:node1 dgr:child)

ObjectPropertyAssertion(nlowl:hasInterest

_:node1 "1"^^xsd:nonNegativeInteger)

AnnotationAssertion(nlowl:forProperty

_:node2 :currentMuseum)

ObjectPropertyAssertion(nlowl:forUserType

_:node2 dgr:expert)

ObjectPropertyAssertion(nlowl:hasInterest

_:node2 "3"^^xsd:nonNegativeInteger)

Intuitively, the statements above introduce two an-
notation events. The first one (node1) concerns chil-
dren and annotates the property currentMuseum with
an interest score of 1. The second event (node2) con-
cerns experts and annotates the same property with
an interest score of 3. If the forUserType of an an-
notation event is left unspecified, the interest score
applies to all the user types.

For simplicity, we use the default namespace
(a colon without a prefix) with properties (e.g.,
:currentMuseum), classes etc. of the domain ontology.
The nlowl namespace prefix is used with domain-
independent properties, classes etc. that are defined
in Naturalowl’s generation resources ontology
(e.g., nlowl:forProperty); and the dgr prefix is used
with domain-dependent instances (e.g., individu-
als) of Naturalowl’s generation resources ontology.
The user types child and expert in the example
above would be declared to be individuals of the
class UserType (as shown below), which is defined in
Naturalowl’s generation resources ontology.

ClassAssertion(dgr:child nlowl:UserType)

ClassAssertion(dgr:expert nlowl:UserType)

Since we may wish to use different user types with
different domain ontologies, child and expert are

considered domain-dependent, which is why they
have the dgr prefix. 22 Individuals whose prefixes
are underscores (e.g., :node1, :node2) are considered
anonymous in owl; strictly speaking, they should
be shown as nodes without labels in the graphs.

Statements of the form AnnotationAssertion(anProp

element value) are used in owl to map any element

(e.g., class, property, individual) of an ontology to
any value (e.g., individual, datatype value) via an
annotation property anProp in order to express meta-
information that is not considered part of the on-
tology’s conceptualization. For example, annotation
properties are commonly used to associate elements
with comments. We use annotation properties when
linking elements of the domain ontology to elements
of the generation resources ontology, or vice versa,
but we use ordinary properties when linking (inter-
nally) elements of the domain ontology or when link-
ing (internally) elements of the generation resources
ontology. The AnnotationAssertion statements that
we use can be thought of as annotations of the do-
main ontology that associate it with linguistic and
user modeling resources, which are not part of the
domain ontology’s conceptual model. 23 Like object
and datatype properties, annotation properties can
express directly only binary relations. Hence, we fol-
low common practice and use anonymous individ-
uals (e.g., :node1) that stand for reified events to
express relations of more than two arguments.

Recall that the P of a message triple 〈S, P,O〉 is
not always a property of the domain ontology (see
Tables 4 and 5). It may be a modified property,
like maxCardinality(currentMuseum), in which case we
say that maxCardinality is a modifier of currentMuseum.
The statements below specify that message triples
whose P is exactCardinality(currentMuseum) have an
interest score of zero when interacting with children;
users are never told zero interest facts.

AnnotationAssertion(nlowl:forProperty

_:node3 :currentMuseum)

ObjectPropertyAssertion(nlowl:forModifier

_:node3 nlowl:exactCardinality)

ObjectPropertyAssertion(nlowl:forUserType

_:node3 dgr:child)

22 In practice, dgr would be an abbreviation of a namespace
other than that of the domain ontology and Naturalowl’s

generation resources ontology, to avoid name clashes. A
complete definition (in owl) of Naturalowl’s generation re-
sources ontology is included in the system’s software.
23Annotation properties have the additional advantage that

they can map classes or properties, not just individuals, to
values, and the values themselves can also be properties; this

turns out to be useful in some of Naturalowl’s annotations.

14

ObjectPropertyAssertion(nlowl:hasInterest

_:node3 "0"^^xsd:nonNegativeInteger)

By omitting the forProperty, we can also specify,
for example, that triples with an exactCardinality

should never be expressed to children, regardless
of the property the modifier applies to. When
there are conflicting interest scores (e.g., for
exactCardinality(currentMuseum) and exactCardinality

in general), the most specific one prevails. 24

In practice, the user modeling annotations are en-
tered by using Naturalowl’s Protégé plug-in, in-
stead of writing owl statements. The annotation
events are automatically generated by the plug-in,
and they are not shown to the domain author.

Assigning interest scores by specifying both S and P
Most message triples 〈S, P,O〉 are assigned inter-

est scores by using annotations that specify a par-
ticular P (and/or possibly a modifier), an interest
score, and possibly a particular user type, as dis-
cussed above. In some cases, however, we may also
want the annotations to specify a particular S. For
example, we may have assigned, say for all user
types, an interest score of 3 to message triples whose
P is instanceOf, i.e., triples expressing the class of S.
In the following triple, however, we would probably
want to set the interest score to zero, because the
natural language name of S makes it obvious that S
is a museum, i.e., we would want to avoid generating
the corresponding sentence.

<:delosMuseum, instanceOf, :Museum>

The Museum of Delos is a museum.

This is achieved below by specifying that message
triples whose P is instanceOf and S is delosMuseum

have zero interest for all user types; recall that S is
also called the owner of the triple.

AnnotationAssertion(nlowl:forProperty

_:node4 nlowl:instanceOf)

AnnotationAssertion(nlowl:forOwner

_:node4 :delosMuseum)

ObjectPropertyAssertion(nlowl:hasInterest

_:node4 "0"^^xsd:nonNegativeInteger)

Similarly, we may wish to specify that the materi-
als of a museum’s exhibits are generally of medium
interest (score 2), that the materials of statues are
of lower interest (score 1), perhaps because they are
all made from stone, but that the material of a par-
ticular statue, exhibit10, is very important (score 3),

24 In the case of disjunctions of message triples, the entire
disjunction is assigned the average of the interest scores of its

triples, and the disjunction is expressed as a single sentence.

perhaps because it is gold. We could use the follow-
ing statements. The first annotation event (node5) is
overriden by the second one (node6), when S is the
class Statue or any individual that belongs in that
class. The third annotation event (node7) overrides
both of the previous ones, when S is exhibit10.

AnnotationAssertion(nlowl:forProperty

_:node5 :hasMaterials)

ObjectPropertyAssertion(nlowl:hasInterest

_:node5 "2"^^xsd:nonNegativeInteger)

AnnotationAssertion(nlowl:forProperty

_:node6 :hasMaterials)

AnnotationAssertion(nlowl:forOwner

_:node6 :Statue)

ObjectPropertyAssertion(nlowl:hasInterest

_:node6 "1"^^xsd:nonNegativeInteger)

AnnotationAssertion(nlowl:forProperty

_:node7 :hasMaterials)

AnnotationAssertion(nlowl:forOwner

_:node7 :exhibit10)

ObjectPropertyAssertion(nlowl:hasInterest

_:node6 "3"^^xsd:nonNegativeInteger)

There should perhaps also be a mechanism to assign
interest scores by specifying P andO, for example to
assign a high interest to triples indicating that some
(any) exhibit is made of gold. Naturalowl, however,
currently provides no such mechanism.

Assigning interest scores at the global level
Message triples may also be assigned interest

scores by using global annotations specifying nei-
ther P nor S; the annotations then apply to all the
message triples. For example, the following state-
ment assigns an interest score of 1 to all triples,
unless otherwise specified; this is also the default.

ObjectPropertyAssertion(nlowl:hasInterest

_:node8 "1"^^xsd:nonNegativeInteger)

A forUserType can be used to restrict the scope of a
global annotation to a particular user type.

Repetitions and personal user models
Following ilex and m-piro, Naturalowl’s user

modeling annotations also specify how many times
each message triple has to be repeated in the gen-
erated texts, before it can be assumed that users of
different types have assimilated it. Once a triple has
been assimilated, it is never repeated in texts for the
same user, unless the user’s personal model is re-
set. For example, the annotations may indicate that
for children, the duration of a historical period is
assimilated only after it has been mentioned twice;
hence, the system may repeat the duration of the

15

archaic period in two texts about exhibits of that
period. The necessary repetitions are specified much
as when specifying interest scores. For example, the
following statements set both the interest score (to
1) and the required repetitions (to 2) for children
at the global level, i.e., for all properties, using a
single annotation event. If not specified otherwise,
message triples are expressed only once.

ObjectPropertyAssertion(nlowl:forUserType

_:node9 dgr:child)

ObjectPropertyAssertion(nlowl:hasInterest

_:node9 "1"^^xsd:nonNegativeInteger)

ObjectPropertyAssertion(nlowl:maxRepetitions

_:node9 "2"^^xsd:nonNegativeInteger)

A maxRepetitions score of 0 signals that the triple
should never be considered assimilated.

Naturalowl maintains a personal model for each
end-user. The model shows which message triples
were conveyed to that user in previous texts, and
how many times. Each end-user is assigned a unique
identifier during a login phase, and the identifiers are
used to retrieve their personal models. During the
login phase, the users also select their types; in one
of m-piro’s demonstrators, for example, the user
types were depicted using cartoon characters, and
the users selected the character they felt closer to.

Selecting the message triples to convey
When asked to describe a target, Naturalowl first

retrieves from the domain ontology the candidate
facts up to the maximum fact distance. It then con-
verts the candidate facts to message triples, and it
employs the user modeling annotations and the per-
sonal user models to rank the triples by decreasing
interest score, discarding triples that have already
been assimilated. If a message triple at distance
one has been assimilated, then all the distance two
triples that are connected to the assimilated triple
are also discarded; for example, if the creationPeriod

triple (edge) of Figure 2 has been assimilated, then
the triples about the archaic period (the edges leav-
ing from archaicPeriod) are also discarded. The sys-
tem then selects up to maxMessagesPerPage triples from
the most interesting remaining ones. The value of
maxMessagesPerPage can be set to smaller or larger val-
ues for types of users that prefer shorter or longer
texts. The following statement indicates that each
text should express at most 10 message triples when
interacting with children. The default is to convey
all the non-assimilated candidate message triples.

DataPropertyAssertion(nlowl:maxMessagesPerPage

dgr:child "10"^^xsd:nonNegativeInteger)

In some applications, it may be possible to allow
users to specify their personal maxMessagesPerPage

value, for example via a slide-bar, but a reasonable
initial value per user type is desirable in most cases.

2.1.2. Text planning
For each target class or individual, the mecha-

nisms of the previous section produce the message
triples to be expressed, with each triple intended
to be easily expressible as a single sentence. Natu-
ralowl’s text planning stage then orders the mes-
sage triples, in effect ordering the sentences of the
resulting text. We discuss the functionality and re-
sources of this stage, after first providing some back-
ground on text planning, for the benefit of readers
unfamiliar with nlg and also to explain why some
particular methods were chosen in Naturalowl.

Related work on global coherence
Among other considerations, text planners often

aim to maximize the global or local coherence of the
resulting texts, or both. When considering global co-
herence, they attempt to build a structure, usually a
tree, that shows how the clauses, sentences, or larger
segments (or their meaning representations, in our
case the message triples) are related to each other,
often in terms of rhetorical relations, as in Rhetor-
ical Structure Theory (rst) [113]. For example, a
sentence or other segment may justify, elaborate, or
contradict another one, it may provide background
information etc. The allowed or preferred orderings
of the text’s sentences (or segments) often follow, at
least partially, from its global coherence structure.

In the texts, however, that Naturalowl is in-
tended to generate, i.e., factual descriptions of in-
dividuals or classes, the global coherence structures
tend to be rather uninteresting, because most of
the sentences simply provide additional information
about the target or the second-level targets; the
sentences are connected mostly via what are usually
called ‘elaboration’, ‘list’, or ‘background’ relations.
Hence, global coherence structures are not particu-
larly informative in our case, which is why they are
not used in Naturalowl. Consult, for example, Hovy
[80], Moore and Paris [128], and Paris et al. [134] for
descriptions of systems that use global coherence
structures, rhetorical relations, and plan libraries.
Mellish et al. [120] employ genetic algorithms to
search for a good global coherence structure, given
a set of facts to convey (per text) and a set of possi-
ble rhetorical relations that connect them. Duboue
and McKeown [51] also use genetic algorithms, but

16

to learn a single text planner (for all the texts to be
generated), given a training set of semantic inputs
and the corresponding human-authored texts.

We note that Liang et al. [109] discuss using rst in
an ontology verbalizer; they seem to agree, however,
that very few types of rst relations are relevant
when generating texts from owl ontologies. Also,
Power [138] studied when two sentences expressing
ClassAssertion, SubClassOf, or ObjectPropertyAssertion

axioms are judged by humans to be rhetorically re-
lated; and when they are, what kinds of rhetori-
cal relations they express, and how the relations
are expressed (e.g., by using discourse connectives
or sentence aggregation). Power found 11 patterns
of rhetorically related pairs of sentences (and ax-
ioms). Most of these patterns, however, do not apply
to the sentences that Naturalowl produces; for ex-
ample, many patterns express contrast or compar-
isons between two target classes, whereas in Natu-
ralowl there is always only one target. Only two
of Power’s patterns seem to apply to Naturalowl’s
sentences: additive elaboration (e.g., “Dogs are ca-
nines; dogs are domestic mammals”) and forward
reasoning (e.g., “Dogs are canines; canines are ver-
tebrates”). 25 Additive elaboration is handled rea-
sonably well by Naturalowl’s sentence aggregation
rules, discussed below. Forward reasoning sentences
are placed next to each other by Naturalowl’s text
planner; no discourse connective is used, but Power’s
data suggest that humans also rarely use discourse
connectives in this case.

Local coherence
When considering local coherence, text planners

usually aim to maximize measures that examine,
roughly speaking, whether or not adjacent sentences
(or other segments) continue to focus on (i.e., talk
primarily about) the same entities or, if the focus
changes, how smooth the transition is. Many local
coherence measures are based on Centering Theory
(ct) [66,170,135], which we briefly discuss first. 26

25Widening elaboration and narrowing elaboration pairs

[138] may also, in principle, be generated by Naturalowl,
but they seem to be rare in practice, because they occur
when the domain ontology contains redundant statements,
for example explicitly stating that dogs are both canines and

vertebrates, and also that canines are vertebrates.
26Consult Karamanis et al. [87] for a summary of measures

based on ct. Readers unfamiliar with ct should still be able
to follow most of the discussion here. For those who wish
to grasp the full details, the article of Karamanis et al. also

serves as a concise introduction to relevant ct concepts.

In ct, each utterance un (in our case, sentence)
is associated with a set of forward-looking centers of
attention, denoted Cf (un). The members of Cf (un)
are discourse entities realized as noun phrases in un;
in our case, the discourse entities are individuals
or classes of the domain ontology. The members of
Cf (un) can be ordered by their salience, which re-
flects the salience of the noun phrases that realize
them in un; for example, subject noun phrases are
considered more salient than object noun phrases.
The most salient member of Cf (un) is un’s preferred
center, denoted cp(un). In a sentence that Natu-
ralowl generates for a message triple 〈S, P,O〉, typ-
ically Cf (un) = {S,O} and cp(un) = S, since S is
typically realized as the subject of un. 27

Let un−1 be the utterance (sentence) immediately
before un. The most salient member of Cf (un−1)
that is also realized in un is the backward-looking
center of un, denoted cb(un). If no member of
Cf (un−1) is realized (repeated) in un, then cb(un)
is undefined and we have a type of transition from
un−1 to un that Karamanis et al. [87] and others call
nocb, a transition type to be avoided. The preferred
type of sentence-to-sentence transition, continue,
occurs when cp(un) = cb(un) = cb(un−1). If un−1

is the first utterance of the text, cb(un−1) is unde-
fined. However, if cb(un−1) is undefined but cb(un)
exists, cb(un) = cb(un−1) is taken to hold; a nocb
occurs (from un−1 to un) when cb(un) is undefined.

When Naturalowl’s maximum fact distance is
one, all the transitions in the generated texts are
continue, because cp(un) = cb(un) = cb(un−1) =
t, for every un with n > 1, where t is the target, i.e.,
the individual or class described by the text. To il-
lustrate this, we repeat the short description of the
aryballos of page 8, without aggregating sentences.

This (exhibit) is an aryballos. It was found at the Heraion

of Delos. It was created during the archaic period. It was

decorated with the black-figure technique. It is currently

in the Museum of Delos.

The subjects of all the sentences, shown in italics,
realize t, and cp(un) = t in every utterance. We
show underlined the noun phrase of each sentence
that realizes its cb(un). In our example, for every
n > 1, cb(un) is the discourse entity realized by the

27We say typically, because there is actually nothing to pre-
vent a domain author from providing an unusual sentence

plan that, for example, causes Naturalowl to realize S as the

object of the sentence; sentence plans are discussed below.
Also, when canned texts are used, cp(un) may occasionally

not be realized as the subject; we provide an example below.

17

subject of un−1, i.e., t; hence, cp(un) = cb(un) = t.
Furthermore, for every n > 2, cb(un) = cb(un−1) =
t; and for n = 2, cb(un−1) is undefined and cb(un) =
t, hence cb(un) = cb(un−1) is taken to hold.

If the maximum fact distance is two, however, the
transitions are not always continue. 28 In our ex-
ample, the description of the aryballos becomes as
follows. We now repeat the long description of page
9, again without sentence aggregation. The most
salient noun phrase of each sentence, which realizes
cp(un), is shown in italics. In the (canned) ninth sen-
tence, the most salient noun phrase is the one inside
the sentence-initial prepositional phrase; in all the
other sentences, it is the subject. Again, the under-
lined noun phrases realize cb(un).

(1) This (exhibit) is an aryballos. (2) An aryballos is a

kind of vase. (3) An aryballos was a small spherical vase

with a narrow neck, in which the athletes kept the oil

they spread their bodies with. • (4) This particular ary-

ballos was found at the Heraion of Delos. (5) It was cre-

ated during the archaic period. (6) The archaic period

was when the Greek ancient city-states developed. (7)

It spans from 700 bc to 480 bc. • (8) This aryballos

was decorated with the black-figure technique. (9) In

the black-figure technique, the silhouetes are rendered in

black on the pale surface of the clay, and details are en-

graved. • (10) This aryballos is currently in the Museum

of Delos.

In the second sentence above, cp(u2) is the class of
aryballoi (plural of aryballos), not the particular tar-
get exhibit t the text is generated for; cb(u2) is also
the aryballos class; cb(u1) is undefined, but cb(u2) =
cb(u1) is taken to hold. Hence, the transition from u1
to u2 is a continue. In sentence 3, cp(u3) is again
the class of aryballoi, and cp(u3) = cb(u3) = cb(u2),
i.e., the transition is again a continue. In sentence
4, however, where cp(u4) is the particular target ex-
hibit t, no forward-looking center of the previous
sentence is mentioned and, hence, cb(u4) is unde-
fined and the transition from sentence 3 to sentence
4 is a nocb; we mark nocb transitions with bul-
lets. 29 In sentence 5, cp(u5) = t = cb(u5) and cb(u4)
is undefined; hence, the transition from sentence 4
to 5 is a continue. In sentence 6, cp(u6) is the ar-
chaic period, which is also cb(u6), but cb(u5) is the

28See also the analysis of m-piro’s generated texts by Kara-
manis et al. [87].
29 It could be argued that the transition from (3) to (4)

involves a kind of bridging relation [35] from the whole class
to one of its individuals, which smoothens the transition;

Kibble and Power [92] make a similar observation.

exhibit t; hence, cp(u6) = cb(u6) 6= cb(u5), and we
have a kind of transition known as smooth-shift,
which is less preferred than continue, but better
than nocb. A continue then occurs in sentence 7,
a nocb in sentence 8, followed by a smooth-shift
in sentence 9, and another nocb in sentence 10.

Naturalowl’s text planning algorithm, discussed
below, always groups together sentences (more pre-
cisely, message triples) that describe a particular
second-level target (e.g., sentences 2–3, 6–7, and 9)
and it places each group immediately after the sen-
tence that introduces the corresponding second-level
target (immediately after sentences 1, 5, and 8, re-
spectively). Thus the transition from a sentence that
introduces a second-level target to the first sentence
that describes the second-level target (e.g., from sen-
tence 1 to 2, from 5 to 6, from 8 to 9) is a smooth-
shift (or a continue in the special case from the
initial sentence 1 to 2). 30 A nocb occurs only at sen-
tences that return to providing information about
the primary target, after a group of sentences that
provide information about a second-level target. All
the other transitions are of type continue.

The resulting number of nocbs equals the num-
ber of second-level targets described by at least a
message triple, minus one if the last message triple
(sentence) is not about the primary target. This is
the smallest possible number of nocbs for any re-
ordering of the message triples, excluding special
(and in practice rare) cases where a second-level
message triple connects a second-level target back
to the primary target, allowing a sentence about the
primary target to follow without a nocb. 31 Kara-
manis et al. [87] provide experimental evidence from
multiple text genres showing that simply minimizing
nocb transitions leads to sentence orderings that
people find better or as good as orderings that min-
imize several other, more elaborate ct-based local
coherence measures. Hence, the oderings that Natu-
ralowl produces, which minimize nocbs, are com-
petitive to orderings produced by minimizing other

30The transition between sentences 1 and 2 should per-
haps also be considered a smooth-shift. retain transitions,

where cp(un) 6= cb(un) = cb(un−1), and rough-shift tran-

sitions, where cp(un) 6= cb(un) and cb(un) 6= cb(un−1), do
not occur in the sentences that Naturalowl typically gener-

ates, unless nocb is viewed as a rough-shift.
31We can sometimes reduce the nocbs by one, by placing
last, if possible, a sentence describing a second-level target.
For example, moving sentence (10) immediately after (4)

saves the nocb transition from (9) to (10). Naturalowl does
not perform this check and, hence, the number of nocbs

may exceed the minimum by one, but we ignore this detail.

