Generating Natural Language Descriptions from OWL Ontologies: A
Detailed Presentation of the Natural OWL System

Ion Androutsopoulos,!? Gerasimos Lampouras! and Dimitrios Galanis!

L Department of Informatics, Athens University of Economics and Business, Greece
2 Digital Curation Unit — MI1S, Research Centre “Athena”, Athens, Greece

Abstract

We present NaturalOwL, an open-source natural language generation system that produces texts describing individuals
(e.g., products, museum exhibits) or classes of individuals from OWL ontologies optionally associated with linguistic
and user modeling resources. Unlike simpler OWL verbalizers, which typically express a single axiom of the ontology
at a time in controlled and often not entirely fluent natural language mostly for the benefit of domain experts,
we aim to generate fluent, coherent, and interesting multi-sentence texts appropriate for end-users (e.g., customers,
museum visitors). A key benefit of using a system like NaturalowL on the Semantic Web is that it becomes possible to
publish information in the form of OWL ontologies, and rely on natural language generation to automatically produce
personalized texts in multiple languages from the ontologies, thus making the information easily accessible not only
to computer programs and domain experts, but also to end-users. We discuss NaturalowL’s processing stages of
generating texts, the optional domain-specific linguistic and user modeling resources that can be used at each stage,
why such resources are useful, and how they can be created and represented. We also report on trials we performed to
measure the effort that is required to configure NaturalowL for new ontologies, and the quality of the resulting texts.

Key words: Semantic Web; natural language generation; ontologies; OWL verbalizers; language resources; user modeling.

1. Introduction 1

OWL2 being OWL’s latest version [65].' Given an
OWL ontology for a knowledge domain, it is possi-
ble to publish machine-readable datasets pertain-
ing to that domain (e.g., catalogues of products,
their prices, features etc.) on the Web, with the
data having formally defined semantics based on the
ontology’s conceptualization. It is also possible to
mark up Web resources (e.g., documents) with rich
machine-readable meta-data, again with formally
defined semantics, to describe their authors, content
etc. In both cases, the datasets or meta-data provide
instances of the ontology’s concepts (e.g., particu-

The Semantic Web [20,155,6] is an effort to estab-
lish standards and mechanisms that will allow com-
puters to reason more easily about the semantics
of the Web’s resources (documents, data etc.), en-
abling them and ultimately their users to share, lo-
cate, and integrate resources more easily. Ontologies
play a central role in this endeavour. Each ontology
provides a conceptualization of a knowledge domain
(e.g., consumer electronics) by defining the classes
and subclasses of the domain’s individuals (entities),
the types of possible relations between them etc.

The current standard to specify ontologies for the T Unless otherwise stated, we adopt owL2: consult

Semantic Web is OWL, a formal language based on
description logics [8], RDF, and RDF SCHEMA, with

Preprint

http://www.w3.org/TR/2009/REC-owl2-primer-20091027/
for an introduction. For background information on RDF
and RDF SCHEMA, see http://wuw.w3.org/TR/rdf-primer/.

December 24, 2012

lar individuals of its classes, particular instances of
its relation types). Extensions of existing OWL on-
tologies may also be published, for example to de-
fine finer classes, or to combine concepts from sev-
eral ontologies. Reasoning engines for OWL are also
available [68,163,156,129], and they can be used, for
example, to deduce additional information.
Following common practice in Semantic Web re-
search, we use the term ontology to refer jointly
to (a) information that establishes a conceptualiza-
tion of a knowledge domain, often called termino-
logical knowledge or TBox, and (b) additional as-
sertional knowledge, ABox, that describes particu-
lar instances of the domain’s concepts. OWL can ex-
press knowledge of both types. Several semantically
equivalent OWL syntaxes have been developed. Peo-
ple unfamiliar with formal knowledge representa-
tion, however, often have difficulties understanding
them [143,53]. For example, the following statement
defines the class of St. Emilion wines, using OWL’s
functional-style syntax, one of the easiest to under-
stand, which we also adopt throughout this article. 2
EquivalentClasses(:StEmilion
ObjectIntersectionOf (:Bordeaux
ObjectHasValue(:locatedIn :stEmilionRegion)
ObjectHasValue(:hasColor :red)
ObjectHasValue(:hasFlavor :strong)
ObjectHasValue (:madeFromGrape

: cabernetSauvignonGrape)
ObjectMaxCardinality(1 :madeFromGrape)))

The statement above defines StEmilion as the
intersection of: (i) the class of Bordeaux wines; (ii)
the class of all individuals whose locatedIn property
has (for each individual) stEmilionRegion among its
values (OWL properties are generally many-valued);
(iii)—(v) the classes of individuals whose hascolor,
hasFlavor, and madeFromGrape property values include
red, strong, and cabernetSauvignonGrape, respectively,
without excluding wines that have additional values
in these properties; and (vi) the class of individuals
whose madeFromGrape property has exactly one value;
hence, a St. Emilion wine is made ezclusively from
Cabernet Sauvignon grapes.