18

ct-based local coherence measures. Also, when us-
ing other local coherence measures, the optimum or-
dering may not be obvious; and searching for the
ordering that maximizes the sum of the sentence-to-
sentence local coherence scores is np-complete [9,1].

A simple strategy to avoid nocb transitions would
be to end the generated text once all the message
triples that describe a second-level target have been
reported, and record in the user model that the other
message triples that content selection had provided
were not actually conveyed. In our example, this
would generate sentences 1 to 3; then if the user
requested more information about the exhibit, sen-
tences 4 to 7 would be generated, and so on.

Topical order
When ordering sentences, we also need to consider

the topical similarity of adjacent sentences. Com-
pare, for example, the following two texts.

{locationSection The Stoa of Zeus Eleutherios is located

in the western part of the Agora. It is located next to

the Temple of Apollo Patroos.} {buildSection It was built

around 430 bc. It was built in the Doric style. It was built

out of porous stone and marble.} {useSection It was used

during the Classical period, the Hellenistic period, and

the Roman period. It was used as a religious place and a

meeting point.} {conditionSection It was destroyed in the

late Roman period. It was excavated in 1891 and 1931.

Today it is in good condition.}

The Stoa of Zeus Eleutherios was built in the Doric style.

It was excavated in 1891 and 1931. It was built out of

porous stone and marble. It is located in the western part

of the Agora. It was destroyed in the late Roman period.

It was used as a religious place and a meeting point. It

is located next to the Temple of Apollo Patroos. It was

built around 430 bc. Today it is in good condition. It was

used during the Classical period, the Hellenistic period,

and the Roman period.

Both texts express the same message triples, shown
below. Notice that we use a single hasMaterial mes-
sage triple, whose filler is an and(...), instead of two
different triples (one for each material), and simi-
larly for usedDuringPeriod. This kind of triple merging
is in effect a form of aggregation, discussed below,
but it takes place during content selection.

<:stoaZeusEleutherios, :isInArea, :westAgora>

<:stoaZeusEleutherios, :isNextTo,

:templeApolloPatroos>

<:stoaZeusEleutherios, :hasApproxConstructYearBC,

"430"^^xsd:nonNegativeInteger>

<:stoaZeusEleutherios, :hasStyle, :doricStyle>

<:stoaZeusEleutherios, :hasMaterial,

and(:porousStone, :marble)>

<:stoaZeusEleutherios, :usedDuringPeriod,

and(:classicalPeriod, :hellenisticPeriod,

:romanPeriod)>

<:stoaZeusEleutherios, :usedAs,

"a religious place and a meeting point"^^xsd:string>

<:stoaZeusEleutherios, :hasDestructionTime},

"in the late Roman period"^^xsd:string>

<:stoaZeusEleutherios, :hasExcavationYearAD,

"1891"^^xsd:nonNegativeInteger>

<:stoaZeusEleutherios, :hasExcavationYearAD,

"1931"^^xsd:nonNegativeInteger>

<:stoaZeusEleutherios, :isInCurrentCondition,

:goodCondition>

We listed the message triples with the order of the
corresponding sentences in the first text, but at the
beginning of text planning the triples are actually
unordered. Even though both texts express the same
message triples and contain the same sentences, the
second text is more difficult to follow, if at all accept-
able. The first one is better, because it groups to-
gether topically related sentences; the first two sen-
tences are about the location of the stoa; the next
three convey information about the building event;
the following two are about the monument’s use;
and the last three are about its condition through
history. 32 We mark the sentence groups in the first
text by curly brackets, but the brackets would not be
shown to end-users. In longer texts, sentence groups
may optionally be shown as separate paragraphs or
sections, which is why we call them sections.

To allow message triples (and sentences) to be
grouped by topic, the domain author may define
sections and assign each property (excluding mod-
ified ones) to exactly one section. In the example
above, locationSection, buildSection, useSection, and
conditionSection would be be declared to be indi-
viduals of the Section class of Naturalowl’s gener-
ation resources ontology. Properties are assigned to
sections using annotation properties. For example,
the following statements specify that isInArea and
isNextTo are properties of locationSection. The state-
ments would cause all message triples involving the
two properties to be placed in locationSection.

AnnotationAssertion(nlowl:hasSection

:isInArea dgr:locationSection)

AnnotationAssertion(nlowl:hasSection

:isNextTo dgr:locationSection)

A partial order of properties inside their sections can
also be specified, as shown below.

32Topically related sentences often share identical or seman-
tically related words. Hence, grouping them also increases

the lexical cohesion [72] of adjacent sentences.

19

AnnotationAssertion(nlowl:hasOrder

:isInArea "1"^^xsd:nonNegativeInteger)

AnnotationAssertion(nlowl:hasOrder

:isNextTo "2"^^xsd:nonNegativeInteger)

Message triples of properties with smaller hasOrder

values are always placed before triples of properties
of the same section with larger hasOrder values. 33 If
two message triples involve properties of the same
section with the same hasOrder values, their relative
order within their section is selected randomly.

Similarly, a partial order can be imposed on sec-
tions, as shown below. Again, sections with smaller
hasOrder values (and the sentences they contain) are
placed before all other sections with larger hasOrder

values. Sections with identical hasOrder values can
either precede or follow each other.

AnnotationAssertion(nlowl:hasOrder

:locationSection "1"^^xsd:nonNegativeInteger)

When using Naturalowl’s Protégé plug-in, the
domain author orders sections and properties with-
out seeing the hasOrder values, which are automat-
ically generated. The sections and partial orders
could be made sensitive to different user types, per-
haps also different languages, though we have not
encountered applications that required this.

The text planning algorithm
Naturalowl’s text planning algorithm is summa-

rized in Figure 4. If the message triples to be or-
dered include triples that describe second-level tar-
gets, i.e., triples 〈S, P,O〉whose owner S is a second-
level target, then the triples of the primary and each
second-level target are ordered separately. The or-
dered triples of each second-level target are then in-
serted into the ordered list of the primary target’s
triples immediately after the first triple that intro-
duces the second-level target, i.e., immediately after
the first triple whose O is the second-level target.

Further related work on text planning
Naturalowl’s ordering of properties and sections

is in effect similar to using text schemata [116],
roughly speaking domain-dependent patterns that
specify the possible arrangements of different types
of sentences (or other segments). The limitations of
text schemata in more general settings have been
discussed, for example, by Hovy [80] and Moore and
Paris [128]. For the kinds of texts that Naturalowl

33The annotations that assign properties to sections and
specify their partial order apply to all the triples of the

particular properties, including triples involving modifiers.

procedure orderMessageTriples

inputs:

t[0]: primary target

t[1], ..., t[n]: second-level targets

L[0]: unordered list of triples describing t[0]

...

L[n]: unordered list of triples describing t[n]

SMap: mapping from properties to sections

SOrder: partial order of sections

POrder: partial order of properties within sections

output:

ordered list of message triples

steps:

for i := 0 to n {

orderMessageTriplesAux(L[i], SMap, SOrder, POrder)}

for i := 1 to n {

insertAfterFirst(<t[0], _, t[i]>, L[0], L[i])}

return L[0]

procedure orderMessageTriplesAux

inputs:

L: unordered list of triples about a single target

SMap: mapping from properties to sections

SOrder: partial order of sections

POrder: partial order of properties within sections

variables:

S[1], ..., S[k]: lists, each with triples of one section

output:

ordered list of message triples about single target

steps:

<S[1], ..., S[k]> := splitInSections(L, SMap)

for i := 1 to k {

S[i] := orderTriplesInSection(S[i], POrder)}

<S[1], ..., S[k]> :=

reorderSections(S[1], ..., S[k], SOrder)

return concatenate(S[1], ..., S[k])

Figure 4. Algorithm used to order message triples.

is intended to generate, however, the current order-
ing of properties and sections seems adequate.

Sentence ordering has also been studied exten-
sively in extractive multi-document text summariza-
tion. For example, Barzilay et al. [9] automatically
group the sentences that have been selected to be in-
cluded in a summary into topical blocks; the selected
sentences roughly correspond to our message triples
and the topical blocks correspond to our sections.
Subsequently, the blocks and the sentences inside
them are automatically ordered. Barzilay et al. also
provide experimental evidence showing that group-
ing sentences into topical blocks affects the compre-
hension and acceptability of the summaries.

Methods similar to those of Barzilay et al. [9]
could be used in our case to automatically acquire
the mapping from properties to sections, as well as
the order of sections and properties, instead of pro-
viding them manually. This would require, however,
a corpus of documents describing individuals and
classes of the domain ontology; and the sentences

20

of the corpus would have to be semantically tagged
with the corresponding message triples, or at least
their properties. Each document of the corpus could
then be automatically segmented into topics, for ex-
ample using methods discussed by Hearst [77]; or in
some domains it may be possible to use Wikipedia or
other documents with explicit sections [148]. Prop-
erties frequently expressed by sentences of the same
topical segment would be placed in the same section.
Inside a section, a property p1 could be ordered be-
fore a property p2, if more sentences expressing p1
preceded sentences expressing p2 in the corpus than
the other way round; Barzilay et al. [9,148] call this
majority ordering. The ordering of sections could be
acquired similarly. Consult also Duboue and McKe-
own [50] and Dimitromanolaki and Androutsopou-
los [49] for other methods to learn to order sentences
or other segments in nlg; these methods, however,
also require semantically tagged corpora.

An alternative is to generate a candidate text for
each possible sentence ordering. The best candidate
text can then be selected by a model trained to rank
texts by their local coherence. Ranking models of
this kind can be trained on corpora, without requir-
ing their documents to be semantically tagged [12].
This overgenerate and rank approach, however, is
tractable only when the message triples to be ex-
pressed are very few, since for n triples, there are n!
candidate texts; we return to this point when dis-
cussing sentence aggregation. Latent topic models,
which do not require semantically tagged corpora,
have also been used to rank candidate sentence or-
derings [13] or to directly order sentences or para-
graphs [55,32]; some of these models attempt to com-
bine local with global coherence constraints.

2.2. Micro-planning

The processing stages we have discussed so far se-
lect and order the message triples to be expressed.
The next stage, micro-planning, consists of three
sub-stages: lexicalization, sentence aggregation, and
generation of referring expressions.

2.2.1. Lexicalization
During lexicalization, nlg systems usually turn

messages (in our case, message triples) to abstract
sentence specifications. The mechanisms used dur-
ing this stage and the level of abstraction of the re-
sulting specifications vary across nlg systems, from
simple text templates with slots that are filled in

to produce almost final sentences, to more complex
rules, possibly with preconditions and actions, which
may produce syntax trees [15,31,117,166].

In Naturalowl, for every property of the domain
ontology and every supported natural language, the
domain author may specify one or more template-
like sentence plans to indicate how message triples
involving that property can be expressed. The prop-
erties are mapped to sentence plans using owl anno-
tation assertions. For example, the usedDuringPeriod

property of page 19 is mapped below to a sentence
plan whose identifier is usedDuringPeriodEnglish.

AnnotationAssertion(nlowl:hasSentencePlan

:usedDuringPeriod

dgr:usedDuringPeriodEnglish)

The annotation property hasSentencePlan is defined
in Naturalowl’s generation resources ontology, as
indicated by its nlowl prefix. Sentence plan iden-
tifiers are prefixed with dgr, since sentence plans
are domain-dependent. We discuss below how sen-
tence plans themselves, like usedDuringPeriodEnglish,
are specified, but first a slight deviation is necessary,
to briefly discuss Naturalowl’s lexicon entries.

Lexicon entries
For each verb, noun, or adjective that the domain

author wishes to use in the sentence plans, a lexi-
con entry has to be provided, which specifies the in-
flectional forms of that word among other informa-
tion. 34 All the lexicon entries are multilingual (cur-
rently bilingual); this could allow sentence plans to
be reused across similar languages when no better
option is available, as discussed elsewhere [4]. Fig-
ure 5 shows the lexicon entry for the verb whose En-
glish base form is “find”. The entries for nouns and
adjectives are similar; we provide examples below,
when discussing the generation of referring expres-
sions. The statements of Figure 5 specify that there
is a lexicon entry whose identifier is toFindLex; the
English and Greek parts of the lexicon entry have
the identifiers toFindEnglish and toFindGreek, respec-
tively. The English part shows that the base form is
“find”, that the simple past form is “found” etc. In
practice, the lexicon entries are created by using the
Protégé plug-in, as illustrated in Figure 6, instead
of writing directly statements like those of Figure 5.

Most of the inflectional forms of English verbs,
nouns, and adjectives could be automatically pro-
duced from the base forms by using relatively sim-

34The lexicon entries of closed-class words, like determiners

and prepositions, are domain-independent.

21

ClassAssertion(nlowl:LexiconEntry dgr:toFindLex)

ObjectPropertyAssertion(nlowl:hasEnglishLexEntry

dgr:toFindLex dgr:toFindEnglish)

ObjectPropertyAssertion(nlowl:hasGreekLexEntry

dgr:toFindLex dgr:toFindGreek)

ClassAssertion(:EnglishLexEntry :toFindEnglish)

DataPropertyAssertion(:baseForm

:toFindEnglish "find"^^xsd:string)

DataPropertyAssertion(:simplePres3rdSing

:toFindEnglish "finds"^^xsd:string)

DataPropertyAssertion(:presParticiple

:toFindEnglish "finding"^^xsd:string)

DataPropertyAssertion(:simplePast

:toFindEnglish "found"^^xsd:string)

DataPropertyAssertion(:pastParticiple

:toFindEnglish "found"^^xsd:string)

ClassAssertion(:GreekLexEntry :toFindGreek)

...

Figure 5. A bilingual lexicon entry for the verb “to find”.

Figure 6. Creating a lexicon entry with Naturalowl’s Protégé
plug-in. The English part of the entry is shown.

ple morphology rules. We hope to exloit an exist-
ing English morphology component, such as that of
simplenlg [63], for this purpose in future work. 35

Similar morphology rules for Greek were used in m-
piro’s authoring tool [4], and we hope to include
them in a future version of Naturalowl. Rules of this
kind would reduce the time a domain author spends
creating lexicon entries; for example, the Protégé
plug-in could suggest automatically generated in-
flected forms, and the author could check them and
correct irregular forms. We note, however, that in
the domain ontologies we have considered, a few
dozens of lexicon entries for verbs, nouns, and adjec-
tives suffice; we provide estimates of the domain au-
thor’s effort when discussing the trials that we con-
ducted. Hence, even without facilities to automati-
cally produce inflectional forms, creating the lexicon

35See http://code.google.com/p/simplenlg/.

entries using the plug-in is rather trivial.
Another possibility would be to exploit a general-

purpose lexicon, such as WordNet [56]. 36 General-
purpose lexicons, however, often do not cover the
highly technical concepts of domain ontologies.

Sentence plans
In Naturalowl, a sentence plan consists of a se-

quence of slots, and instructions specifying how to
fill them in; once the slots have been filled in, their
contents are concatenated to produce a sentence.
The number of slots of each sentence plan, their or-
der, and the instructions that specify how to fill them
in are represented in owl, using concepts from Nat-
uralowl’s generation resources ontology.

Figure 7 shows the owl statements that define
the usedDuringPeriodEnglish sentence plan of our ear-
lier example; again, in practice the domain author
defines sentence plans using the Protégé plug-in, as
illustrated in Figure 8, which produces the corre-
sponding owl statements. The first two statements
of Figure 7 assert that usedDuringPeriodEnglish is a
sentence plan for English. The third statement al-
lows the sentence plan to be aggregated; we discuss
sentence aggregation below.

The next five statements define the first slot of
the sentence plan. As with annotation events, slots
are treated as individuals, but their identifiers (e.g.,
:slot1) are automatically generated by the Protégé
plug-in and they are not shown to the domain au-
thor. The statements declare the slot to be the
first one; they also require it to be filled in with
an automatically generated referring expression for
the triple’s owner (S). For example, if the triple to
express is <:stoaZeusEleutherios, :usedDuringPeriod,

:classicalPeriod>, an appropriate referring expres-
sion for S may be a demonstrative noun phrase like
“this stoa”, a pronoun (“it”), or the monument’s
natural language name (“the Stoa of Zeus Eleuthe-
rios”). We discuss the generation of referring ex-
pressions below, along with mechanisms to specify
natural language names. The useCase requires the
generated referring expression to be in nominative
case (e.g., “it” or “this stoa”, as opposed for exam-
ple to the genitive case expressions “its” or “this
stoa’s”, as in “This stoa’s height is 5 meters”).

The next seven statements define the second slot,
to be filled in with a form of the verb whose lexi-
con entry is toUseVerb. The verb form must be in the

36Consult http://www.w3.org/TR/wordnet-rdf/ for an owl

version of WordNet.

22

ClassAssertion(nlowl:SentencePlan

dgr:usedDuringPeriodEnglish)

DataPropertyAssertion(nlowl:forLanguage

dgr:usedDuringPeriodEnglish

nlowl:englishLanguage)

DataPropertyAssertion(nlowl:aggregationAllowed

dgr:usedDuringPeriodEnglish "true"^^xsd:boolean)

ObjectPropertyAssertion(nlowl:hasSlot

dgr:usedDuringPeriodEnglish _:slot1)

DataPropertyAssertion(nlowl:hasOrder

_:slot1 "1"^^xsd:nonNegativeInteger)

ClassAssertion(nlowl:forOwnerSlot _:slot1)

DataPropertyAssertion(nlowl:refExpressionType

_:slot1 nlowl:autoRefExpression)

DataPropertyAssertion(nlowl:useCase

_:slot1 nlowl:nominativeCase)

ObjectPropertyAssertion(nlowl:hasSlot

dgr:usedDuringPeriodEnglish _:slot2)

DataPropertyAssertion(nlowl:hasOrder

_:slot2 "2"^^xsd:nonNegativeInteger)

ObjectPropertyAssertion(nlowl:useLexiconEntry

_:slot2 dgr:toUseVerb)

DataPropertyAssertion(nlowl:useTense

_:slot2 nlowl:simplePast)

DataPropertyAssertion(nlowl:useVoice

_:slot2 nlowl:passiveVoice)

DataPropertyAssertion(nlowl:usePolarity

_:slot2 "true"^^xsd:boolean)

DataPropertyAssertion(nlowl:agreeWith

_:slot2 _:slot1)

ObjectPropertyAssertion(nlowl:hasSlot

dgr:usedDuringPeriodEnglish _:slot3)

DataPropertyAssertion(nlowl:hasOrder

_:slot2 "3"^^xsd:nonNegativeInteger)

ObjectPropertyAssertion(nlowl:usePreposition

_:slot3 nlowl:duringPrepEnglish)

ObjectPropertyAssertion(nlowl:hasSlot

dgr:usedDuringPeriodEnglish _:slot4)

DataPropertyAssertion(nlowl:hasOrder

_:slot4 "4"^^xsd:nonNegativeInteger)

ClassAssertion(nlowl:forFillerSlot _:slot4)

DataPropertyAssertion(nlowl:useCase

_:slot4 nlowl:accusativeCase)

DataPropertyAssertion(nlowl:useBullets

_:slot4 "false"^^xsd:boolean)

Figure 7. owl statements defining a sentence plan for sen-

tences like “It was used during the Classical period”.

simple past and passive voice (“was used” or “were
used”), in positive polarity (as opposed to the neg-
ative polarity “was not used”) and its number must
agree with the number of the expression in the first
slot (the subject); for example, we want to gener-
ate “The Stoa of Zheus Eleutherios was used”, but
“Stoas were used”.

The third slot is filled in with the preposition

“during”. The fourth slot must be filled in with an
expression for the filler (O) of the message triple. In
the case of <:stoaZeusEleutherios, :usedDuringPeriod,

:classicalPeriod>, the slot would be filled in with the
natural language name of classicalPeriod. 37 The ex-
pression’s case is set to accusative; English preposi-
tions usually require their noun phrase complements
to be in accusative case (e.g., “on him”). In Greek
and other languages, grammatical cases have more
noticeable effects.

The sentence plan of Figure 7 produces sentences
like the following two.

[slot1This stoa] [slot2was used] [slot3during] [slot4 the

Classical period].

[slot1The Stoa of Zeus Eleutherios] [slot2was used]

[slot3during] [slot4 the Classical period, the Hellenistic

period, and the Roman period].

Changing the value of useBullets in the fourth slot to
true would produce sentences with bullet lists, like
the following one, when the filler is a disjunction or
a conjunction.

The Stoa of Zeus Eleutherios was used during:

– the Classical period,
– the Hellenistic period, and

– the Roman period.

More generally, the instructions of a sentence plan
may indicate that a slot should be filled in with one
of the following (i–vii):

(i) A referring expression for the S (owner) of the
message triple. A sentence plan may specify a par-
ticular type of referring expression to use (e.g., al-
ways use the natural language name of S) or, as in
the example of Figure 7, it may allow the system to
automatically produce the most appropriate type of
referring expression depending on the context.

(ii) A verb for which there is a lexicon entry, in a
particular inflectional form (e.g., a verb in a partic-
ular tense, voice etc.), possibly in a form that agrees
with another slot (e.g., for subject-verb agreement).
The verb’s polarity can also be manually specified
or, if the filler (O) of the message triple is a Boolean
value, the polarity can be automatically set to match
that value (e.g., to produce “It does not have a built-
in flash” when O is false).

(iii) A noun or adjective from the lexicon. The
case, number, and gender can be set to a specific
value. Otherwise the form of the noun or adjec-

37Future versions of Naturalowl may allow a referring ex-
pression for O other than the natural language name to be

produced (e.g., a pronoun), as with S.

23

Figure 8. Defining a sentence-plan with the Protégé plug-in.

tive can be set to agree with another slot (e.g. for
adjective-noun agreement).

(iv) A preposition.
(v) A fixed string. For example, we may want the

sentence to start with “It is now believed that”.
(vi) An expression for the O (filler) of the triple.

If O is an individual or class, then the expression is
O’s natural language name. If O is a datatype value
(e.g., an integer), then the value itself is inserted
in the slot. If O is a disjunction or conjunction of
datatype values or individuals or classes, then the
slot is filled in with a disjunction or conjunction of
the datatype values or the natural language names
of the individuals or classes.

(vii) A concatenation of property values of O, pro-
vided that O is an individual. For example, we may
need to express a message triple like the first one
below, whose anonymous node :n is linked to both
a numeric value (via hasAmount) and an individual
standing for the currency (via hasCurrency) by the
next two triples. 38

<:tecra8, :hasPrice, _:n>

<_:n, :hasAmount, "850"^^xsd:float>

<_:n, :hasCurrency, :euroCurrency>

We would want the sentence plan to include a slot
filled in with the concatenation of the hasAmount value
and the natural language name of the hasCurrency

value (“Euro” in English, “Eur¸” in Greek) of the
original triple’s O (:n). If a property vaue to be
concatenated is a datatype value, then the value

38The last two triples would be automatically retrieved from

the domain ontology, since the sentence plan of the first
triple requires them, even if they are not selected by content
selection. Their interest scores would be automatically set to

zero, to avoid generating sentences expressing them directly.

itself is concatenated. If it is an individual (e.g.,
euroCurrency), the individual’s natural language
name is concatenated. If the O of the original triple
is a disjunction or(:n1, :n2, ...) or a conjunction
and(:n1, :n2, ...), then the slot is filled in with a
disjunction or conjunction of the specified property
values of :n1, :n2, etc.

Default sentence plan
If no sentence plan has been provided for a partic-

ular property of the domain ontology, Naturalowl
uses a default sentence plan, consisting of three slots:

– The first slot is filled in with an automatically gen-
erated referring expression for the triple’s owner
(S) in nominative case.

– The second slot is filled in with the owl identifier
of the property (without namespace) as a string,
with underscores and dashes replaced by spaces,
and additional spaces inserted at points where
capitalization changes or groups of digits start. 39

– The third slot is filled in with an appropriate ex-
pression for the triple’s filler (O), as discussed
above, in accusative case (if applicable).

For the usedDuringPeriod triple of page 19, the de-
fault sentence plan would produce the sentence:

Stoa zeus eleutherios used during period classical period,

hellenistic period, and roman period.

39Power [137] reports that heuristic tokenization rules of
this kind usually produce reasonable tokens. Fliedl et al.

[57] provide further examples of owl identifiers to be to-

kenized. Cimiano et al. [34] propose a more elaborate ap-
proach, whereby grammar rules are applied to tokenized

identifiers or rdfs:label strings (discussed below).

24

We assumed in the sentence above that the natu-
ral language names of the individuals have not been
provided either; mechanisms to specify natural lan-
guage names are discussed below. In this case, Nat-
uralowl uses the owl identifiers of the individu-
als (e.g., stoaZeusEleutherios) as natural language
names, applying the same tokenization rules that it
uses for property identifiers.

Using rdfs:label strings
owl properties (and other elements of owl on-

tologies) can be labeled with strings in multiple nat-
ural languages using the rdfs:label annotation prop-
erty, which is defined in the rdf and owl standards.
For example, the usedDuringPeriod property could be
labeled with “was used during” as below; there could
be similar labels for Greek and other languages.

AnnotationAssertion(rdfs:label :usedDuringPeriod

"was used during"@en)

If an rdfs:label string has been specified for the
property of a message triple, Naturalowl uses that
string in the second slot of the default sentence plan.
The quality of the resulting sentences can, thus, be
improved, if the rdfs:label strings are more natu-
ral phrases than the tokenized property identifiers.
With the rdfs:label shown above, the default sen-
tence plan would produce the following sentence.

Stoa zeus eleutherios was used during classical period,

hellenistic period, and roman period.

Even with rdfs:label strings, however, the default
sentence plan may produce sentences with disfluen-
cies; for example, there may be violations of num-
ber agreement, or referring expressions with wrong
cases (especially in Greek). Furthermore, the default
sentence plan does not indicate which parts of the
sentences are verbs or prepositions, and this does
not allow the system to apply many of the sentence
aggregation rules discussed below. A further limita-
tion of the default sentence plan is that it does not
allow the slots for S and O to be preceded or fol-
lowed, respectively, by any other expression.

Sentence plans for domain-independent properties
The domain author does not need to provide sen-

tence plans for domain-independent properties (e.g.,
instanceOf, isA, see Tables 4–5). These properties
have fixed semantics, independent of the domain on-
tology; hence, built-in sentence plans can be used.
We summarize the English built-in sentence plans
in Table 6; the Greek ones are very similar. We do
not show the sentence plans for negated domain-

independent properties (e.g., not(isA)), which are
very similar. To save space we show the sentence
plans as templates, rather than owl statements.

Additional slot restrictions not shown in Figure
6 require, for example, subject-verb number agree-
ment and the verb forms (“is” or “was”) to be in
present tense. Note also that information provided
when specifying the natural language names of in-
dividuals and classes, discussed below, shows if def-
inite or indefinite articles or no articles at all should
be used (e.g., “the n97 mini”, “exhibit 24”, “a St.
Emilion” or “the St. Emilion” or simply “St. Emil-
ion”), and what the default number of the names is
(e.g., “A wine color is” or “Wine colors are”).

In some domains, it may actually be desirable to
slightly modify the built-in sentence plans. For ex-
ample, in a museum context we may wish to generate
sentences like “An aryballos was a kind of vase” in-
stead of “An aryballos is a kind of vase”. The built-
in sentence plans can be modified via the Protégé
plug-in or by editing directly the corresponding owl
statements, as with other sentence plans.

Sentence plans for modified properties
The sentence plans for modified properties (e.g.,

minCardinality(manufacturedBy), see Tables 4–5) are
automatically produced from the sentence plans of
the unmodified properties (e.g., manufacturedBy), as
shown in Table 7; again, we omit details such as
subject-verb agreement, voice, tense etc. Hence, the
domain author provides sentence plans only for the
(unmodified) properties of the domain ontology.

Specifying the appropriateness of sentence plans
Multiple sentence plans may be provided for the

same property of the domain ontology and the same
language. Different appropriateness scores can then
be assigned to alternative sentence plans per user
type. This allows specifying, for example, that a sen-
tence plan that generates sentences like “This am-
phora depicts Miltiades” is less appropriate when
interacting with children, compared to an alterna-
tive sentence plan that uses a more common verb
(e.g., “shows”). Sentence plans are assigned appro-
priateness scores using annotation events, much as
when assigning interest scores to properties.

If multiple sentence plans are available for the
same property and user type, Naturalowl prefers
the sentence plan with the highest appropriateness
score the first time it needs to convey a message
triple of that property to a particular user of that
type. The second time that a triple of the same prop-

25

forms of message triples and example message triples and

corresponding built-in sentence plans possible resulting sentences

<S, instanceOf, O> <:eos450d, instanceOf, :PhotographicCamera>

ref(S) toBeVerb name(indef, O) The eos 450d is a photographic camera.

<S, instanceOf, O> <:eos450d, instanceOf, :Cheap>

ref(S) toBeVerb name(adj, O) The eos 450d is cheap.

<S, oneOf, O> <:WineColor, oneOf, or(:white, :rose, :red)>

ref(S) toBeVerb name(O) A wine color is white, rose, or red.

<S, differentIndividuals, O> <:n97, differentIndividuals, :n97mini>

ref(S) toBeVerb not identical to name(O) The n97 is not identical to the n97 mini.

<S, sameIndividual, O> <:eos450d, sameIndividual, :rebelXSi>

ref(S) toBeVerb identical to name(O) It is identical to the Rebel xsi.

<S, isA, O> <:StEmilion, isa, :Bordeaux>

ref(S) toBeVerb a kind of name(noarticle, O) St. Emilion is a kind of Bordeaux.

<S, isA, O> <:StEmilion, isa, :Red>

ref(S) toBeVerb name(adj, O) St. Emilion is red.

Table 6

Built-in English sentence plans for domain-independent properties. The notation ref(ξ) stands for a referring expression

for ξ; name(ξ) is the natural language name of ξ; name(indef, ξ) and name(noarticle, ξ) mean that the name should be a noun
phrase with an indefinite or no article, respectively. Sentence plans involving name(adj, ξ) are used when the natural language

name of ξ is a sequence of one or more adjectives; otherwise the sentence plan of the previous row is used.

erty has to be conveyed to the same user, it prefers
the second most appropriate sentence plan, provided
that its appropriateness is positive, and so on, until
we are left with no unused sentence plan with posi-
tive appropriateness for the property. At that point,
the process restarts from using the most appropri-
ate sentence plan. Sentence plans with negative or
zero appropriateness are used only when there is no
alternative sentence plan with a positive score. Au-
tomatically constructed sentence plans for modified
properties inherit the appropriateness of the sen-
tence plans they are constructed from.

Even when there is only one user type, multi-
ple sentence plans per property may be desirable
to avoid repeating the same sentences. Automatic
paraphrase generation [3,112] could be used to sug-
gest alternative sentence plans to the domain au-
thor. It may also be possible to obtain sentence plans
from FrameNet [111], as suggested by Dannels [42].

A note on templates and sentence plans
Although we often informally show them as tem-

plates, Naturalowl’s sentence plans are not sim-
ply strings with slots filled in with elements of the
message triples. Recall, for example, that a sentence
plan may specify the lexicon entry of a verb, the
desired tense and voice, and that the verb should

match the number of a referring expression, rely-
ing on subsequent processing stages to produce the
surface (final) form of the sentence (e.g., the exact
verb form and referring expression). In that sense,
Naturalowl’s sentence plans are similar to expres-
sions of sentence planning languages (e.g., spl [89])
that are used to formulate the inputs to generic sur-
face realizers, like fuf/surge [54], kpml [15], real-
pro [107], nitrogen/halogen [105,104,106], and
openccg [173]; see also Guo et al. [67], Varges and
Mellish [168], and the references therein.

Unlike the inputs to most generic surface real-
izers, however, Naturalowl’s sentence plans leave
fewer decisions to subsequent processing stages. In
many generic realizers, for example, the input would
specify the base forms of the content words to use,
and features like voice, tense, polarity etc. The cor-
rect order of the words (or syntactic constituents),
several inflectional features (e.g., numbers, cases),
and often the necessary function words (e.g., arti-
cles, prepositions) would be automatically selected,
usually relying on large-scale grammars or statisti-
cal models. By contrast, information of this kind is
explicitly specified in Naturalowl’s sentence plans.
This has the disadvantage that our sentence plans of-
ten include information that could be automatically

26

example forms of triples involving unmodified and example triples involving unmodified and modified

modified properties and the corresponding sentence plans properties and possible resulting sentences

<S, :manufacturedBy, O> <:tecraA8, :manufacturedBy, :toshiba>

ref(S) toManufactureVerb byPrepEnglish name(O) Tecra A8 is manufactured by Toshiba.

<S, minCardinality(:manufacturedBy), n:R> <:Laptop, minCardinality(:manufacturedBy), 1:Company>

ref(S) toManufactureVerb byPrepEnglish at least name(n,R) A laptop is manufactured by at least one company.

<S, :currentMuseum, O> <:exhibit24, :currentMuseum, :delosMuseum>

ref(S) toBeVerb inPrepEnglish name(O) Exhibit 24 is in the Museum of Delos.

<S, maxCardinality(:currentMuseum), n:R> <:Exhibit, maxCardinality(:currentMuseum), 1:Museum>

ref(S) toBeVerb inPrepEnglish at most name(n,R) An exhibit is in at most one museum.

<S, :madeFromGrape, O> <:StEmilion, :madeFromGrape, :cabernetSauvignonGrape>

ref(S) toMakeVerb fromPrepEnglish name(O) St. Emilion is made from Cabernet Sauvignon grape.

<S, exactCardinality(:madeFromGrape), n:R> <:StEmilion, exactCardinality(:madeFromGrape), 1>

ref(S) toMakeVerb fromPrepEnglish exactly name(n,R) St. Emilion is made from exactly one grape.

<S, :madeFromGrape, O> <:Assyrtiko, :madeFromGrape, :assyrtikoGrape>

ref(S) toMakeVerb fromPrepEnglish name(O) The Assyrtiko wine is made from Assyrtiko grape.

<S, allValuesFrom(:madeFromGrape), O> <:GreekWine, allValuesFrom(:madeFromGrape), :GreekGrape>

ref(S) toMakeVerb fromPrepEnglish only name(plural, indef, O) Greek wines are made from only Greek grapes.

<S, :manufactures, O> <:toshiba, :manufactures, :tecraA8>

ref(S) toManufactureVerb name(O) Toshiba manufactures Tecra A8.

<S, someValuesFrom(:manufactures), O> <:LaptopManuf, someValuesFrom(:manufactures), :Laptop>

ref(S) toManufactureVerb at least name(1, O) A laptop manufacturer manufactures at least one laptop.

Table 7

Automatically constructed sentence plans for modified properties. In each cell of the left column, the sentence plan in the

last line is automatically constructed from the sentence plan in the second line. Square brackets indicate optional arguments.
The notation ref(ξ) stands for a referring expression for ξ; name(ξ) is the natural language name of ξ; name(n, κ) is a noun

phrase for n individuals of class κ, and name(plural, indef, κ) is a plural indefinite noun phrase for individuals of κ. When R is
unspecified, it is taken to be the class that has been declared as the range of the unmodified property, if the range is a named

class; if the range is an unnamed class, name(n,R) generates an expression like “n entities”.

obtained from large-scale grammars or corpora.
On the other hand, the input to generic surface

realizers often includes information pertaining to
non-elementary linguistic concepts (e.g., syntactic
categories, subcategories, and features of a partic-
ular syntax theory) and concepts of a large-scale
high-level domain-independent ontology, usually
called the upper model [14]. Hence, linguistic ex-
pertise (e.g., in Systemic Grammars [71] in the
case of kpml [15]) and effort to understand the
upper model are often required. By contrast, Natu-
ralowl’s sentence plans require the domain author
to be familiar with only elementary linguistic con-
cepts (e.g., tense, voice, number, case), and they do
not require familiarity with an upper model.

Overall, Naturalowl’s sentence plans, like the en-
tire system, are intended to be easier to master by

domain authors that are familiar with Semantic Web
concepts and the domain ontology, but not compu-
tational linguistics. It would, however, be worth ex-
ploring in future work how generic surface realizers
could be exploited, especially realizers that do not
require linguistic expertise. In Ratnaparkhi’s real-
izer [142], for example, the input is a set of attribute-
value pairs specifying the semantics of the sentence
to be produced; a corpus annotated with attributes,
however, is required to extract templates from. In
the realizer of Wan et al. [172], the input is an un-
ordered set of words; the system orders them by con-
sidering possible dependency trees that span them.

We also note that Naturalowl’s sentence plans
are simpler than, for example, the templates of Buse-
mann and Horacek [31] or McRoy et al. [117], in that
they do not allow, for instance, conditionals or re-

27

cursive invokation of other templates. See also Re-
iter [144] for a discussion of the advantages and dis-
advantages of template-based vs. theoretically more
principled nlg systems, and van Deemter et al. [166]
for a discussion of how sentence templates can be
enriched with syntactic and other information, blur-
ring the distinction between simple templates and
more complex sentence plans.

When corpora of target texts annotated with the
message triples they express are available, templates
can also be automatically extracted, for example as
in the systems of Ratnaparkhi [142] and Angeli et
al. [5]. Statistical methods that can, in effect, jointly
perform content selection, lexicalization, and sur-
face realization, have also been proposed [108,98,99],
for cases where training target sentences and corre-
sponding semantic inputs are available, but they are
currently limited to generating single sentences from
semantic inputs that have the form of flat records
containing fields and field values.

Specifying natural language names
The domain author can assign natural language

(nl) names to the domain ontology’s individuals
and named classes; recall that by named classes we
mean classes that have owl identifiers. If an indi-
vidual or named class is not assigned an nl name,
then its rdfs:label or a tokenized form of its identi-
fier are used instead, as already discussed. The nl
names that the domain author provides are specified
much as sentence plans, i.e., as collections of slots
whose contents are concatenated. For example, we
may specify that the English nl name of the class
ItalianWinePiemonte is the concatenation of the fol-
lowing slots; we explain the slots further below.

[indef an] [adj Italian] [headnoun wine] [prep from] [def
the] [noun Piemonte] [noun region]

This would allow Naturalowl to generate the sen-
tence shown below from the following message triple;
a tokenized form of wine32’s identifier is used.

<:wine32, instanceOf, :ItalianWinePiemonte>

Wine 32 is an Italian wine from the Piemonte region.

Similarly, we may assign the following nl names to
the individuals classicalPeriod, stoaZeusEleutherios,
gl2011, and the classes ComputerScreen and Red. The
domain author can request the words of particu-
lar slots to be capitalized (e.g., “the Classical pe-
riod”). Also, Naturalowl makes no distinction be-
tween common and proper nouns; both are entered
as nouns in the lexicon, and they may be multi-word.

[def the] [adj Classical] [headnoun period]

[def the] [headnounstoa] [prepof] [nounZeus Eleutherios]

[headnoun GL-2011]

[indef a] [noun computer] [headnoun screen]

[headadj red]

These nl names could be used to express the mes-
sage triples shown below; consult also Table 6.

<:stoaZeusEleutherios, :usedDuringPeriod,

:classicalPeriod>

The Stoa of Zeus Eleutherios was used during the Classical

period.

<:gl2011, instanceOf, :ComputerScreen>

GL-2011 is a computer screen.

<:gl2011, instanceOf, :Red>

GL-2011 is red.

The color of gl2011 could also be expressed via a
property of the domain ontology, as in:

<:gl2011, :hasColor, :redColor>

We would assign to the individual redColor the same
nl name we assigned to the class Red.

Unlike tokenized identifiers and rdfs:label strings,
the nl names carry additional linguistic information
(e.g., grammatical categories of words), which al-
lows, for example, the aggregation stage, discussed
below, to combine sentences as in the following cases.

It was used during the Classical period, the Hellenistic

period, and the Roman period.⇒ It was used during the

Classical, the Hellenistic, and the Roman period.

It is a computer screen. It is red.⇒ It is a red computer

screen.

More precisely, each nl name is a sequence of
slots, with accompanying instructions specifying
how the slots are to be filled in. Each slot can be
filled in with one of the following (i–v):

(i) An article, definite or indefinite (in English
“the” or “a”). The article in the first slot (if present)
is treated as the article of the overall nl name, but
multiple articles may be present in the same name,
as in the Piemonte example above.

(ii) A noun or adjective flagged as the head (main
word) of the nl name. Exactly one head must be
specified per nl name and it must have a lexicon en-
try. The number and case of the head, which is also
taken to be the number and case of the overall nl

28

name, can be automatically adjusted per context.
For example, different sentence plans may require
the same nl name to be in nominative case when
used as a subject, but in accusative when used as
the object of a verb; and some aggregation rules, dis-
cussed below, may require a singular nl name to be
turned into plural. Using the lexicon entries, which
list the inflectional forms of nouns and adjectives,
Naturalowl can adjust the nl names accordingly.
The gender of head adjectives can also be automat-
ically adjusted, whereas the gender of head nouns is
fixed and specified by their lexicon entries.

(iii) Any other noun or adjective, among those
listed in the lexicon. The nl name may require a
particular inflectional form (e.g., number, case) to
be used, or it may require an inflectional form that
agrees with another slot of the nl name (e.g., for
adjective-noun agreement).

(iv) A preposition.
(v) Any fixed string. For example, words of gram-

matical categories that are not included in the lexi-
con (e.g., adverbs) are entered as strings.

The owl representation of nl names is very sim-
ilar to that of sentence plans; we do not discuss it to
save space. Again, in practice nl names are entered
via the Protégé plug-in. As with sentence plans, mul-
tiple nl names can be specified for the same in-
dividual or class, and they can be assigned differ-
ent appropriateness scores per user type; this allows
more common terminology (e.g., common names of
diseases) to be used when generating texts for non-
experts, as opposed to texts for experts (e.g., doc-
tors). Naturalowl cycles through the available nl
names (with positive appropriateness scores) of each
individual or class, as with sentence plans.

The domain author can specify (via the Protégé
plug-in or in the owl representation of nl names)
if the nl names of particular individuals or classes
should involve definite, indefinite, or no articles, and
if the nl names should be in singular or plural by
default. For example, the domain author may pre-
fer the texts to mention the class of Aryballoi as a
single particular generic object (singular form with
a definite article), or by using an indefinite singular
or plural form, as shown below.

<:Aryballos, isA, :Vase>

The aryballos is a kind of vase.

An aryballos is a kind of vase.

Aryballoi are a kind of vase.

Notice that some of the sentence plans of Tables
6 and 7 require a particular form (e.g., indefinite

or no article), which is produced by automatically
modifying the nl names provided by the domain
author; similar conversions are imposed by some of
the aggregation rules discussed next.

In domain ontologies with very large numbers of
individuals, manually providing nl names for all
the individuals may be impractical. Hence, it may
be necessary to use tokenized identifiers, existing
rdfs:label strings, or rdfs:label strings automat-
ically constructed (by using additional software)
from string-valued properties of the domain ontol-
ogy (e.g., properties linking person individuals to
strings containing their names and surnames). We
return to this issue when presenting the trials.

2.2.2. Sentence aggregation
The sentence plans of the previous section lead

to a separate sentence for each message triple. nlg
systems often aggregate sentences into longer ones
to avoid lexical redundancy and improve readabil-
ity. 40 In Naturalowl, the maximum number of sen-
tences that can be aggregated to form a single longer
sentence is specified per user type via a property
called maxMessagesPerSentence. The following state-
ment allows each new sentence to be formed by ag-
gregating at most two original sentences, when in-
teracting with children. In the museum applications
Naturalowl was originally developed for, setting
maxMessagesPerSentence to 3 or 4 led to reasonable
texts for adult visitors, whereas a value of 2 was used
when interacting with children.