In this article, we provide a detailed description of
an open-source natural language generation (NLG)

2 Consult http://www.w3.org/TR/owl2-syntax/ for more
information on OWL’s functional-style syntax. NaturalowL
actually uses OWL’s RDF/XML syntax, which can be con-
verted to functional-style and vice versa; see, for exam-
ple, http://owl.cs.manchester.ac.uk/converter/. We of-
ten use examples loosly inspired from the Wine Ontology,
which we discuss in Section 4.1.

system, called NaturalowL, that produces texts de-
scribing classes or individuals of OWL ontologies. 3
For example, the system can automatically generate
the following text from the OWL statement above,
if the ontology has been annotated with domain-
specific linguistic resources (e.g., lexicon entries,
sentence plans) that we discuss below.

St. Emilion is a kind of Bordeaux from the St. Emilion
region. It has red color and strong flavor. It is made from

exactly one grape variety: Cabernet Sauvignon grapes.

NaturalowL currently supports both English and
Greek.* Hence, Greek texts can also be generated
from the same ontology, provided that it has also
been annotated with appropriate Greek linguistic
resources. For example, given the following prod-
uct description in OWL, the English and Greek texts
shown below can be generated.

ClassAssertion(:Laptop :tecraA8)

ObjectPropertyAssertion(:manufacturedBy

:tecraA8 :toshiba)

ObjectPropertyAssertion(:hasProcessor

:tecraA8 :intelCore2)
DataPropertyAssertion(:hasMemoryInGB
:tecraA8 "2"""xsd:nonNegativeInteger)
DataPropertyAssertion(:hasHardDiskInGB
:tecraA8 "110"""xsd:nonNegativeInteger)
DataPropertyAssertion(:hasSpeedInGHz
:tecraA8 "2"""xsd:float)
DataPropertyAssertion(:hasPriceInEuro
:tecraA8 "850"""xsd:nonNegativeInteger)

Tecra A8 is a laptop, manufactured by Toshiba. It has
an Intel Core 2 processor, 2 GB RAM and an 110 GB hard
disk. Its speed is 2 GHz and it costs 850 Euro.

O Tecra A8 eivan €vog popNTOS UTONOYIGTAS, XATUCKREVUGUE-
vo¢ and tny Toshiba. Awxdéter eneepyacth Intel Core 2,
2 GB RAM xall oxhne6 dioxo 110 ¢B. H taydtntd Tou elvon
2 GHz xa xootilet 850 Eup®.

For readers unfamiliar with OWL, we note that
an object property (e.g., manufacturedBy) maps an in-
dividual (e.g., tecraas8) to one or more individuals
(e.g., toshiba), whereas a datatype property (e.g.,
hasMemoryInGB) maps an individual to one or more
datatype values (e.g., strings, numbers). We follow
the convention that class identifiers start with capi-
tals, whereas the identifiers of individuals and prop-
erties start with lower-case letters. To save space, we
omit the definitions of common namespaces; for ex-

3 A much shorter description of an earlier version of Natu-
ralowL has also been published [60]. An earlier version of the
system has been demonstrated at major conferences [86,61].
4 We welcome collaborations to support other languages.

ample, xsd is a common abbreviation for the names-
pace http://www.w3.org/2001/XMLSchema.