DataPropertyAssertion(nlowl:maxMessagesPerSentence

dgr:child "2"^^xsd:nonNegativeInteger)

The idea that the number of messages per sen-
tence or text (see also maxMessagesPerPage on page 16)
should depend on the user type is inherited from
ilex and m-piro, and it was originally inspired by
work in the psychology of text comprehension, espe-
cially by Kintsch et al. [94,95]. Message triples can be
viewed as expressing simple ideas, and it has been ar-
gued, roughly speaking, that sentences or texts with
many ideas are harder to process. Hence, less skilled
readers should benefit from texts with fewer mes-
sages per sentence, and fewer messages per text. 41

Naturalowl’s sentence aggregation is performed
by a set of manually crafted rules, intended to be

40There is also evidence that aggregation may improve fac-

tual recall and, more generally, learning [88,48], though we
have no such evidence for Naturalowl’s aggregation rules.
41See, for example, Nenkova et al. [130] for other factors

that affect the perceived linguistic quality of texts.

29

domain-independent. We do not claim that this par-
ticular set of rules, which was initially based on m-
piro’s corresponding rules [118], is in any way com-
plete, and we hope that it will be extended in future
work; see, for example, Dalianis [41] for a study of
aggregation types and a rich set of aggregation rules.
Nevertheless, Naturalowl’s current rules already il-
lustrate several aggregation opportunities that arise
when generating texts from owl ontologies. We also
note that when appropriate datasets are available,
it may be possible to automatically train aggrega-
tion modules [171,11], though this was not the case
with the domain ontologies we considered.

To save space, we discuss only English sentence
aggregation; Greek aggregation is similar. Also,
we show mostly example sentences before and af-
ter aggregation, but the rules actually operate on
sentence plans and they also consider the message
triples the sentence plans express. The rules are
intended to aggregate short single-clause sentences,
each with exactly one verb. Sentence plans that
produce more complicated sentences (e.g., involving
long canned texts) may be flagged by setting their
aggregationAllowed property to false (see Figure 7
on page 23), to signal that aggregation should not
affect the resulting sentences.

Naturalowl’s aggregation rules apply almost ex-
clusively to sentences that are adjacent in the order-
ing produced by the text planner; the only exception
are aggregation rules that involve messages about
cardinality restrictions. Hence, depending on the
text planner’s ordering there may be more or fewer
aggregation opportunities; see, for example, Cheng
and Mellish [33] for discussion on the interaction be-
tween aggregation and text planning. Also, Natu-
ralowl’s aggregation rules operate on sentences of
the same topical section, because aggregating topi-
cally unrelated sentences often sounds unnatural.

The system’s aggregation is currently greedy. For
each one of the rules discussed below, starting from
those discussed first, the system scans the original
(already ordered) sentences from first to last, and
applies the rule wherever possible, provided that the
rule’s application does not lead to a sentence ex-
pressing more than maxMessagesPerSentence original
messages. If a rule can be applied in multiple ways,
for example to aggregate two or three sentences, the
application that aggregates the most sentences with-
out violating maxMessagesPerSentence is preferred.

Avoid repeating a noun with multiple adjectives: Re-
call that message triples of the form 〈S, P,O1〉, . . . ,

〈S, P,On〉 for the same S and the same property P of
the domain ontology will have already been merged
into a single message triple 〈S, P, and(O1, . . . , On)〉.
If the nl names of O1, . . . , On are, apart from pos-
sible initial determiners, sequences of adjectives fol-
lowed by the same head noun, then the head noun
does not need to be repeated. Let us consider the
following message triple.

<:stoaZeusEleutherios, :usedDuringPeriod,

and(:classicalPeriod, :hellenisticPeriod,

:romanPeriod)>

Assuming that the nl names of classicalPeriod,
hellenisticPeriod, and romanPeriod correspond to
“the Classical period”, “the Hellenistic period”,
and “the Roman period”, the original sentence will
repeat “period” three times. The aggregation rule
omits all but the last occurrence of the head noun.

It was used during the Classical period, the Hellenistic

period, and the Roman period.⇒ It was used during the

Classical, the Hellenistic, and the Roman period.

The rule above actually shortens a single sentence,
which expresses, however, a message triple formed
by merging multiple triples of the same S and P .

Cardinality restrictions and values: This is actually
a set of rules, summarized in Tables 8 and 9. 42 These
rules aggregate all the sentences (not necessarily ad-
jacent ones) that express message triples of the form
〈S,M(P), O〉 and 〈S, P,O〉, for the same S and P ,
with M being any of minCardinality, maxCardinality,
or exactCardinality. When these rules are applied,
MaxMessagesPerSentence is ignored.

Class and passive sentence: This rule aggregates (i)
a sentence expressing a message triple of the form
〈S, instanceOf, C〉 or 〈S, isA, C〉 and (ii) a passive im-
mediately subsequent sentence expressing a single
message triple of the form 〈S, P,O〉, for the same S,
where P is an (unmodified) property of the domain
ontology. The subject and auxiliary verb of the sec-
ond sentence are omitted.

Bancroft Chardonnay is a kind of Chardonnay. It is

made in Bancroft. ⇒ Bancroft Chardonnay is a kind of

Chardonnay made in Bancroft.

Class and prepositional phrase: In a variant of the
previous rule, the second sentence involves the verb
“to be” in the active simple present immediately

42We assume there are no inconsistencies in the triples (e.g.,

minimum and maximum cardinalities set to 4 and 3, respec-
tively, for the same S and P) and no redundancies (e.g.,

message triples for both exact and maximum cardinalities).

30

example rule application abstract rule description

<:model35, exactCardinality(:soldInCountry), 3>

Model 35 is sold in exactly three countries.

<:model35, :soldInCountry, and(:greece, :italy, :spain)>

Model 35 is sold in Greece, Italy, and Spain.

⇒ Model 35 is sold in exactly three countries:

Greece, Italy, and Spain.

<S, exactCardinality(prop), n:R>

ref(S) . . . exactly name(n,R)

<S, prop, and(O1, . . . , On)>

ref(S) . . . name(O1, . . . , On)

⇒ ref(S) . . . exactly name(n,R):

name(O1, . . . , On)

<:model35, exactCardinality(:soldInCountry), 3>

Model 35 is sold in exactly three countries.

<:model35, :soldInCountry, and(:greece, :italy)>

Model 35 is sold in Greece and Italy.

⇒ Model 35 is sold in exactly three countries, including

Greece and Italy.

<S, exactCardinality(prop), n:R>

ref(S) . . . exactly name(n,R)

<S, prop, and(O1, . . . , Om)> (m < n)

ref(S) . . . name(O1, . . . , Om)

⇒ ref(S) . . . exactly name(n,R), including

name(O1, . . . , Om)

<:model35, maxCardinality(:soldInCountry), 3>

Model 35 is sold in at most three countries.

<:model35, :soldInCountry, and(:greece, :italy, :spain)>

Model 35 is sold in Greece, Italy, and Spain.

⇒ Model 35 is sold in exactly three countries:

Greece, Italy, and Spain.

<S, maxCardinality(prop), n:R>

ref(S) . . . at most name(n,R)

<S, prop, and(O1, . . . , On)>

ref(S) . . . name(O1, . . . , On)

⇒ ref(S) . . . exactly name(n,R):

name(O1, . . . , On)

<:model35, maxCardinality(:soldInCountry), 3>

Model 35 is sold in at most three countries.

<:model35, :soldInCountry, and(:greece, :italy)>

Model 35 is sold in Greece and Italy.

⇒ Model 35 is sold in at most three countries, including

Greece and Italy.

<S, maxCardinality(prop), n:R>

ref(S) . . . at most name(n,R)

<S, prop, and(O1, . . . , Om)> (m < n)

ref(S) . . . name(O1, . . . , Om)

⇒ ref(S) . . . exactly name(n,R), including

name(O1, . . . , Om)

<:model35, minCardinality(:soldInCountry), 3>

Model 35 is sold in at least three countries.

<:model35, :soldInCountry, and(:greece, :italy, :spain)>

Model 35 is sold in Greece, Italy, and Spain.

⇒ Model 35 is sold in at least three countries:

Greece, Italy, and Spain.

<S, minCardinality(prop), n:R>

ref(S) . . . at least name(n,R)

<S, prop, and(O1, . . . , On)>

ref(S) . . . name(O1, . . . , On)

⇒ ref(S) . . . at least name(n,R):

name(O1, . . . , On)

<:model35, minCardinality(:soldInCountry), 3>

Model 35 is sold in at least three countries.

<:model35, :soldInCountry, and(:greece, :italy)>

Model 35 is sold in Greece and Italy.

⇒ Model 35 is sold in at least three countries, including

Greece and Italy.

<S, minCardinality(prop), n:R>

ref(S) . . . at least name(n,R)

<S, prop, and(O1, . . . , Om)> (m < n)

ref(S) . . . name(O1, . . . , Om)

⇒ ref(S) . . . at least name(n,R), including

name(O1, . . . , Om)

Table 8

Aggregation rules that merge one sentence expressing a cardinality constraint on a property prop of the domain ontology,

and another sentence expressing the values of prop . The notation ref(ξ) stands for a referring expression for ξ; name(n,R)
is a noun phrase for n individuals of class R; name(ξ1, . . . , ξk) is a conjunction of the natural language names of ξ1, . . . , ξk.
These rules are tried after the rules of Table 9.

31

example rule application abstract rule description

<:model35, minCardinality(:soldInCountry), 2>

Model 35 is sold in at least two countries.

<:model35, maxCardinality(:soldInCountry), 3>

Model 35 is sold in at most three countries.

⇒ Model 35 is sold in at least two and at most three countries.

<S, minCardinality(prop), n1:R>

ref(S) . . . at least name(n1, R)

<S, maxCardinality(prop), n2:R>

ref(S) . . . at most name(n2, R) (n1 < n2)

⇒ ref(S) . . . at least name(n1, R) and at most name(n2, R)

<:model35, minCardinality(:soldInCountry), 2>

Model 35 is sold in at least two countries.

<:model35, maxCardinality(:soldInCountry), 3>

Model 35 is sold in at most three countries.

<:model35, :soldInCountry, and(:greece, :italy, :spain)>

Model 35 is sold in Greece, Italy, and Spain.

⇒ Model 35 is sold in exactly three countries:

Greece, Italy, and Spain.

<S, minCardinality(prop), n1:R>

ref(S) . . . at least name(n1, R)

<S, maxCardinality(prop), n2:R>

ref(S) . . . at most name(n2, R) (n1 < n2)

<S, prop, and(O1, . . . , On2)>

ref(S) . . . name(O1, . . . , On2)

⇒ ref(S) . . . exactly name(n2, R):

name(O1, . . . , On2)

<:model35, minCardinality(:soldInCountry), 2>

Model 35 is sold in at least two countries.

<:model35, maxCardinality(:soldInCountry), 4>

Model 35 is sold in at most four countries.

<:model35, :soldInCountry, and(:greece, :italy, :spain)>

Model 35 is sold in Greece, Italy, and Spain.

⇒ Model 35 is sold in at least two and at most four countries,

including Greece, Italy, and Spain.

<S, minCardinality(prop), n1:R>

ref(S) . . . at least name(n1, R)

<S, maxCardinality(prop), n2:R>

ref(S) . . . at most name(n2, R) (n1 < n2)

<S, prop, and(O1, . . . , Om)> (n1 < m < n2)

ref(S) . . . name(O1, . . . , Om)

⇒ ref(S) . . . at least name(n1, R) and at most name(n2, R),

including name(O1, . . . , Om)

<:model35, minCardinality(:soldInCountry), 2>

Model 35 is sold in at least two countries.

<:model35, maxCardinality(:soldInCountry), 3>

Model 35 is sold in at most three countries.

<:model35, :soldInCountry, and(:greece, :italy)>

Model 35 is sold in Greece and Italy.

⇒ Model 35 is sold in at most three countries, including

Greece and Italy.

<S, minCardinality(prop), n1:R>

ref(S) . . . at least name(n1, R)

<S, maxCardinality(prop), n2:R>

ref(S) . . . at most name(n2, R) (n1 < n2)

<S, prop, and(O1, . . . , On1)>

ref(S) . . . name(O1, . . . , On1)

⇒ ref(S) . . . at most name(n2, R), including

name(O1, . . . , On1)

Table 9

Aggregation rules that merge two sentences expressing cardinality constraints on the same property prop of the domain
ontology, and possibly a third sentence expressing the values of prop . The first rule of this table is applied only if the other

rules of this table cannot be applied. All the rules of this table are tried before the rules of Table 8. The notation ref(ξ) stands

for a referring expression for ξ; name(n,R) is a noun phrase for n individuals of class R; name(ξ1, . . . , ξk) is a conjunction of
the natural language names of ξ1, . . . , ξk.

32

followed by a preposition, instead of being a passive
sentence; the other conditions are as in the previous
rule. The subject and verb of the second sentence
are omitted.

Bancroft Chardonnay is a kind of Chardonnay. It is from

Bancroft.⇒ Bancroft Chardonnay is a kind of Chardon-

nay from Bancroft.

Class and multiple adjectives: This rule aggregates
(i) a sentence of the same form as in the previous
two rules, i.e., a sentence expressing a message triple
of the form 〈S, instanceOf, C〉 or 〈S, isA, C〉 and (ii)
one or more immediately preceding or subsequent
sentences, each expressing a single message triple
〈S, Pi, Oi〉, for the same S, where Pi are (unmodi-
fied) properties of the domain ontology. Each of the
preceding or subsequent sentences must involve the
verb “to be” in the active simple present immedi-
ately followed by only an adjective. The adjectives
are absorbed into sentence (i) maintaining their or-
der.

This is a motorbike. It is red. It is expensive. ⇒ This is

a red, expensive motorbike.

Same verb conjunction/disjunction: When there is
a sequence of sentences, all involving the same verb
form and each expressing a single message triple of
the form 〈S, Pi, Oi〉, where S is the same in all the
triples and Pi are (unmodified) properties of the do-
main ontology, a conjunction can be formed by men-
tioning the subject and verb only once. 43

It has medium body. It has moderate flavor. ⇒ It has

medium body and moderate flavor.

The “and” is omitted when a preposition follows,
as illustrated below. The particles of phrasal verbs
(e.g., “shut down”) are not considered prepositions.

He was born in Athens. He was born in 1918.⇒ He was

born in Athens in 1918.

A similar rule applies to sentences produced from
disjunctions of message triples, as illustrated below.
A variant of the first rule, which avoids repeating
the same head noun with multiple adjectives, is also
applied (if possible) to the resulting sentence.

The house wine has strong flavor or it has medium flavor.

⇒ The house wine has strong flavor or medium flavor.

⇒ The house wine has strong or medium flavor.

43Consult Harbusch and Kempen [73] for a broader treat-

ment of elliptical clausal coordinations.

Different verbs conjunction: When there is a se-
quence of sentences, not involving the same verb,
but each expressing a message triple of the form
〈S, Pi, Oi〉, where S is the same in all the triples and
Pi are (unmodified) properties of the domain ontol-
ogy, a conjunction can be formed, as shown below. 44

Bancroft Chardonnay is dry. It has moderate flavor. It

comes from Napa.⇒ Bancroft Chardonnay is dry, it has

moderate flavor, and it comes from Napa.

We discuss the generation of pronouns below. The
subjects of the second, third etc. sentences aggre-
gated by the rule above can be omitted, though the
result may sometimes sound less fluent.

A note on the limitations of the pipeline architecture
By operating on both message triples and ordered

sentence plans, Naturalowl’s aggregation rules con-
sider not only the semantics of the sentences, but
also the particular text planning and lexicalization
choices that have been made to express them. For
example, the “same verb conjunction/disjunction”
rule can be applied only to adjacent sentences in-
volving the same verb, and the “class and preposi-
tional phrase” rule can be applied only if the sec-
ond sentence involves a prepositional phrase. Recall
that several sentence plans may apply to the same
message triple, and they may involve different verbs,
use of prepositional phrases vs. other phrasings etc.
Hence, if aggregation took place before lexicalization
[11,177], it would be impossible to decide if several
of the aggregation rules that we currently use could
be applied or not, unless aggregation was more in-
tertwined with lexicalization, allowing aggregation
rules to select among alternative sentence plans.

With a broader perspective, if aggregation and
lexicalization were both intertwined with content
selection and text planning, it might be possible
to select message triples not only with high inter-
est scores, but also with sentence plans of high ap-
propriateness that can be aggregated with many
other sentence plans; and aggregatable sentences
could be placed in adjacent positions to maximize
aggregation opportunities, while also attempting to
maximize local coherence. This would require, how-
ever, replacing the pipeline architecture and its se-
quential, in effect greedy, choices by an architecture
where decisions pertaining to all the stages of nlg
would be considered in parallel [114,17]. Another
possibility would be to retain the pipeline, but allow

44Disjunctions of message triples give rise to a disjunction

of sentences without any need for further aggregation.

33

its modules to overgenarate by producing alterna-
tives (e.g., several alternative sets of selected mes-
sage triples, several alternative orderings of each set
of message triples, several lexicalizations, aggrega-
tions etc.) and rank the resulting texts at the end of
the pipeline. 45 The latter approach, however, leads
to an exponentially large number of alternatives,
when several modules are allowed to overgenerate.

2.2.3. Generating referring expressions
A sentence plan may require an appropriate re-

ferring expression to be generated for the S of an
〈S, P,O〉 message triple, as already discussed. De-
pending on the context, it may be better, for ex-
ample, to use the nl name of S (e.g., “the Stoa of
Zeus Eleutherios”), a pronoun (e.g., “it”), a demon-
strative noun phrase (e.g., “this stoa”) etc. Simi-
lar alternatives could be made available for O, but
Naturalowl currently always uses O itself, if it is a
datatype value; or the nl name of O, its tokenized
identifier, or its rdfs:label, if O is an entity or class;
and similarly for conjunctions and disjunctions inO.
Hence, below we focus only on referring expressions
for S. Adding mechanisms to generate more varied
expressions for O is a possible future extension.

Generating the most appropriate referring expres-
sion is a complex problem. It involves considering
multiple candidate referring expressions, whether or
not each candidate expression identifies a unique
referent, how easily a hearer can understand each
expression, the length of, or time to utter each ex-
pression, the desire to avoid repeating the same ex-
pressions etc. Krahmer and van Deemter [101] pro-
vide an extensive survey of research on referring ex-
pression generation. Naturalowl currently uses a
very limited range of referring expressions, which
includes only nl names (or tokenized identifiers or
rdfs:label strings), pronouns, and noun phrases in-
volving only a demonstrative and the nl name of a
class (e.g., “this vase”). For example, referring ex-
pressions that mention properties of S (e.g., “the
vase from Rome”) are not generated. 46 Although

45See, for example, Walker et al. [171] for a dialogue system
that uses an overgenerate and rank approach to aggregation.
46When generating comparisons, Naturalowl also produces

expressions referring to previously encountered individuals or

sets of individuals (e.g., “Unlike all the previous vessels that
you have seen, this lekythos is decorated with the black-figure

technique”), and also some spatial referring expressions (e.g.,
“Like the tetradrachm that you saw, which is now behind
me, this drachma was found in Athens”) [85], but we do not

consider comparisons in this article.

Naturalowl’s current referring expression genera-
tion mechanisms work reasonably well in the on-
tologies we have experimented with, they are best
viewed as a placeholder for more elaborate algo-
rithms [37,39,164,79,102,165,133,40], especially al-
gorithms based on description logics [7,147], which
we hope to see included in future versions. 47

To explain how referring expressions for S are cur-
rently generated, let us consider the following text,
which expresses the message triples below. We do
not aggregate sentences in this section, to illustrate
more cases where referring expressions are needed;
note, however, that aggregation would reduce the
number of pronouns, making the text less repetitive.

(1) Exhibit 7 is a statue. (2) It was sculpted by Nikolaou.

(3) Nikolaou was born in Athens. (4) He was born in 1918.
(5) He died in 1998. • (6) Exhibit 7 is now in the National

Gallery. (7) It is in excellent condition.

<:exhibit7, instanceOf, :Statue>

<:exhibit7, :hasSculptor, :nikolaou>

<:nikolaou, :cityBorn, :athens>

<:nikolaou, :yearBorn,

"1918"^^xsd:nonNegativeInteger>

<:nikolaou, :yearDied,

"1998"^^xsd:nonNegativeInteger>

<:exhibit7, :currentLocation, :nationalGallery>

<:exhibit7, :currentCondition, :excellentCondition>

Recall that in a sentence un that Naturalowl gen-
erates for a message triple 〈Sn, Pn, On〉, typically
Cf (un) = {Sn, On} and cp(un) = Sn, since Sn is
typically realized as the most salient noun phrase of
un, usually the subject. As in Section 2.1.2, we show
in italics the noun phrase realizing cp(un); we show
underlined the noun phrase realizing cb(un); and we
mark nocb transitions with bullets.

Naturalowl pronominalizes Sn (for n > 1) only
if Sn = Sn−1, as in sentences 2, 4, 5, and 7. Since
typically cp(ui) = Si, we typically obtain cp(un) =
cp(un−1), whenever Sn is pronominalized, if the pro-
noun is resolved by the reader as intended. When
reading a text, there is a tendency to prefer read-
ings where cp(un) = cp(un−1), if no other restric-
tion is violated (e.g., gender, number, case agree-
ment, world knowledge constraints). This helps the
pronouns that Naturalowl generates to be correctly
resolved by readers, even when they would appear
to be potentially ambiguous. For example, the pro-
noun of sentence 7 is most naturally understood as
referring to the exhibit, as it is intended to, not to

47See also Kibble and Power [92] for a ct-based method for

both text planning and choice of referring expressions.

34

the gallery, even though both the gallery and the ex-
hibit are neuter and can be in excellent condition.
Note that with both referents, the transition from
(6) to (7) is a continue; hence, transition type pref-
erences play no role.

The gender of each generated pronoun is the gen-
der of the (most appropriate) nl name of the S that
the pronoun realizes. 48 If S does not have an nl
name, Naturalowl uses the gender of the (most ap-
propriate) nl name of the most specific class that in-
cludes S and has an nl name (or one of these classes,
if they are many). If exhibit7 in our previous exam-
ple does not have an nl name, i.e., “exhibit 7” is a
tokenized identifier or rdfs:label, if the most specific
class of exhibit7 is Exhibit, and if Exhibit has only
one nl name in the target language and its gender
is neuter, Naturalowl uses a neuter pronoun, as in
the example above. nl names can also be associ-
ated with sets of genders, which give rise to pseudo-
pronouns like “he/she”; this may be desirable, for
example, in the nl name of a class like Person.

With some individuals or classes, we may not
wish to use nl names, nor tokenized identifiers nor
rdfs:label strings. This is common, for example,
in museum ontologies, where some exhibits are
known by particular names (e.g., a classical statue
known as the “Doryphoros”), but many other ex-
hibits are anonymous and their owl identifiers
(e.g., exhibit317) are not particularly meaningful to
end-users. Naturalowl allows the domain author
to mark individuals and classes as anonymous, to
indicate that their nl names, tokenized identifiers,
and rdfs:label strings should be avoided. When
the primary target (the individual or class the text
is generated for) is marked as anonymous, Nat-
uralowl uses a demonstrative noun phrase (e.g.,
“this statue”) to refer to it. The demonstrative
phrase involves the nl name of the most specific
class that subsumes the primary target, that has an
nl name, and has not been marked as anonymous
(or one of these classes, if they are many). Especially
in sentences that express isA or instanceOf message
triples about the primary target, the demonstrative
noun phrase is simply “this”, to avoid generating

48Note that in languages like Greek, which use grammatical
instead of natural genders, the pronouns’ genders cannot be

determined by consulting the domain ontology (e.g., to check
if the referent is animate or inanimate). For example, the

Greek nl names (nouns) for “computer” (“upologist c”),

“screen” (“ojình”), and “keyboard” (“plhktrolìgio”) are
masculine, feminine, and neuter, respectively, and pronouns

must be in the same gender as the corresponding nl names.

sentences like “This statue is a statue”. Assum-
ing, for example, that exhibit7 has been marked as
anonymous, that its most specific super-class that
has not been marked as anonymous is Statue, and
that Statue has the nl name “statue”, the text of
our previous example becomes as follows. 49

(1) This is a statue. (2) It was sculpted by Nikolaou. (3)
Nikolaou was born in Athens. (4) He was born in 1918. (5)

He died in 1998. • (6) This statue is now in the National

Gallery. (7) It is in excellent condition.

The marking of anonymous individuals and
classes currently applies only to the primary target.
For example, if the primary target is Nikolaou, then
the generated text may still contain sentences like
“Nikolaou sculpted exhibit 7 and exhibit 9”, even if
exhibit7 and exhibit9 have been marked as anony-
mous. Although a sentence like “Nikolaou sculpted
two statues” could easily be produced instead, com-
plications arise if, for example, there is information
to be conveyed for both statues, in which case we
would need to produce appropriate referring expres-
sions (e.g., “the first one”, “the second statue”).
We leave such improvements for future work, along
with work to produce more varied referring expres-
sions for the Os of message triples (e.g., reflexives
in sentences like “He painted himself ”). 50

2.3. Surface realization

In many nlg systems, the sentences at the end
of micro-planning are underspecified; for example,
the exact order of their syntactic constituents or
the exact forms of their words (e.g., gender, num-
ber, case) may still be unspecified. Generic surface
realizers based on large-scale grammars or statisti-
cal models can then be used to fill in the missing
information during surface realization, as already
discussed (Section 2.2.1). 51 By contrast, in Natu-
ralowl (and most template-based nlg systems) the
sentence plans at the end of micro-planning already
completely specify the surface (final) form of each
sentence; recall that referring expressions will have

49 If a sentence about a parent class of the primary target
has been generated and the next sentence uses a demonstra-
tive noun phrase to refer to the primary target, then the
demonstrative includes “particular” to signal more clearly
that the discussion has shifted back to the primary target;

see, for example, the generated text of page 18.
50The tuna [62] and grec [18] challenges and their datasets
could be particularly useful in future improvements.
51 ilex and m-piro used Systemic Grammars [71,15].

35

already been generated, and aggregation will have
been performed. The order of the sentences will have
also been specified during text planning. Hence, Nat-
uralowl’s surface realization is mostly a process of
converting internal, but fully specified and ordered
sentence specifications to the final form of the text.
Punctuation is also added, the initial letter of each
sentence is capitalized etc.

Application-specific markup (e.g., html tags,
hyperlinks) or images (e.g., of individuals being
described) can also be added by modifying Natu-
ralowl’s surface realization code. In project indigo,
for example, where Naturalowl was embedded in
robots acting as a museum guides, surface realiza-
tion was modified to include xml syntactic and
semantic markup. 52 There were, for instance, tags
that marked sentences with high interest scores,
leading the robot to use an emphasis voice and an
appropriate facial expression. The sentences were
also marked up with the message triples they ex-
pressed, to help a dialogue manager keep track of
the information conveyed to each end-user.

3. Other related work

We have already provided pointers to relevant
work that could be used to enhance Naturalowl’s
processing stages. We now turn to controlled natu-
ral languages and ontology verbalizers for owl, and
subsequently to other nlg work for owl ontologies.

3.1. Controlled languages and verbalizers for OWL

As already noted, we have been using owl’s
functional-style syntax, but several semantically
equivalent owl syntaxes have been proposed. There
has also been work to develop controlled natural
languages (cnls), mostly English-like, to be used
as alternative owl syntaxes. For example, Syd-
ney owl Syntax (sos) [36] is an English-like cnl
with a bidirectional mapping to and from owl’s
functional-style syntax; sos is based on experi-

52 indigo was an fp6 ist project of the European
Union; consult http://www.ics.forth.gr/indigo/. Natu-
ralowl’s Protégé plug-in can optionally display the gen-

erated texts with indigo’s markup. In previous demon-
strators, the generated texts included rdfa markup; see

http://www.w3.org/TR/xhtml-rdfa-primer/. In a similar

manner, schema.org markup could also be included by gen-
erating texts from schema.org ontologies represented in

owl; consult http://www.schema.org/.

ence from peng [150,154]. A similar bidirectional
mapping has been defined for Attempto Controlled
English (ace) [58,84,83], a cnl originally devel-
oped for software specifications. Rabbit [74,46] and
clone [59] are other owl cnls, mostly intended to
be used by domain experts during ontology author-
ing [47], i.e., when creating owl ontologies. Some
owl cnls are only partial owl syntaxes, meaning
that they cannot express all the statements of other
owl syntaxes. Consult Schwitter et al. [153] for
related discussion and a comparison of sos, ace,
and Rabbit. Schwitter [151] provides a broader
introduction to cnls for knowledge representation.

Much work on owl cnls focuses on ontology au-
thoring and ontology querying [21,22,19,103,152,90];
in both cases, the emphasis is mostly on the direc-
tion from cnl to owl or formal query languages. 53

In Rabbit, for example, the main goal seems to be to
translate from cnl to a normative owl syntax, not
backwards. More relevant to this article are cnls
like sos and ace, to which automatic mappings
from normative owl syntaxes are available.

By feeding an owl ontology expressed, for ex-
ample, in functional-style syntax to a mapping that
translates to an English-like cnl, all the axioms of
the ontology can be turned into English-like sen-
tences. Systems of this kind are often called ontology
verbalizers, a term we introduced briefly in Section
1. This term, however, also includes systems that
translate from owl to English-like statements that
do not necessarily belong in an explicitly defined
cnl [78,69,149,141,137,157,158,109,110].

Although ontology verbalizers can be viewed as
performing a kind of light nlg, they are different
from Naturalowl and other similar, more complex
nlg systems. As already discussed, verbalizers typi-
cally translate axioms one by one, without consider-
ing the coherence (or topical cohesion) of the result-
ing texts, usually without aggregating sentences nor
generating referring expressions, and often by pro-
ducing sentences that are not entirely fluent or natu-
ral; for example, ace and sos occasionally use vari-
ables instead of noun phrases and referring expres-
sions [153]. Also, verbalizers typically do not employ
any user modeling mechanisms; for example, they
do not attempt to model the interests and linguistic
preferences (e.g., vocabulary, length of texts) of dif-

53The wysiwym approach or conceptual authoring [139,70],

which has recently been applied to owl ontologies [140,136],
and round-trip authoring [161,59,44] are bidirectional, but

again they focus mostly on ontology authoring and querying.

36

ferent types of readers, nor the information that has
already been conveyed to them (e.g., to avoid rep-
etitions). Expressing the exact meaning of the on-
tology’s axioms in an unambiguous manner is con-
sidered more important in verbalizers than compos-
ing a fluent, coherent, and interesting text, partly
because the verbalizers’ texts are typically intended
to be read by domain experts during ontology au-
thoring. Furthermore, verbalizers treat the domain
ontology as the only source of domain-dependent
information, without employing additional domain-
dependent generation resources.

3.2. NLG systems for OWL ontologies

We now consider more complex, compared to ver-
balizers, nlg systems for owl ontologies. We note
that the distinction between the two types of sys-
tems is not always clear. For example, some verbaliz-
ers include basic sentence aggregation [177] and text
planning [109], and some of the systems we discuss
below attempt to extract domain-dependent linguis-
tic resources from the domain ontology. Schutte’s
system [149] is particularly difficult to classify, as it
also generates pronouns and invokes kpml [15], oth-
erwise being closer to verbalizers.

3.2.1. Ontosum
ontosum [25] generates natural language de-

scriptions of individuals, but apparently not classes,
from rdf and owl ontologies. It is an extension of
miakt [28,24], which was used to generate medi-
cal reports. Both were implemented in gate [27].
They provide graphical user interfaces to manipu-
late domain-dependent generation resources, and
the domain ontologies can be edited with a version
of Protégé embedded in gate [26].
ontosum adopts a pipeline architecture, simi-

lar to Naturalowl’s. Content selection identifies the
facts to express, excluding facts that have been men-
tioned. ontosum’s user modeling mechanisms ap-
pear to be more limited than Naturalowl’s; for ex-
ample, there do not seem to be mechanisms to spec-
ify the interest of the domain ontology’s facts.

In text planning, ontosum uses text schemata
(Section 2.1.2). For sentence planning, it provides
built-in sentence plans for four basic properties (e.g.,
active-action, part-whole). Every other property is
made (manually or via heuristics that examine the
properties’ identifiers) a sub-property of a basic one,
which allows it to inherit a sentence plan from a

basic property.ontosum can also express properties
by using their rdfs:label strings, strings obtained
by tokenizing the properties’ identifiers, or strings
provided by the domain author; the effect is similar,
as when using Naturalowl’s default sentence plan.

Unlike Naturalowl, ontosum’s aggregation op-
erates only on logical facts, before micro-planning,
and it aggregates only facts involving the same se-
mantic subject and property. Like Naturalowl, on-
tosum maps classes and individuals to nl names,
specified in a domain-dependent lexicon. onto-
sum’s nl names, however, are simpler; for example,
they do not mark head words, prepositions, etc.,
information that is used in some of Naturalowl’s
aggregation rules. There are also mechanisms in on-
tosum to extract nl names from rdfs:label strings
or identifiers, when lexicon entries are unavailable.

No detailed description of ontosum, at least not
as detailed as this article, appears to have been pub-
lished, and the system does not seem to be publicly
available, unlike Naturalowl. Furthermore, no tri-
als of ontosum with independently created domain
ontologies seem to have been published.

3.2.2. Other NLG systems for OWL and RDF

Mellish and Sun [125,159,160] focus mostly on
lexicalization and aggregation, aiming to produce
a single aggregated sentence from an input collec-
tion of rdf triples; by contrast, Naturalowl pro-
duces multi-sentence texts. In complementary work,
Mellish et al. [124,121,122] also consider content se-
lection in the generation of natural language de-
scriptions of owl classes. Unlike Naturalowl, their
system does not select only facts that are explic-
itly mentioned in the domain ontology, but it also
constructs facts that can be inferred from the do-
main ontology by performing reasoning in descrip-
tion logic. It would be particularly interesting to ex-
amine how reasoning mechanisms of this kind could
be added to Naturalowl’s content selection.

Wilcock’s nlg engine [174,175,176] has been used
to generate texts from rdf and daml+oil ontolo-
gies, daml+oil being a predecessor of owl. 54 We
are not aware, however, of any attempts to use that
engine with owl ontologies.

54See http://www.w3.org/Submission/2001/12/.

37

4. Trials

In previous work, Naturalowl was used mostly
to describe cultural heritage objects. In project xe-
nios, for example, it was tested with an owl ver-
sion of a domain ontology that was created during
m-piro to document approximately 50 archaeologi-
cal exhibits (e.g., statues, coins, vases) [4]. The owl
version comprised 76 classes, 343 individuals (in-
cluding cities, persons, historical periods, etc.), and
41 properties. In xenios, Naturalowl was also em-
bedded in a robotic avatar that presented m-piro’s
exhibits in a virtual world museum [131], and in a
real-world mobile robot that provided information
about a cultural heritage centre and its exhibitions
[169]. 55 More recently, in project indigo [96,97],
Naturalowl was embedded in mobile robots act-
ing as tour guides in an exhibition about the an-
cient Agora of Athens. The robots escorted visitors
to wall-mounted screens showing present day pho-
tos and digital reconstructions of the Agora’s mon-
uments. 56 An owl domain ontology documenting
43 monuments was used; there were 49 classes, 494
individuals, and 56 properties in total.

In the projects mentioned above, Naturalowl’s
texts were eventually almost indistinguishable from
human-authored texts. We participated, however,
along with curators and other colleagues, in the de-
velopment of the domain ontologies, and we may
have biased the domain ontologies towards choices
(e.g., classes and properties) that made it easier for
Naturalowl to generate high-quality texts. Hence,
in the trials discussed below, we wanted to exper-
iment with independently developed owl domain
ontologies. We also wanted to experiment with dif-
ferent domains, as opposed to cultural heritage.

A further goal was to compare Naturalowl’s texts
against those of a simpler verbalizer. We used the
owl verbalizer of the swat project [158,178], which
we found to be particularly robust and useful, as

55xenios was co-funded by the European Union and the

Greek General Secretariat of Research and Technology; see
http://www.ics.forth.gr/xenios/.
56Videos of the robotic guides of xenios and indigo in action

are available at http://nlp.cs.aueb.gr/projects.html.
Two aueb students, George Karakatsiotis and Vangos

Pterneas won the Interoperability Challenge of Microsoft’s

Imagine Cup 2011 with a similar mobile phone applica-
tion, called Touring Machine, that uses Naturalowl; see

http://www.youtube.com/watch?v=PaNAmNC7dZw. In Touring

Machine and indigo, the domain-dependent generation re-
sources were also used to answer follow-up questions (e.g.,

about persons mentioned in descriptions of monuments).

it provides a quick English-like view of an owl do-
main ontology with no domain authoring effort. 57

The verbalizer produces, among other outputs, an
alphabetical glossary with an entry for each named
class, property, and individual. Each glossary entry
is a sequence of English-like sentences expressing
the owl statements of the ontology that involve the
particular class, property, or individual.

The swat verbalizer uses a predetermined par-
tial order of statements in each glossary entry; for
example, when describing a class, statements about
equivalent classes or super-classes of the target class
are mentioned first, and individuals belonging in
the target class are mentioned last. 58 The verbal-
izer actually translates the owl ontology to Prolog,
it extracts lexicon entries from owl identifiers and
rdfs:label strings, and it uses predetermined sen-
tence plans specified as a dcg grammar. It also ag-
gregates, in effect, message triples of the same prop-
erty that share one argument (S or O) [177].

Our hypothesis was that the domain-dependent
generation resources would help Naturalowl pro-
duce texts that end-users would consider more
fluent, coherent, and interesting compared to those
produced by the swat verbalizer, but also those pro-
duced by Naturalowl without domain-dependent
generation resources. We also wanted to measure
the effort that is required to create Naturalowl’s
domain-dependent generation resources for exist-
ing domain ontologies. This was not measured in
our previous work, because the development of
the domain-dependent generation resources was
combined with the development of the domain
ontologies. Since the time needed to create the
domain-dependent generation resources depends on
one’s familiarity with Naturalowl and its Protégé
plug-in, exact times are not particularly informa-
tive. Instead, we report figures such as the number
of sentence plans, lexicon entries, user modeling
annotations etc. that were required, along with ap-
proximate times. We do not evaluate the usability
of Naturalowl’s Protégé plug-in, since it is very

57The swat verbalizer can be used on the Web at
http://swat.open.ac.uk/tools/. We used the version that
was on-line in July and August 2011. A similar ver-
balizer from owl to ace (Section 3.1) is available at

http://attempto.ifi.uzh.ch/site/docs/owl to ace.html.
58The verbalizer also organizes the English-like sentences

of each glossary entry under sub-headings like ‘Definition’,
‘Taxonomy’, ‘Description’, ‘Distinctions’ [178]. We discarded
these subheadings, whose meanings were not entirely clear

to us, but we retained the order of the sentences.

38

similar to m-piro’s authoring tool. Previous usabil-
ity experiments [4] showed that computer science
graduates with no expertise in nlg could learn to
use effectively m-piro’s authoring tool to create the
necessary domain-dependent generation resources
for existing or new domain ontologies, after receiv-
ing the equivalent of a full-day introduction course.

4.1. Trials with the Wine Ontology

In the first trial, we experimented with the Wine
Ontology, which is often used in Semantic Web tu-
torials. 59 It comprises 63 wine classes (and sub-
classes), 52 wine individuals, a total of 238 classes
and individuals (including kinds of grapes, wineries,
regions, etc.), and 14 properties.

We submitted the Wine Ontology to the swat
verbalizer to obtain its glossary of English-like de-
scriptions of classes, properties, and individuals. We
retained only the descriptions of the 63 wine classes
and the 52 wine individuals. Subsequently, we also
discarded 20 of the 63 wine class descriptions, as
they were for trivial classes (e.g., RedWine) and they
were stating the obvious (e.g., “A red wine is de-
fined as a wine that has as color Red”). In the de-
scriptions of the remaining 43 wine classes and 52
wine individuals, we discarded sentences expressing
axioms that Naturalowl does not consider, for ex-
ample sentences providing examples of individuals
that belong in a class being described, or sentences
that in effect express message triples of the form
〈S, P,O〉 when the target is O (not S). The remain-
ing texts express the same owl statements that Nat-
uralowl expresses when its maximum fact distance
is set to one and no user modeling anotations are
provided. 60 Two examples of texts obtained by us-
ing the swat verbalizer follow.

Chenin Blanc (class): A chenin blanc is defined as some-

thing that is a wine, is made from grape the Chenin

Blanc Grape, and is made from grape at most one thing.

A chenin blanc both has as flavor Moderate, and has as

color White. A chenin blanc both has as sugar only Off

Dry and Dry, and has as body only Full and Medium.

The Foxen Chenin Blanc (individual): The Foxen Chenin

Blanc is a chenin blanc. The Foxen Chenin Blanc has as

59See http://www.w3.org/TR/owl-guide/wine.rdf.
60 In the verbalizer’s texts, we also discarded sentences ex-

pressing DifferentIndividuals statements, as they tended
to be particularly long and boring; these statements were

also discarded when generating Naturalowl’s texts.

body Full. The Foxen Chenin Blanc has as flavor Mod-

erate. The Foxen Chenin Blanc has as maker Foxen. The

Foxen Chenin Blanc has as sugar Dry. The Foxen Chenin

Blanc is located in the Santa Barbara Region.

We then generated texts for the 43 classes and 52
individuals using Naturalowl without domain de-
pendent generation resources, setting the maximum
fact distance to one; example texts follow.

Chenin Blanc (class): Chenin Blanc is wine. Chenin Blanc

has body only Full or Medium. Chenin Blanc has sugar

only Off Dry or Dry. Chenin Blanc has color White.

Chenin Blanc has flavor Moderate. Chenin Blanc made

from grape exactly one Wine Grape: Chenin Blanc Grape.

The Foxen Chenin Blanc (individual): Foxen Chenin

Blanc is Chenin Blanc. Foxen Chenin Blanc has sugar

Dry. Foxen Chenin Blanc has maker Foxen. Foxen Chenin

Blanc has body Full. Foxen Chenin Blanc located in

Santa Barbara Region. Foxen Chenin Blanc has flavor

Moderate.

Subsequently, we constructed Naturalowl’s
domain-dependent generation resources for the
Wine Ontology. The resources are summarized in
Table 10. They were constructed by the second
author, who devoted approximately three days to
their construction, testing, and refinement. Only
English texts were generated in this trial; hence, no
resources for Greek were constructed. We defined
only one user type, and we added user modeling
annotations only to block sentences stating the ob-
vious, by assigning zero interest scores to the corre-
sponding message triples; we also set the maximum
messages per (aggregated) sentence to 3. Only 7 of
the 14 properties of the Wine Ontology are used
in the owl statements that describe the 43 classes
and 52 individuals. We defined 5 sentence plans,
which could be used to express the 7 properties;
some properties could be expressed by the same
sentence plan (e.g., involving the verb “to be”),
which is why there are only 5 sentence plans. We
did not define multiple sentence plans per property.
We also assigned the 7 properties to 2 sections,
and we ordered the sections and their properties.
We created nl names only when the automatically
extracted ones were causing disfluencies. The au-
tomatically extracted names were obtained from
the owl identifiers of classes and individuals; no
rdfs:label strings were available. To reduce the
number of nl names further, we declared the 52
individual wines to be anonymous (and provided no
nl names for them), which caused Naturalowl to

39

resources English Greek

sections 2

property assignments to sections 7

interest score assignments 8

sentence plans 5 −

lexicon entries 67 −

natural language names 41 −
Table 10

Domain-dependent generation resources created for the
Wine Ontology (one user type).

use “this wine” in the first sentence of each wine’s
description, instead of using the wine’s name. Most
of the 67 lexicon entries were used in the remaining
41 nl names of classes and individuals (including
regions, wineries, kinds of grapes, etc.) that we had
to construct. Hence, most of the authoring effort
was devoted to nl names (see Table 10), despite
the actions we took to reduce their number; we
investigate this issue further in the next trial. We
note, however, that most of the nl names were very
simple, having only 2 slots on average.

We used Naturalowl with the domain-dependent
resources to re-generate the 95 texts for the 43
classes and 52 individuals, again setting the maxi-
mum fact distance to one; example texts follow.

Chenin Blanc (class): A Chenin Blanc is a moderate, white

wine. It has only a full or medium body. It is only off-dry

or dry. It is made from exactly one wine grape variety:

Chenin Blanc grapes.

The Foxen Chenin Blanc (individual): This wine is a mod-

erate, dry Chenin Blanc. It has a full body. It is made by

Foxen in the Santa Barbara County.

The resulting 285 texts (95× 3) of the three sys-
tems (swat verbalizer, Naturalowl with and with-
out domain-dependent generation resources) were
shown to 10 computer science students (both un-
dergraduates and graduate students), who were not
involved in the development of Naturalowl; they
were all fluent in English, though not native English
speakers, and they did not consider themselves wine
experts. The students were told that a glossary of
wines was being developed for people who were in-
terested in wines and knew basic wine terms (e.g.,
wine colors, wine flavors), but who were otherwise
not wine experts. Each one of the 285 texts was given
to exactly one student. Each student was given ap-
proximately 30 texts, approximately 10 randomly
selected texts from each system. The owl state-

ments that the texts were generated from were not
shown, and the students did not know which system
had generated each text. Each student was shown
all of his/her texts in random order, regardless of
the system that had generated them. The students
were asked to score the texts for sentence fluency,
referring expressions, text structure, clarity, and in-
terest, by stating for each text how strongly they
agreed or disagreed with statements S1–S5 below.
A scale from 1 to 3 was used (1: disagreement, 2:
ambivalent, 3: agreement).

(S1) Sentence fluency : The sentences of the text
are fluent, i.e., each sentence on its own is grammat-
ical and sounds natural. When two or more smaller
sentences are merged to form a single, longer sen-
tence, the resulting longer sentence is also grammat-
ical and sounds natural.

(S2) Referring expressions: The use of pronouns
(e.g., “it”, “his”) and other referring expressions
(e.g., “this wine”) in the text is appropriate. The
choices of referring expressions (e.g., when to use a
pronoun or other expression instead of the name of
an object) sound natural, and it is easy to under-
stand what these expressions stand for (e.g., which
object a pronoun refers to).

(S3) Text structure: The order of the sentences is
appropriate. The text presents information by mov-
ing reasonably from one topic to another.

(S4) Clarity : The text is easy to understand, pro-
vided that the reader is familiar with basic wine
terms (e.g., wine colors, wine flavors).

(S5) Interest : People who are interested in wines,
but who are not wine experts, would find the infor-
mation of the text interesting. Furthermore, there
are no redundant sentences in the text (e.g., sen-
tences stating the obvious). 61

We had to avoid nlg terminology in statements
S1–S5 as much as possible, to ensure that the stu-
dents would be able to understand them. S5 assesses
content selection, the first processing stage; we ex-
pected the differences across the three systems to
be very small, as they all reported the same infor-
mation, with the exception of redundant sentences
blocked by using zero interest assignments in Nat-
uralowl. S3 assesses text planning, the second pro-
cessing stage; again we expected small differences,
as many of the wines’ properties can be mentioned
in any order, though there are some properties (e.g.,

61The students were instructed not to consider whether or

not additional information should have been included.

40

maker, location) that are most naturally reported
separately from others (e.g., color, flavor, taste),
which is why we used 2 sections in the domain-
dependent generation resources. S1 assesses lexical-
ization and aggregation; we decided not to use sep-
arate statements for these two processing stages,
since it might have been difficult for the students to
understand exactly when aggregation takes place.
S2 assesses referring expression generation. S4 does
not correspond to a particular processing stage; it
measures the overall perceived clarity of the texts.
There was no statement for surface realization, as
this stage (as used in all three systems) had a rather
trivial effect on the texts.

Table 11 shows the average scores of the three sys-
tems, with averages computed on the 95 texts of each
system, along with 95% confidence intervals (of sam-
ple means). 62 As expected, the domain-dependent
generation resources clearly help Naturalowl pro-
duce more fluent sentences and much better refer-
ring expressions, despite Naturalowl’s simplistic re-
ferring expression generation techniques. The text
structure scores show that the assignment of the do-
main ontology’s properties to sections and the order-
ing of the sections and properties had a greater (pos-
itive) impact on the perceived structure of the texts
than we expected, also indicating how important the
corresponding resources are. The highest score of the
swat verbalizer was obtained in the clarity crite-
rion, which agrees with our experience that one can
usually understand what the texts of the swat ver-
balizer mean, even if their sentences are often not en-
tirely fluent, not particularly well ordered, and keep
repeating proper names. With domain-dependent
resources, Naturalowl had the highest clarity score,
but the difference from the swat verbalizer, which
had the second highest score, is not statistically sig-
nificant. 63 With domain-dependent generation re-
sources, Naturalowl also obtained higher interest
scores than the other two systems, with statistically
significant differences from both; these differences,

62 In a pilot study, we also measured the inter-annotator

agreement of two of the students on a sample of 30 texts (10
from each system). The agreement was very high (sample
Pearson correlation r ≥ 0.91) in all five criteria. A similar
pilot study was also performed in the next trial, again indi-

cating very high inter-annotator agreement.
63When the confidence intervals of two systems do not over-

lap, the difference is statistically significant. When the in-
tervals overlap, the difference may still be statistically sig-
nificant; we performed paired two-tailed t-tests (α = 0.05)

in these cases to check for statistical significance.

criteria swat Naturalowl − Naturalowl +

sentence fluency 2.00 ± 0.15 1.76 ± 0.15 2.80 ± 0.10

ref. expressions 1.40 ± 0.13 1.15 ± 0.09 2.72 ± 0.13

text structure 2.15 ± 0.16 2.20 ± 0.16 2.94 ± 0.05

clarity 2.66 ± 0.13 2.55 ± 0.13 2.74 ± 0.11

interest 2.30 ± 0.15 2.14 ± 0.16 2.68 ± 0.12

Table 11
Average results, with 95% confidence intervals, for English

texts generated from the Wine Ontology by the swat ver-

balizer and Naturalowl with (+) and without (−) domain-
dependent generation resources. For each criterion, the best

scores are shown in bold; the confidence interval of the best

score is also shown in bold if it does not overlap with the
confidence intervals of the other scores of the criterion.

which are larger than we expected, can only be at-
tributed to the zero interest score assignments of the
domain-dependent generation resources, which are
used to block sentences stating the obvious, because
otherwise all three systems report the same infor-
mation. The swat verbalizer obtained higher scores
than Naturalowl without domain-dependent gener-
ation resources, with the text structure score being
the only exception. Only the difference in the refer-
ring expression scores of the two systems, though, is
statistically significant. Both systems, however, re-
ceived particularly low scores for their referring ex-
pressions, which is not surprising, given that they
both refer to individuals and classes by always using
automatically extracted names; the slightly higher
score of the swat verbalizer is probably due to better
tokenization of the automatically extracted names.

4.2. Trials with the Consumer Electronics Ontology

In the second trial, we experimented with the
Consumer Electronics Ontology, an owl ontology
for consumer electronics products and services. 64

The ontology comprises 54 classes and 441 indi-
viduals (e.g., printer types, paper sizes, well-known
manufacturers), but no information about particu-
lar products. We added 60 individuals describing 20
digital cameras, 20 camcorders, and 20 printers. The
60 individuals were randomly selected from a pub-
licly available dataset of 286 digital cameras, 613

64Consult http://www.ebusiness-unibw.org/ontologies/

consumerelectronics/v1. The Consumer Electronics Ontol-
ogy uses some concepts of the Good Relations Ontology; see

http://www.heppnetz.de/projects/goodrelations/.

41

camcorders, and 58 printers, whose instances com-
ply with the Consumer Electronics Ontology. 65

We submitted the Consumer Electronics Ontol-
ogy with the additional 60 individuals to the swat
verbalizer, and we retained only the descriptions
of the 60 individuals. As in the previous trial, we
removed sentences expressing axioms that Natu-
ralowl does not consider. We also shortened some
sentences to remove parts expressing very general-
level information (e.g., “Olympus E-520 is a prod-
uct or service model, and a digital camera” became
“Olympus E-520 is a digital camera”). Lastly, we
renamed the string values of some datatype prop-
erties to make the texts easier to understand (e.g.,
the measurement unit “cmt” became “cm”). An
example of a resulting description follows. The
owl identifiers of a few individuals are in German,
which is why the sentence about the energy source
mentions “Akku”, which is “battery” in German.

The Sony Cyber-shot DSC-T90 is a digital camera.

The Sony Cyber-shot DSC-T90 has as manufacturer Sony.

The Sony Cyber-shot DSC-T90 has as data interface

type Usb2 0.

The Sony Cyber-shot DSC-T90 has as depth Depth.

Depth has as unit of measurement cm.

Depth has as value float 9.4.

The Sony Cyber-shot DSC-T90 has as digital zoom fac-

tor the Digital Zoom Factor.

The Digital Zoom Factor has as value float 12.1.

The Sony Cyber-shot DSC-T90 has as display size Dis-

play.

Display has as unit of measurement in.

Display has as value float 3.0.

The Sony Cyber-shot DSC-T90 has as energy source

Akku.

The Sony Cyber-shot DSC-T90 has as feature Video

Recording, Microphone and the Automatic Picture Sta-

bilizer.

The Sony Cyber-shot DSC-T90 has as focus size Focus

Size.

Focus Size has as max value float 140.0.

Focus Size has as min value float 35.0.

The Sony Cyber-shot DSC-T90 has as height Height.

Height has as unit of measurement cm.

Height has as value float 5.7.

The Sony Cyber-shot DSC-T90 has as internal memory

capacity the Internal Memory Capacity.

The Internal Memory Capacity has as unit of measure-

65See http://rdf4ecommerce.esolda.com/ for the dataset
that we used. A list of similar datasets is available at

http://wiki.goodrelations-vocabulary.org/Datasets.

ment GB.

The Internal Memory Capacity has as value float 11.0.

The Sony Cyber-shot DSC-T90 has as optical zoom fac-

tor Optical Zoom.

Optical Zoom has as value float 4.0.

The Sony Cyber-shot DSC-T90 has as shutter lag Shut-

ter Lag.

Shutter Lag has as max value float 0.0010.

Shutter Lag has as min value float 2.0.

Shutter Lag has as unit of measurement sec.

The Sony Cyber-shot DSC-T90 has as weight Weight.

Weight has as unit of measurement grm.

Weight has as value float 128.0.

The Sony Cyber-shot DSC-T90 has as width Width.

Width has as unit of measurement cm.

Width has as value float 1.5.

The Sony Cyber-shot DSC-T90 has as compact flash false.

The Sony Cyber-shot DSC-T90 has as dimension 9.4 x

1.5 x 5.7.

The Sony Cyber-shot DSC-T90 has as tv connector true.

The Sony Cyber-shot DSC-T90 has as self timer true.

In this domain ontology, many properties have
composite values, which are expressed by using aux-
iliary individuals. In the example above, a prop-
erty (hasDepth) connects the digital camera being de-
scribed to an auxiliary individual Depth (similar to
the anonymous node :n of the property concatena-
tion price example of page 24), which is then con-
nected via two other properties (hasValueFloat and
hasUnitOfMeasurement) to the float value 9.4 and the
unit of measurement (centimeters), respectively. To
improve readability, we obtained the descriptions of
the auxiliary individuals (e.g., Depth), which are en-
tirely different entries in the glossary that the swat
verbalizer produces, and we copied them immedi-
ately after the corresponding sentences that intro-
duce the auxiliary individuals. 66 We also formatted
each text as a list of sentences, with the copied sen-
tences shown indented, again to improve readability.

We then generated texts for the 60 products by us-
ing Naturalowl without domain-dependent genera-
tion resources, setting the maximum fact distance to
one. Descriptions of auxiliary individuals were also
generated, and they were copied immediately after
the sentences introducing the auxiliary individuals,
as with the texts of the swat verbalizer. The texts
were again formatted as lists of sentences, with the
sentences about the auxiliary individuals shown in-
dented. An example of a resulting text follows.

66We also discarded sentences stating the datatypes of auxil-

iary individuals (e.g., “Depth is a quantitative value float”).

42

Sony Cyber-shot DSC-T90 is Digital Camera.

Sony Cyber-shot DSC-T90 has manufacturer Sony.

Sony Cyber-shot DSC-T90 has feature Automatic Pic-

ture Stabilizer, Microphone and Video Recording.

Sony Cyber-shot DSC-T90 has weight Weight.

Weight has unit of measurement grm.

Weight has value float 128.0.

Sony Cyber-shot DSC-T90 has energy source Akku.

Sony Cyber-shot DSC-T90 has display size Display.

Display has unit of measurement in.

Display has value float 3.0.

Sony Cyber-shot DSC-T90 has optical zoom factor Opti-

cal Zoom.

Optical Zoom has value float 4.0.

Sony Cyber-shot DSC-T90 has width Width.

Width has unit of measurement cm.

Width has value float 1.5.

Sony Cyber-shot DSC-T90 has shutter lag Shutter Lag.

Shutter Lag has min value float 2.0.

Shutter Lag has max value float 0.0010.

Shutter Lag has unit of measurement sec.

Sony Cyber-shot DSC-T90 has height Height.

Height has unit of measurement cm.

Height has value float 5.7.

Sony Cyber-shot DSC-T90 has internal memory capacity

Internal Memory Capacity.

Internal Memory Capacity has unit of measurement

GB.

Internal Memory Capacity has value float 11.0.

Sony Cyber-shot DSC-T90 has focus size Focus Size.

Focus Size has min value float 35.0.

Focus Size has max value float 140.0.

Sony Cyber-shot DSC-T90 has digital zoom factor Digi-

tal Zoom Factor.

Digital Zoom Factor has value float 12.1.

Sony Cyber-shot DSC-T90 has data interface type USB

2.0.

Sony Cyber-shot DSC-T90 has depth Depth.

Depth has unit of measurement cm.

Depth has value float 9.4.

Sony Cyber-shot DSC-T90 has self timer true.

In this trial, we also wanted to consider a scenario
where there are many individuals to be described
(e.g., products sold by a reseller), the set of individ-
uals to be described changes frequently (e.g., new
products arrive) along with other individuals (e.g.,
a new manufacturer may be added), but nothing
else in the domain ontology changes (e.g., the def-
initions of the classes, the available properties); in
other words, only the assertional knowledge (ABox)

changes. In this case, it may be impractical to update
the domain-dependent generation resources when-
ever the individuals of the domain ontology change.
Such an update might, for example, add particular
user modeling annotations about the new individu-
als (e.g., to avoid saying that “The Sony Cyber-shot
dsc-t90 is manufactured by Sony”), it might fine-
tune the sentence plans to express more fluently in-
formation about the new individuals, but most im-
portantly it could provide nl names for the new in-
dividuals; recall that the construction of nl names
may be a significant part of the authoring effort.

Our hypothesis was that by considering a sample
of individuals of the types to be described (a sample
of cameras, camcorders, and printers in our case),
it would be possible to construct domain-dependent
generation resources (e.g., sections, ordering of sec-
tions and properties, sentence plans, nl names of
classes) that would help Naturalowl generate rea-
sonably good descriptions of new individuals (prod-
ucts), without updating the domain-dependent gen-
eration resources, and by using the tokenized owl
identifiers or rdfs:label strings of new individuals,
for which nl names would be unavailable.

To simulate a scenario of this kind, we randomly
split the 60 products in two non-overlapping sets,
the development set and the test set, each consisting
of 10 digital cameras, 10 camcorders, and 10 print-
ers. As in the previous trial, the second author con-
structed and refined Naturalowl’s domain depen-
dent generation resources, this time by considering
a version of the domain ontology that included the
30 products of the development set, but not the 30
products of the test set, and the texts generated for
the products of the development set; this took ap-
proximately six days (for two languages). Texts for
the 30 products of the test set were then also gener-
ated by using Naturalowl and the domain depen-
dent generation resources of the development set.

As in the previous trial, we defined only one user
type, and we added user modeling annotations only
to block sentences stating the obvious. The maxi-
mum messages per (aggregated) sentence was again
set to three. We constructed domain-dependent gen-
eration resources for both English and Greek in this
trial; the resources are summarized in Table 12. We
created sentence plans only for the 42 properties of
the domain ontology that were used in the develop-
ment set (one sentence plan per property); the test
set uses two additional properties, for which Nat-
uralowl’s default sentence plans (for English and
Greek) were used. We also assigned the 42 proper-

43

resources English Greek

sections 6

property assignments to sections 42

interest score assignments 12

sentence plans 42 42

lexicon entries 19 19

natural language names 36 36

Table 12

Domain-dependent generation resources created for the
Consmer Electronics Ontology (one user type).

ties to 5 sections, and we ordered the sections and
their properties. We created nl names only when
the automatically extracted ones were causing dis-
fluencies in the development texts. Unlike the previ-
ous trial, the products to be described were not de-
clared to be anonymous individuals, but the number
of nl names that had to be provided was roughly
the same as in the previous trial, since fewer au-
tomatically extracted names were causing disfluen-
cies; in particular, all product names had reason-
ably good rdfs:label strings providing their English
names. The largest part of the authoring effort was
now devoted to sentence plans, which was partly due
to the larger number of properties of the domain on-
tology, compared to the previous trial.

An example description of a product from the de-
velopment set produced by using Naturalowl with
the domain-dependent generation resources follows.
We formatted the sentences of each section as a sep-
arate paragraph, headed by the name of the section
(e.g., “Other features:”); this formatting can be eas-
ily achieved, given that sections can be automati-
cally marked up by Naturalowl in the generated
texts. The maximum fact distance was again set to
one, but the sentence plans caused Naturalowl to
automatically retrieve additional message triples de-
scribing the auxiliary individuals at distance one;
hence, we did not have to retrieve this informa-
tion manually, unlike the indented sentences in the
texts of the swat verbalizer and Naturalowl with-
out domain-dependent generation resources. 67

Type: Sony Cyber-shot DSC-T90 is a digital camera.

Main features: It has a focal length range of 35.0 to

140.0 mm, a shutter lag of 2.0 to 0.0010 sec and an op-

tical zoom factor of 4.0. It has a digital zoom factor of

12.1 and its display has a diagonal of 3.0 in.

Other features: It features an automatic picture sta-

67See also the relevant footnote on page 24.

bilizer, a microphone, video recording and it has a self-

timer.

Energy and environment: It uses batteries.

Connectivity, compatibility, memory: It supports

USB 2.0 connections for data exchange and it has an

internal memory of 11.0 GB.

Dimensions and weight: It is 5.7 cm high, 1.5 cm wide

and 9.4 cm deep. It weighs 128.0 grm.

An example product description from the test set
follows. “Super A 3 B” is an automatically obtained
name (of a type of paper) that has been extracted
from the corresponding owl identifier.

Type: Canon PIXMA Pro9500 is a printer.

Main features: Its maximum black and white printing

resolution is 4800.0 dots horizontally, 2400.0 dots verti-

cally and it prints on at most Super A 3 B. It holds up

to 150.0 sheets in the output tray.

Other features: It features color printing.

Energy and environment: It consumes 20.0 watt dur-

ing use, 1.8 watt during standby and its sound emission

is 34.0 db during use.

Connectivity, compatibility, memory: It does not

have network ability, it supports the PictBridge stan-

dard, USB 2.0 connections for data exchange, and it is

compatible with Mac OS X and Windows.

Dimensions and weight: It is 19.1 cm high, 35.4 cm

wide and 66.0 cm deep. It weighs 14000.0 grm.

It has max color print speed normal Max Color Print

Speed Normal.

The last sentence of the product description above
expresses a message triple involving a property
(hasMaxColorPrintSpeedNormal) of the domain ontol-
ogy for which no sentence plan has been provided,
because that property was not used in the devel-
opment set. The default sentence plan has been
used, but the O of the 〈S, P,O〉 message triple re-
ported by the sentence is the auxiliary individual
MaxColorPrintSpeedNormal. A manually crafted sen-
tence plan would instruct Naturalowl to use the
value of another property of the domain ontology
that leads from MaxColorPrintSpeedNormal to a nu-
merical value expressing the printing speed (and
similarly for the unit of measurement), and use that
number (and unit) as the object of the sentence.
The default sentence plan, however, instructs Natu-
ralowl to use the name of MaxColorPrintSpeedNormal

itself as the object, leading to a nonsensical sen-
tence, where a tokenized form of the owl identi-
fier MaxColorPrintSpeedNormal is used as the object.

44

Also, the sentence has been placed at the end of
the text, because the property it expresses has not
been assigned to any section. Problematic sentences
like this were very rare in the texts that Natu-
ralowl generated for the test set using the domain-
dependent generation resources of the development
set, because the two additional properties of the
test set were very rarely used. We also note that
in the scenario that we are mostly interested in,
only the individuals of the domain ontology would
change; no new properties would be added, unlike
the two additional properties of this trial’s test set.

The 180 English texts that were generated by the
three systems for the 30 development and the 30 test
products were shown to the same 10 students of the
first trial. The students were now told that the texts
would be used in on-line descriptions of products in
the Web site of a retailer, that the customers would
also be able to see information about the products
in the form of tables, but that the purpose of the
study was to consider only the texts. Again, the owl
statements that the texts were generated from were
not shown to the students, and the students did not
know which system had generated each text. Each
student was shown 18 randomly selected texts, 9
for products of the development set (three texts per
system) and 9 for products of the test set (again
three texts per system). Each student was shown all
of his/her texts in random order, regardless of the
system that had generated them. The students were
asked to score the texts as in the previous trial.

Table 13 shows the results for the English texts of
the development set; when a confidence interval is
shown as 0.00, this means that all the students gave
the same score to all the texts of that particular sys-
tem. As in the previous trial, the domain-dependent
generation resources clearly help Naturalowl pro-
duce much more fluent sentences, and much better
referring expressions and sentence orderings. The
text structure scores of the swat verbalizer and Nat-
uralowl without domain-dependent generation re-
sources are now much lower than in the previous
trial, because the texts of these systems jump from
one topic to another making the texts look very in-
coherent (e.g., a sentence that expresses the width of
a camera may be separated from a sentence express-
ing its height by an intervening sentence about its
shutter lag), especially in this trial where the texts of
the two systems are much longer. This incoherence
may have also contributed to the much lower clarity
scores of these two systems, compared to the previ-
ous trial. The interest scores of the two systems are

criteria swat Naturalowl − Naturalowl +

sentence fluency 1.97 ± 0.15 1.93 ± 0.27 2.90 ± 0.08

ref. expressions 1.10 ± 0.06 1.10 ± 0.11 2.87 ± 0.08

text structure 1.67 ± 0.15 1.33 ± 0.19 2.97 ± 0.04

clarity 1.97 ± 0.15 2.07 ± 0.26 3.00 ± 0.00

interest 1.77 ± 0.14 1.73 ± 0.29 3.00 ± 0.00

Table 13
Average results, with 95% confidence intervals, for English

texts generated from development data of the Consumer

Electronics Ontology. The texts were generated by the
swat verbalizer and Naturalowl with (+) and without (−)

domain-dependent generation resources. For each criterion,

the best scores are shown in bold; the confidence interval of
the best score is also shown in bold if it does not overlap with

the confidence intervals of the other scores of the criterion.

also much lower than in the previous trial; this may
be due to the verbosity of their texts, which is caused
by their frequent references to auxiliary individu-
als in the second trial, combined with the lack (or
very little use) of sentence aggregation and pronoun
generation. By contrast, the clarity and interest of
Naturalowl with domain-dependent generation re-
sources were judged to be perfect; the poor clarity
and interest of the texts of the other two systems
may have contributed to these perfect scores though.
Again, the swat verbalizer obtained slightly better
scores than Naturalowl without domain-dependent
generation resources, except for clarity, but the dif-
ferences in the scores of the two systems are not sta-
tistically significant in any of the criteria.

Table 14 shows the results for the English texts of
the test set. The results of the swat verbalizer and
Naturalowl without domain-dependent generation
resources are very similar to those of Table 13, as
one would expect. There was only a very marginal
decrease in the scores of Naturalowl with domain-
dependent generation resources, compared to the
scores of the same system for the development set
(cf. Table 13). There is no statistically significant
difference, however, between the corresponding cells
of the two tables, for any of the three systems. These
results support our hypothesis that by considering
a sample of individuals of the types to be described
one can construct domain-dependent generation re-
sources that can be used to produce good texts for
new individuals of the same types, provided that the
rest of the domain ontology remains unchanged. The
fact that all product names (but not other individ-
uals) had rdfs:label strings providing their English
names probably contributed to the high results of
Naturalowl with domain-dependent generation re-

45

criteria swat Naturalowl − Naturalowl +

sentence fluency 2.03 ± 0.15 1.87 ± 0.15 2.87 ± 0.08

ref. expressions 1.10 ± 0.06 1.10 ± 0.06 2.87 ± 0.08

text structure 1.57 ± 0.13 1.37 ± 0.12 2.93 ± 0.05

clarity 2.07 ± 0.15 1.93 ± 0.15 2.97 ± 0.04

interest 1.83 ± 0.17 1.60 ± 0.14 2.97 ± 0.04

Table 14
Average results, with 95% confidence intervals, for English

texts from test data of the Consumer Electronics Ontol-

ogy. The texts were generated by the swat verbalizer and
Naturalowl with (+) and without (−) domain-dependent

generation resources. For each criterion, the best scores are

shown in bold; the confidence interval of the best score is
also shown in bold if it does not overlap with the confidence

intervals of the other scores of the criterion.

sources in the test set, but rdfs:label strings of this
kind are common in owl ontologies.

We then showed the 60 Greek texts that were gen-
erated by Naturalowl with domain-dependent gen-
eration resources to the same 10 students, who were
native Greek speakers; the swat verbalizer and Nat-
uralowl without domain-dependent generation re-
sources cannot generate Greek texts from the Con-
sumer Electronics ontology. Table 15 shows the re-
sults we obtained for the Greek texts of the develop-
ment and test sets. There is no statistically signif-
icant difference from the corresponding results for
English (cf. the last columns of Tables 13 and 14).
There is also no statistically significant difference in
the results for the Greek texts of the development
and test sets (Table 15). We note, however, that it is
common to use English names of consumer electron-
ics products in Greek texts, which made using the
English rdfs:label names of the products in Greek
texts look acceptable. In other domains, for exam-
ple about cultural heritage, it would be unaccept-
able to use English names of monuments, locations
etc. in Greek texts; hence, one would have to pro-
vide Greek nl names for any new individuals added
to the domain ontology.

5. Conclusions and future work

This article has provided a detailed description of
Naturalowl, an open-source nlg system that pro-
duces texts (in English and Greek) describing in-
dividuals or classes from owl domain ontologies
optionally associated with domain-dependent gen-
eration resources. Unlike simpler owl verbalizers,
which typically express a single axiom of the do-

Naturalowl +, Naturalowl +,

criteria development data test data

sentence fluency 2.87 ± 0.12 2.83 ± 0.09

ref. expressions 2.77 ± 0.20 2.80 ± 0.11

text structure 3.00 ± 0.00 3.00 ± 0.00

clarity 3.00 ± 0.00 2.93 ± 0.05

interest 2.97 ± 0.06 3.00 ± 0.00

Table 15
Avg. results, with 95% confidence intervals, for Greek texts

generated from development and test data of the Con-

sumer Electronics Ontology by Naturalowl with (+)
and without (−) domain-dependent generation resources.

main ontology at a time in controlled and often not
entirely fluent natural language mostly for the ben-
efit of domain experts, Naturalowl aims to gener-
ate fluent, coherent, and interesting multi-sentence
texts appropriate for end-users.

We discussed Naturalowl’s processing stages, the
optional domain-dependent generation resources of
each stage, why the resources are useful, and how
they can also be represented in owl. We also pre-
sented trials we performed to measure the effort
that is required to configure Naturalowl for new
domain ontologies, and the quality of the resulting
texts. The trials confirmed our hypothesis that the
domain-dependent generation resources help Natu-
ralowl produce texts of significantly better qual-
ity, compared to the texts produced without the
domain-dependent generation resources, and clearly
better than the texts of a simpler owl verbalizer.

To the best of our knowledge, this is the first
detailed description of a complete, general-purpose,
nlg system for owl domain ontologies. It is also
the first study of the effect of domain-dependent
generation resources on the texts of a system that
can describe owl classes and individuals both
with and without domain-dependent generation re-
sources. This article has also shown how the domain-
dependent generation resources of Naturalowl can
themselves be represented in owl, which allows
easily publishing them on the Web, reusing them,
checking them for inconsistencies etc., as with other
owl ontologies. The trials that we performed are
also novel, in that they considered existing owl do-
main ontologies, created independently by others.

Naturalowl was partly developed to demonstrate
the benefits of using nlg on the Semantic Web. A
key benefit is that it becomes possible to publish in-
formation on the Web in the form of owl domain
ontologies, and rely on nlg to automatically pro-

46

duce personalized texts in multiple languages from
the ontologies, thus making the information easily
accessible not only to computer programs and do-
main experts, but also end-users. We hope that Nat-
uralowl will contribute towards a wider adoption
of nlg on the Semantic Web and also towards a
gradual standardization of domain-dependent gen-
eration resources, allowing resources to be reused
more easily across nlg systems. We welcome co-
operations to add to Naturalowl support for ad-
ditional languages and more eleborate nlg compo-
nents. To that end we have suggested several pos-
sible extensions, along with pointers to prominent
related work, and we provide a collaborative source
code repository for Naturalowl.

We are currently working towards a global op-
timization nlg approach, in order to replace the
pipeline architecture of Naturalowl with an archi-
tecture that will consider all the nlg processing
stages in parallel, in order to avoid greedy stage-
specific decisions. It would also be particularly inter-
esting to explore how some of the domain-dependent
generation resources could be obtained automati-
cally from appropriate corpora.

References

[1] E. Althaus, N. Karamanis, A. Koller, Computing

locally coherent discourses, in: 42nd Annual Meeting

of ACL, Barcelona, Spain, 2004.
[2] I. Androutsopoulos, S. Kallonis, V. Karkaletsis,

Exploiting OWL ontologies in the multilingual
generation of object descriptions, in: 10th European

Workshop on NLG, Aberdeen, UK, 2005.
[3] I. Androutsopoulos, P. Malakasiotis, A survey of

paraphrasing and textual entailment methods, Journal

of Artificial Intelligence Research 38 (2010) 135–187.
[4] I. Androutsopoulos, J. Oberlander, V. Karkaletsis,

Source authoring for multilingual generation of

personalised object descriptions, Nat. Language
Engineering 13 (3) (2007) 191–233.

[5] G. Angeli, P. Liang, D. Klein, A simple domain-
independent probabilistic approach to generation,

in: Conf. on Empirical Methods in Nat. Language

Processing, Cambridge, MA, 2010.
[6] G. Antoniou, F. van Harmelen, A Semantic Web

primer, 2nd ed., MIT Press, 2008.
[7] C. Areces, A. Koller, K. Striegnitz, Referring

expressions as formulas of description logic, in: 5th Int.

Nat. Lang. Generation Conf. Salt Fork, OH, 2008.
[8] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,

P. Patel-Schneider (eds.), The description logic
handbook: theory, implementation and application,

Cambridge University Press, 2002.
[9] R. Barzilay, N. Elhadad, K. McKeown, Inferring

strategies for sentence ordering in multidocument

news summarization, Journal of Artificial Intelligence
Research 17 (2002) 35–55.

[10] R. Barzilay, M. Lapata, Collective content selection

for concept-to-text generation, in: Human Lang.
Technology Conf. and Conf. on Empirical Methods

in Nat. Language Processing, Vancouver, British

Columbia, Canada, 2005.

[11] R. Barzilay, M. Lapata, Aggregation via set
partitioning for natural language generation, in:

Human Lang. Technology Conf. of the North American
Chapter of ACL, New York, NY, 2006.

[12] R. Barzilay, M. Lapata, Modeling local coherence:

An entity-based approach, Comput. Linguistics 34 (1)

(2008) 1–34.

[13] R. Barzilay, L. Lee, Catching the drift: Probabilistic

content models, with applications to generation and

summarization, in: 43rd Annual Meeting of ACL, Ann
Arbor, MI, 2004.

[14] J. Bateman, Upper modelling: A general organisation

of knowledge for nat. lang. processing, in: 5th Int.

Workshop on NLG, Dawson, PA, 1990.

[15] J. Bateman, Enabling technology for multilingual nat.

lang. generation: the KPML development environment,

Nat. Lang. Engineering 3 (1) (1997) 15–56.

[16] J. Bateman, M. Zock, Natural language generation, in:

R. Mitkov (ed.), The Oxford Handbook of Comput.

Linguistics, chap. 15, Oxford University Press, 2003,
pp. 284–304.

[17] A. Belz, Automatic generation of weather forecast

texts using comprehensive probabilistic generation-

space models, Nat. Lang. Eng. 14 (4) (2008) 431–455.

[18] A. Belz, E. Kow, J. Viethen, A. Gatt, Generating

referring expressions in context: the GREC task

evaluation challenges, in: E. Krahmer, M. Theune
(eds.), Empirical Methods in Nat. Lang. Generation,

Springer-Verlag, 2010, pp. 294–327.

[19] R. Bernardi, D. Calvanese, C. Thorne, Lite natural
language, in: 7th Int. Workshop on Comput. Semantics,

Tilburg, The Netherlands, 2007.

[20] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic

Web, Scientific American (2001) 34–43.

[21] A. Bernstein, E. Kaufmann, GINO – a guided input

natural language ontology editor, in: 5th Int. Semantic

Web Conf. Athens, GA, 2006.

[22] A. Bernstein, E. Kaufmann, C. Kaiser, C. Kiefer,
Ginseng: A guided input natural language search

engine for querying ontologies, in: Jena User Conf.
Bristol, UK, 2006.

[23] D. Bilidas, M. Theologou, V. Karkaletsis, Enriching

OWL ontologies with linguistic and user-related

annotations: the ELEON system, in: 19th IEEE Int.
Conf. on Tools with Artificial Intelligence, vol. 2,
Patras, Greece, 2007.

[24] K. Bontcheva, Open-source tools for creation,
maintenance, and storage of lexical resources for lang.
generation from ontologies, in: 4th Conf. on Lang.

Resources and Evaluation, Lisbon, Portugal, 2004.

[25] K. Bontcheva, Generating tailored textual summaries
from ontologies, in: 2nd European Semantic Web Conf.

Heraklion, Greece, 2005.

[26] K. Bontcheva, H. Cunningham, The Semantic Web:
a new opportunity and challenge for human language

47

technology, in: Workshop on Human Lang. Technology

for the Semantic Web and Web Services, 2nd Int.

Semantic Web Conf. Sanibel Island, FL, 2003.

[27] K. Bontcheva, V. Tablan, D. Maynard, H. Cun-
ningham, Evolving GATE to meet new challenges

in language engineering, Nat. Language Engineering
10 (3/4) (2004) 349–373.

[28] K. Bontcheva, Y. Wilks, Automatic report generation

from ontologies: the MIAKT approach, in: 9th Int.

Conf. on Applications of Nat. Language to Information
Systems, Manchester, UK, 2004.

[29] S. Brin, L. Page, The anatomy of a large-scale

hypertextual Web search engine, Computer Networks
and ISDN Systems 30 (1-7) (1998) 107–117.

[30] C. Brun, M. Dyteman, V. Lux, Document structure

and multilingual authoring, in: 1st Int. Nat. Lang.
Generation Conf. Mitzpe Ramon, Israel, 2000.

[31] S. Busemann, H. Horacek, A flexible shallow approach

to text generation, in: 9th Int. Workshop on Nat. Lang.

Generation, New Brunswick, NJ, 1999.

[32] H. Chen, S. Branavan, R. Barzilay, D. Karger,

Content modeling using latent permutations, Journal

of Artificial Intelligence Research 36 (2009) 129–163.

[33] H. Cheng, C. Mellish, Capturing the interaction
between aggregation and text planning in two

generation systems, in: 1st Int. Conf. on Nat. Lang.

Generation, Mitzpe Ramon, Israel, 2000.

[34] P. Cimiano, P. Buitelaar, J. McCrae, M. Sintek,

LexInfo: A declarative model for the lexicon-ontology

interface, Web Semantics 9 (1) (2011) 29–51.

[35] H. Clark, Bridging, in: P. Johnson-Laird, P. Wason
(eds.), Thinking: Readings in Cognitive Science,

Cambridge University Press, 1977, pp. 9–27.

[36] A. Cregan, R. Schwitter, T. Meyer, Sydney OWL
syntax – towards a controlled natural language syntax

for OWL 1.1, in: OWL Experiences and Directions

Workshop, Innsbruck, Austria, 2007.

[37] R. Dale, Generating Referring Expressions: Con-

structing Descriptions in a Domain of Objects and

Processes, MIT Press, 1992.

[38] R. Dale, S. Green, M. Milosavljevic, C. Paris,
C. Verspoor, S. Williams, Dynamic document delivery:

generating natural language texts on demand, in: 9th
Int. Conf. and Workshop on Database and Expert

Systems Applications, Vienna, Austria, 1998.

[39] R. Dale, E. Reiter, Computational interpretations of

the Gricean maxims in the generation of referring
expressions, Cognitive Science 18 (1995) 233–263.

[40] R. Dale, J. Viethen, Attribute-centric referring

expression generation, in: E. Krahmer, M. Theune
(eds.), Empirical Methods in Nat. Lang. Generation,

Springer, 2010, pp. 163–179.

[41] H. Dalianis, Aggregation in nat. lang. generation,
Comput. Intelligence 15 (4) (1999) 384–414.

[42] D. Dannells, Applying semantic frame theory to
automate natural language template generation from

ontology statements, in: 6th Int. Nat. Lang. Generation
Conf. Trim, Co. Meath, Ireland, 2010.

[43] D. Dannels, Generating tailored texts for museum

exhibits, in: Workshop on Language Technology for
Cultural Heritage Data of the Language Resources and

Evaluation Conf. Marrakech, Morocco, 2008.

[44] B. Davis, A. Iqbal, A. Funk, V. Tablan, K. Bontcheva,

H. Cunningham, S. Handschuh, Roundtrip ontology

authoring, in: 7th Int. Conf. on the Semantic Web,
Karlsruhe, Germany, 2008.

[45] S. Demir, S. Carberry, K. McCoy, A discourse-aware

graph-based content-selection framework, in: 6th Int.
NLG Conf. Trim, Co. Meath, Ireland, 2010.

[46] R. Denaux, V. Dimitrova, A. Cohn, C. Dolbear,

G. Hart, Rabbit to OWL: Ontology authoring with a
CNL-based tool, in: N. Fuchs (ed.), Controlled Nat.

Language, vol. 5972 of Lecture Notes in Computer

Science, Springer, 2010, pp. 246–264.

[47] R. Denaux, C. Dolbear, G. Hart, V. Dimitrova,

A. Cohn, Supporting domain experts to construct

conceptual ontologies: A holistic approach, Web
Semantics 9 (2) (2011) 113–127.

[48] B. Di Eugenio, D. Fossati, D. Yu, S. Haller, M. Glass,
Aggregation improves learning: Experiments in natural

language generation for intelligent tutoring systems, in:

43rd Annual Meeting of ACL, Ann Arbor, MI, 2005.

[49] A. Dimitromanolaki, I. Androutsopoulos, Learning to

order facts for discourse planning in natural language

generation, in: 9th European Workshop on Nat. Lang.
Generation, 10th Conf. of the European Chapter of

ACL, Budapest, Hungary, 2003.

[50] P. Duboue, K. McKeown, Empirically estimating order
constraints for content planning in generation, in: 39th

Annual Meeting of ACL, Toulouse, France, 2001.

[51] P. Duboue, K. McKeown, Content planner construction
via evolutionary algorithms and a corpus-based fitness

function, in: 2nd Int. Nat. Lang. Generation Conf.

Harriman, NY, 2002.

[52] P. Duboue, K. McKeown, Statistical acquisition of

content selection rules for natural language generation,
in: Conf. on Empirical Methods in Nat. Language

Processing, Sapporo, Japan, 2003.

[53] M. Dzbor, E. Motta, C. Buil, J. Gomez, O. Goerlitz,
H. Lewen, Developing ontologies in OWL: An

observational study, in: OWL Experiences and

Directions Workshop, Athens, GA, 2006.

[54] M. Elhadad, J. Robin, SURGE: A reusable

comprehensive syntactic realization component, in: 8th

Int. Nat. Lang. Generation Workshop, Herstmonceux
Castle, Sussex, UK, 1996.

[55] M. Elsner, J. Austerweil, E. Charniak, A unified local

and global model for discourse coherence, in: Human
Lang. Technologies Conf. of the North American

Chapter of ACL, Rochester, New York, 2007.

[56] C. Fellbaum (ed.), WordNet: an electronic lexical
database, MIT Press, 1998.

[57] G. Fliedl, C. Kop, J. Vohringer, From OWL class
and property labels to human understandable natural

language, in: 12th Int. Conf. on Applications of Nat.
Language to Information Systems, Paris, France, 2007.

[58] N. Fuchs, K. Kaljurand, T. Kuhn, Attempto Controlled

English for knowledge representation, in: C. Baroglio,

P. Bonatti, J. Maluszynski, M. Marchiori, A. Polleres,
S. Schaffert (eds.), Reasoning Web, Springer-Verlag,

2008, pp. 104–124.

[59] A. Funk, V. Tablan, K. Bontcheva, H. Cunningham,
B. Davis, S. Handschuh, CLOnE: Controlled language

48

for ontology editing, in: 6th Int. Semantic Web and

2nd Asian Semantic Web Conf. Busan, Korea, 2007.
[60] D. Galanis, I. Androutsopoulos, Generating multi-

lingual descriptions from linguistically annotated OWL
ontologies: the NaturalOWL system, in: 11th European

Workshop on Nat. Lang. Generation, Schloss Dagstuhl,
Germany, 2007.

[61] D. Galanis, G. Karakatsiotis, G. Lampouras,

I. Androutsopoulos, An open-source natural language

generator for OWL ontologies and its use in Protégé
and Second Life, in: 12th Conf. of the European

Chapter of ACL (demos), Athens, Greece, 2009.
[62] A. Gatt, A. Belz, Introducing shared tasks to NLG:

the TUNA shared task evaluation challenges, in:

E. Krahmer, M. Theune (eds.), Empirical Methods in

NLG, Springer-Verlag, 2010, pp. 264–293.
[63] A. Gatt, E. Reiter, SimpleNLG: A realisation engine

for practical applications, in: 12th European Workshop

on NLG, Athens, Greece, 2009.
[64] J. Gracia, E. Montiel-Ponsoda, P. Cimiano, A. Gomez-

Perez, P. Buitelaar, J. McCrae, Challenges for the

multilingual Web of Data, Web Semantics 11 (2012)
63–71.

[65] B. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-

Schneider, U. Sattler, OWL 2: The next step for OWL,
Web Semantics 6 (2008) 309–322.

[66] B. Grosz, A. Joshi, S. Weinstein, Centering: a

framework for modelling the local coherence of

discourse, Comput. Linguistics 21 (2) (1995) 203–225.
[67] Y. Guo, H. Wang, J. van Genabith, Dependency-based

n-gram models for general purpose sentence realisation,

Nat. Language Engineering 17 (2010) 455–483.
[68] V. Haarslev, R. Moller, RACER system description, in:

1st Int. Joint Conf. on Automated Reasoning, Siena,

Italy, 2001.
[69] C. Halaschek-Wiener, J. Golbeck, B. Parsia,

V. Kolovski, J. Hendler, Image browsing and natural

language paraphrases of semantic web annotations,
in: 1st Workshop on Semantic Interoperability in

the European Digital Library at the 5th European

Semantic Web Conf. Tenerife, Spain, 2008.
[70] C. Hallett, D. Scott, R. Power, Composing questions

through conceptual authoring, Comput. Linguistics 33

(2007) 105–133.
[71] M. Halliday, Introduction to Functional Grammar, 2nd

ed., Edward Arnold, 1994.
[72] M. Halliday, R. Hassan, Cohesion in English, Longman,

1976.
[73] K. Harbusch, G. Kempen, Generating clausal

coordinate ellipsis multilingually: A uniform approach

based on postediting, in: 12th European Workshop on
Nat. Lang. Generation, Athens, Greece, 2009.

[74] G. Hart, M. Johnson, C. Dolbear, Rabbit: Developing

a control natural language for authoring ontologies, in:
5th European Semantic Web Conf. Tenerife, Canary
Islands, Spain, 2008.

[75] A. Hartley, C. Paris, Multilingual document production

– from support for translating to support for authoring,
Machine Translation 12 (1–2) (1997) 109–129.

[76] A. Hartley, D. Scott, J. Bateman, D. Dochev, AGILE
– a system for multilingual generation of technical
instructions, in: 8th Machine Translation Summit,

Santiago de Compostella, Spain, 2001.

[77] M. Hearst, TextTiling: Segmenting text into multi-

paragraph subtopic passages, Comput. Linguistics

23 (1) (1997) 33–64.
[78] D. Hewlett, A. Kalyanpur, V. Kolovski, C. Halaschek-

Wiener, Effective NL paraphrasing of ontologies on the

Semantic Web, in: Workshop on End-User Semantic
Web Interaction, 4th Int. Semantic Web Conf. Galway,

Ireland, 2005.
[79] H. Horacek, A best-first search algorithm for generating

referring expressions, in: 10th Conf. of the European
Chapter of ACL, Budapest, Hungary, 2003.

[80] E. Hovy, Automatic discourse generation using

discourse structure relations, Artificial Intelligence
63 (1–2) (1993) 341–385.

[81] A. Isard, Choosing the best comparison under the

circumstances, in: Int. Workshop on Personalization
Enhanced Access to Cultural Heritage, 11th Int. Conf.

on User Modeling, Corfu, Greece, 2007.
[82] A. Isard, J. Oberlander, I. Androutsopoulos,

C. Matheson, Speaking the users’ languages, IEEE

Intelligent Systems 18 (1) (2003) 40–45.
[83] K. Kaljurand, Attempto controlled english as a

Semantic Web language, Ph.D. thesis, Faculty of
Mathematics and Computer Science, University of

Tartu, Estonia (2007).
[84] K. Kaljurand, N. Fuchs, Verbalizing OWL in Attempto

Controlled English, in: 3rd Int. Workshop on OWL:

Experiences and Directions, Innsbruck, Austria, 2007.
[85] G. Karakatsiotis, Automatic generation of comparisons

in a natural language generation system, MSc thesis,

Department of Informatics, Athens University of

Economics and Business, in Greek (2007).
[86] G. Karakatsiotis, D. Galanis, G. Lampouras,

I. Androutsopoulos, NaturalOWL: Generating texts

from OWL ontologies in Protégé and in Second Life, in:
18th European Conf. on Artificial Intelligence (demos),

Patras, Greece, 2008.
[87] N. Karamanis, C. Mellish, M. Poesio, J. Oberlander,

Evaluating centering for information ordering using

corpora, Comput. Linguistics 35 (1) (2009) 29–46.
[88] A. Karasimos, A. Isard, Multi-lingual evaluation of

a natural language generation system, in: 4th Int.
Conf. on Language Resources and Evaluation, Lisbon,

Portugal, 2004.
[89] R. Kasper, R. Whitney, SPL: A sentence plan language

for text generation, Tech. rep., Information Sciences

Institute, University of Southern California (1989).
[90] E. Kaufmann, A. Bernstein, Evaluating the usability

of natural language query languages and interfaces

to Semantic Web knowledge bases, Web Semantics 8

(2010) 377–393.
[91] C. Kelly, A. Copestake, N. Karamanis, Investigating

content selection for language generation using machine

learning, in: 12th European Workshop on Nat. Lang.
Generation, Athens, Greece, 2010.

[92] R. Kibble, R. Power, Optimizing referential coherence

in text generation, Comp. Ling. 30 (4) (2004) 401–416.
[93] J. Kim, R. Mooney, Generative alignment and semantic

parsing for learning from ambiguous supervision, in:

23rd Int. Conf. on Comput. Ling., Beijing, China, 2010.
[94] W. Kintsch, J. Keenan, Reading rate and retention as a

function of the number of propositions in the text base

of sentences, Cognitive Psychology 5 (1973) 257–274.

49

[95] W. Kintsch, T. van Dijk, Towards a model of text

comprehension and production, Psychological Review

85 (1978) 363–394.

[96] S. Konstantopoulos, I. Androutsopoulos, H. Baltzakis,
V. Karkaletsis, C. Matheson, A. Tegos, P. Trahanias,

INDIGO: Interaction with personality and dialogue
enabled robots, in: 18th European Conf. on Artificial

Intelligence, (demos), Patras, Greece, 2008.

[97] S. Konstantopoulos, A. Tegos, D. Bilidas,

I. Androutsopoulos, G. Lampouras, P. Malakasiotis,
C. Matheson, O. Deroo, Adaptive natural language

interaction, in: 12th Conf. of the European Chapter of

ACL (demos), Athens, Greece, 2009.

[98] I. Konstas, M. Lapata, Concept-to-text generation via

discriminative reranking, in: 50th Annual Meeting of

the ACL, Jeju Island, Korea, 2012.

[99] I. Konstas, M. Lapata, Unsupervised concept-to-
text generation with hypergraphs, in: Human Lang.

Technology Conf. of the North American Chapter of
ACL, Montréal, Canada, 2012.

[100] E. Krahmer, M. Theune (eds.), Empirical Methods in

Nat. Lang. Generation, Springer, 2010.

[101] E. Krahmer, K. van Deemter, Computational
generation of referring expressions: A survey, Comput.

Linguistics 38 (1) (2012) 173–218.

[102] E. Krahmer, S. van Erk, A. Verleg, Graph-

based generation of referring expressions, Comput.
Linguistics 29 (1) (2003) 53–72.

[103] T. Kuhn, R. Schwitter, Writing support for controlled

natural languages, in: Australasian Lang. Technology
Association Workshop, Hobart, Australia, 2008.

[104] I. Langkilde, Forest based statistical sentence

generation, in: 1st Conf. of the North American
Chapter of ACL, Seattle, WA, 2000.

[105] I. Langkilde, K. Knight, Generation that exploits

corpus-based statistical knowledge, in: 36th Annual

Meeting of ACL and the 17th Int. Conf. on Comput.
Linguistics, vol. 1, Montreal, Quebec, Canada, 1998.

[106] I. Langkilde-Geary, An empirical verification of

coverage and correctness for a general-purpose sentence
generator, in: 2nd Int. Nat. Lang. Generation

Workshop, Harriman, NY, 2002.

[107] B. Lavoie, O. Rambow, A fast and portable realizer for
text generation systems, in: 5th Conf. on Applied Nat.

Language Processing, Washington DC, 1997.

[108] P. Liang, M. Jordan, D. Klein, Learning semantic

correspondences with less supervision, in: 47th Annual
Meeting of ACL and 4th Conf. of AFNLP, Suntec,

Singapore, 2009.

[109] S. Liang, D. Scott, R. Stevens, A. Rector, Unlocking
medical ontologies for non-ontology experts, in: 10th

Workshop on Biomedical Nat. Language Processing,
Portland, OR, 2011.

[110] S. Liang, R. Stevens, D. Scott, A. Rector, Automatic
verbalisation of SNOMED classes using OntoVerbal,
in: 13th Conf. on AI in Medicine, Bled, Slovenia, 2011.

[111] B. Lonneker-Rodman, C. Baker, The FrameNet model
and its applications, Nat. Language Engineering 15 (3)
(2009) 414–453.

[112] N. Madnani, B. Dorr, Generating phrasal and
sentential paraphrases: A survey of data-driven
methods, Comput. Linguistics 36 (3) (2010) 341–387.

[113] W. Mann, S. Thompson, Rhetorical structure theory:
A theory of text organization, Text 8 (3) (1998) 243–

281.
[114] T. Marciniak, M. Strube, Beyond the pipeline: Discrete

optimization in NLP, in: 9th Conf. on Comput. Nat.
Language Learning, Ann Arbor, MI, 2005.

[115] M. Marge, A. Isard, J. Moore, Creation of a new

domain and evaluation of comparison generation in a

natural language generation system, in: 5th Int. Nat.
Lang. Generation Conf. Salt Fork, OH, 2008.

[116] K. McKeown, Text generation, Cambridge University

Press, 1985.
[117] S. McRoy, S. Channarukul, S. Ali, An augmented

template-based approach to text realization, Nat.

Language Engineering 9 (4) (2003) 381–420.
[118] A. Melengoglou, Multilingual aggregation in the M-

PIRO system, Master’s thesis, School of Informatics,

University of Edinburgh, UK (2002).
[119] C. Mellish, Using Semantic Web technology to support

NLG – case study: OWL finds RAGS, in: 6th Int. NLG
Conf. Trim, Co. Meath, Ireland, 2010.

[120] C. Mellish, A. Knott, J. Oberlander, M. O’Donnell,
Experiments using stochastic search for text planning,

in: Proceesings of the 9th Int. Workshop on NLG,

Niagara-on-the-Lake, Ontario, Canada, 1998.
[121] C. Mellish, J. Pan, Finding subsumers

for natural language presentation, in: Int. Workshop

on Description Logics, Windermere, England, 2006.
[122] C. Mellish, J. Pan, Nat. lang. directed inference from

ontologies, Artificial Intelligence 172 (2008) 1285–1315.
[123] C. Mellish, D. Scott, L. Cahill, D. Paiva, R. Evans,

M. Reape, A reference architecture for nat. lang.
generation systems, Nat. Language Engineering 12

(2006) 1–34.
[124] C. Mellish, X. Sun, Natural language directed inference

in the presentation of ontologies, in: 10th European
Workshop on NLG, Aberdeen, UK, 2005.

[125] C. Mellish, X. Sun, The Semantic Web as a linguistic
resource: opportunities for nat. lang. generation,

Knowledge Based Systems 19 (2006) 298–303.
[126] M. Milosavljevic, The automatic generation of

comparison in descriptions of entities, Ph.D. thesis,
Department of Computing, Macquarie University,

Australia (1999).
[127] E. Montiel-Ponsoda, G. A. de Cea, A. Gomez-Perez,

W. Peters, Enriching ontologies with multilingual
information, Nat. Lang. Eng. 17 (2010) 283–309.

[128] J. Moore, C. Paris, Planning text for advisory

dialogues: Capturing intentional and rhetorical

information, Comp. Ling. 19 (4) (1993) 651–694.
[129] B. Motik, R. Shearer, I. Horrocks, Optimized reasoning

in descr. logics using hypertableaux, in: 21st Int. Conf.
on Automated Deduction, Bremen, Germany, 2007.

[130] A. Nenkova, J. Chae, A. Louis, E. Pitler, Structural

features for predicting the linguistic quality of text, in:
E. Krahmer, M. Theune (eds.), Empirical Methods in
Nat. Lang. Generation, Springer, 2010, pp. 222–241.

[131] J. Oberlander, G. Karakatsiotis,

A. Isard, I. Androutsopoulos, Building an adaptive

museum gallery in Second Life, in: Museums and the
Web, Montreal, Quebec, Canada, 2008.

[132] M. O’Donnell, C. Mellish, J. Oberlander, A. Knott,
ILEX: an architecture for a dynamic hypertext

50

generation system, Nat. Language Engineering 7 (3)

(2001) 225–250.
[133] I. Paraboni, K. van Deemter, J. Masthoff, Generating

referring expressions: making referents easy to identify,
Comput. Linguistics 33 (2).

[134] C. Paris, N. Colineau, A. Lampert, K. V. Linden,

Discourse planning for information composition
and delivery: A reusable platform, Nat. Language

Engineering 16 (1) (2009) 61–98.
[135] M. Poesio, R. Stevenson, B. Di Eugenio, Centering:

A parameter theory and its instantiations, Comput.

Linguistics 30 (3) (2004) 309–363.
[136] R. Power, Towards a generation-based semantic web

authoring tool, in: 12th European Workshop on Nat.
Lang. Generation, Athens, Greece, 2009.

[137] R. Power, Complexity assumptions in ontology

verbalisation, in: 48th Annual Meeting of ACL (short
papers), Uppsala, Sweden, 2010.

[138] R. Power, Deriving rhetorical relationships from

semantic content, in: 13th European Workshop on Nat.

Lang. Generation, Nancy, France, 2011.
[139] R. Power, D. Scott, Multilingual authoring using

feedback texts, in: 17th Int. Conf. on Comput.

Linguistics and the 36th Annual Meeting of ACL,
Montreal, Canada, 1998.

[140] R. Power, R. Stevens, D. Scott, A. Rector, Editing

OWL through generated CNL, in: Workshop on
Controlled Nat. Lang., Marettimo Island, Italy, 2009.

[141] R. Power, A. Third, Expressing OWL axioms by

English sentences: Dubious in theory, feasible in

practice, in: 23rd Int. Conf. on Comput. Linguistics
(posters), Beijing, China, 2010.

[142] A. Ratnaparkhi, Trainable methods for surface natural

language generation, in: 1st Conf. of the North
American Chapter of ACL, Seattle, WA, 2000.

[143] A. Rector, N. Drummond, M. Horridge, J. Rogers,

H. Knublauch, R. Stevens, H. Wang, C. Wroe,

OWL pizzas: Practical experience of teaching OWL-
DL: Common errors and common patterns, in: 14th

Int. Conf. on Knowledge Engineering and Knowledge
Management, Northamptonshire, UK, 2004.

[144] E. Reiter, NLG vs. templates, in: 5th European
Workshop on Nat. Lang. Generation, Leiden, The

Netherlands, 1995.
[145] E. Reiter, R. Dale, Building Natural Language

Generation systems, Cambridge University Press, 2000.
[146] E. Reiter, R. Robertson, L. Osman, Knowledge

acquisition for natural language generation, in: 1st Int.
Conf. on NLG, Mitzpe Ramon, Israel, 2000.

[147] Y. Ren, K. van Deemter, J. Pan, Charting the potential

of description logic for the generation of referring
expressions, in: 6th Int. Nat. Lang. Generation Conf.

Trim, Co. Meath, Ireland, 2010.
[148] C. Sauper, R. Barzilay, Automatically generating

Wikipedia articles: A structure-aware approach, in:
Joint Conf. of the 47th Annual Meeting of ACL and

the 4th Int. Joint Conf. on Nat. Language Processing
of the AFNLP, Suntec, Singapore, 2009.

[149] N. Schutte, Generating nat. language descriptions of
ontology concepts, in: 12th European Workshop on

Nat. Lang. Generation, Athens, Greece, 2009.
[150] R. Schwitter, English as a formal specification

language, in: 13th Int. Workshop on Database

and Expert Systems Applications, Aix-en-Provence,
France, 2002.

[151] R. Schwitter, Controlled nat. languages for knowledge

representation, in: 23rd Int. Conf. on Comput.

Linguistics (posters), Beijing, China, 2010.
[152] R. Schwitter, Creating and querying formal ontologies

via controlled nat. language, Applied Artificial

Intelligence 24 (2010) 149–174.
[153] R. Schwitter, K. Kaljurand, A. Cregan, C. Dolbear,

G. Hart, A comparison of three controlled nat.
languages for OWL 1.1, in: 4th OWL Experiences and

Directions Workshop, Washington DC, 2008.
[154] R. Schwitter, M. Tilbrook, Controlled natural language

meets the Semantic Web, in: Australasian Language

Technology Workshop, Macquarie University, Sydney,
Australia, 2004.

[155] N. Shadbolt, T. Berners-Lee, W. Hall, The Semantic

Web revisited, IEEE Intell. Systems 21 (2006) 96–101.
[156] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, Y. Katz,

Pellet: A practical OWL-DL reasoner, Web Semantics
5 (2) (2007) 51–53.

[157] R. Stevens, J. Malone, S. Williams, R. Power,
Automating class definitions from OWL to English, in:

Bio-Ontologies: Semantic Applications in Life Sciences

SIG at the 18th Annual Int. Conf. on Intelligent
Systems for Molecular Biology, Boston, MA, 2010.

[158] R. Stevens, J. Malone, S. Williams, R. Power, A. Third,

Automatic generation of textual class definitions from

OWL to English, Biomedical Semantics 2 (S 2:S5).
[159] X. Sun, C. Mellish, Domain independent sentence

generation from RDF representations for the

Semantic Web, in: Combined Workshop on Language-

Enabled Educational Technology and Development
and Evaluation of Robust Spoken Dialogue Systems,

European Conf. on AI, Riva del Garda, Italy, 2006.
[160] X. Sun, C. Mellish, An experiment on free generation

from single RDF triples, in: 11th European Workshop
on NLG, Schloss Dagstuhl, Germany, 2007.

[161] V. Tablan, T. Polajnar, H. Cunningham, K. Bontcheva,
User-friendly ontology authoring using a controlled

language, in: 5th Int. Conf. on Language Resources and

Evaluation, Genoa, Italy, 2006.
[162] M. Theune, E. Klabbers, J. De Pijper, E. Krahmer,

J. Odijk, From data to speech: a general approach, Nat.

Language Engineering 7 (1) (2001) 47–86.
[163] D. Tsarkov, I. Horrocks, FaCT++ description logic

reasoner: System description, in: 3rd Int. Joint Conf.
on Automated Reasoning, Seattle, WA, 2006.

[164] K. Van Deemter, Generating referring expressions:
Boolean extensions of the Incremental Algorithm,
Comput. Linguistics 28 (1) (2002) 37–52.

[165] K. van Deemter, Generating referring expressions that

involve gradable properties, Comp. Ling. 32 (2).
[166] K. van Deemter, E. Krahmer, M. Theune, Real versus

template-based natural language generation: a false
opposition?, Comput. Linguistics 31 (1) (2005) 15–24.

[167] K. Van Deemter, R. Power, High-level authoring

of illustrated documents, Nat. Language Engineering
9 (2) (2003) 101–126.

[168] S. Varges, C. Mellish, Instance-based natural language
generation, Nat. Lang. Eng. 16 (3) (2010) 309–346.

[169] D. Vogiatzis, D. Galanis, V. Karkaletsis,
I. Androutsopoulos, C. Spyropoulos, A conversant

51

robotic guide to art collections, in: 2nd Workshop

on Language Technology for Cultural Heritage Data,

Language Resources and Evaluation Conf. 2008.
[170] M. Walker, A. Joshi, E. Prince (eds.), Centering Theory

in Discourse, Oxford University Press, 1998.

[171] M. Walker, O. Rambow, M. Rogati, Spot: A trainable
sentence planner, in: 2nd Annual Meeting of the North

American Chapter of ACL, Pittsburgh, PA, 2001.

[172] S. Wan, M. Dras, R. Dale, C. Paris, Spanning tree
approaches for statistical sentence generation, in:

E. Krahmer, M. Theune (eds.), Empirical Methods in

Nat. Lang. Generation, Springer, 2010, pp. 13–44.
[173] M. White, CCG chart realization from disjunctive

inputs, in: 4th Int. Nat. Lang. Generation Conf.
Sydney, Australia, 2006.

[174] G. Wilcock, Integrating natural language generation

with XML web technology, in: 10th Conf. of the
European Chapter of ACL (Conf. Companion),

Budapest, Hungary, 2003.

[175] G. Wilcock, Talking OWLs: towards an ontology
verbalizer, in: Workshop on Human Lang. Technology

for the Semantic Web, 2nd Int. Semantic Web Conf.

Sanibel Island, FL, 2003.
[176] G. Wilcock, An overview of shallow XML-based natural

language generation, in: 2nd Baltic Conf. on Human

Lang. Technologies, Tallinn, Estonia, 2005.
[177] S. Williams, R. Power, Grouping axioms for more

coherent ontology descriptions, in: 6th Int. Nat. Lang.
Generation Conf. Trim, Co. Meath, Ireland, 2010.

[178] S. Williams, A. Third, R. Power, Levels of organization

in ontology verbalization, in: 13th European Workshop
on Nat. Lang. Generation, Nancy, France, 2011.

[179] J. Yu, E. Reiter, H. J., C. Mellish, Choosing the content

of textual summaries of large time-series data sets, Nat.
Language Engineering 13 (1) (2006) 25–49.

52