The examples above illustrate how NLG can help
publish information on the Web both as OWL state-
ments and as texts generated from the OWL state-
ments; the generated texts can also be turned into
HTML pages, including images of the individuals etc.
This way, information becomes easily accessible to
both computer applications, which can process the
OWL statements, and end-users speaking different
languages. Changes in the OWL statements can be
automatically reflected in the texts by regenerating
them. Other well-known benefits of NLG include the
ability to tailor the texts per user type. For example,
in a machine-generated text describing a medicine
[30], doctors may wish to see more specialized in-
formation than non-experts, who may need texts
with more background knowledge, expressed in sim-
pler terms. The texts can also vary depending on
the user’s interaction history, for example to avoid
repeating information or to include comparisons to
previously encountered individuals. ®

Although NLG from symbolic information is an es-
tablished area [116,145,16,100], NaturalOwWL is cur-
rently one of the very few NLG systems for owL;
we compare to related systems below. We also note
that NaturalowL aims to generate fluent, coherent,
and interesting multi-sentence texts appropriate for
end-users (e.g., museum visitors, customers of on-
line shops), unlike simpler systems often called on-
tology verbalizers [151]. The latter usually translate
the ontology’s axioms (in our case, OWL statements)
one by one to controlled and often not entirely flu-
ent English statements, typically without consider-
ing the coherence of the resulting texts, the inter-
ests of the readers, or their interaction histories, and
mostly for the benefit of domain experts. Convey-
ing the exact meaning of all the axioms is consid-
ered more important in ontology verbalizers than
composing fluent, coherent, and interesting texts.
By contrast, NaturalOWL may not express informa-
tion that a particular end-user presumably already
knows, and it may opt for more fluent, but techni-
cally less precise phrasings. Furthermore, it includes
mechanisms to order sentences, aggregate them into
longer ones, generate referring expressions etc. We
return to OWL verbalizers below, where we also com-
pare NaturalOwL’s texts to those of a verbalizer.

5 We do not discuss how NaturalowL generates compar-
isons in this article, but see Milosavljevic [126], Isard [81],
Karakatsiotis [85], and Marge et al. [115] for related work.

NaturalOwL is intended to generate texts describ-
ing individuals (or classes of individuals) such as
physical objects, organizations, or persons. It is not
intended to describe sequences of events [10,91], nor
to produce instructions to perform tasks [75,76,167],
or reports from numerical data [179,17]. Also, we
do not discuss generating spoken descriptions [162],
although NaturalowL was recently used in spoken
dialogues with robotic museum guides [96,169,97].
Our work is based on ideas from ILEX [132] and M-
PIRO [82]. The ILEX project developed an NLG sys-
tem that was demonstrated mostly with museum ex-
hibits, but did not support owL; Dale et al. [38] and
Dannels [43] also discuss NLG for museums. The M-
PIRO project produced a multilingual extension of
ILEX’s system, which was tested in several domains,
including museum exhibits and computing equip-
ment [4]. Attempts to use M-PIRO’S generator with
OWL ontologies, however, ran into problems, because
of incompatibilities between OWL and M-PIRO’s on-
tological model [2]. By contrast, NaturalowL was
especially developed for OWL.

NaturaloOwL can be used with different domain
ontologies, but the resulting texts may not sound
fluent, coherent, or interesting enough, until appro-
priate domain-specific linguistic and user modeling
resources, hereafter called domain-dependent gen-
eration resources, have been created. For example,
the ontology’s classes can be mapped to natural lan-
guage names, the ontology’s properties to sentence
plans, other resources may indicate which sentence
plans to prefer per user type etc. The domain-
dependent generation resources are created by a
person we call the domain author, when the system
is configured for a new ontology. Similar resources
are used in most NLG systems for symbolic informa-
tion. NaturalowL’s domain-dependent generation
resources can be created using a plug-in of the
Protégé ontology editor.® The plug-in also allows
NaturalowL to be invoked within Protégé (Figure
1). We do not discuss the plug-in in any detail in this
article, since it is very similar to M-PIRO’s authoring
tool, which has been presented elsewhere [4].7

6 See http://protege.stanford.edu/ for information on
Protégé. NaturalowL and its Protégé plug-in are freely avail-
able from http://nlp.cs.aueb.gr/software.html.

7 We describe NaturalowL version 2 in this article. Version 1
used a less principled representation of its domain-dependent
generation resources. M-PIRO’s authoring tool, now called
ELEON [23], can currently be used only with NaturalowL
version 1; see http://users.iit.demokritos.gr/~eleon/.

Canearl =]
Forlanguage | Engish v| User type Adut _~! WMaximum graph distance n conant ssscton 17

iy e = ==

J Lox @ = [rroveu]

istory

¥ ©OWine = Wine = !‘ FoxenCheninBlanc This wine is a moderate, dry Chenin Blanc. It has a full

body. It is made by Foxen in the Santa Barbara County.

AmericanWine
Beaujolais =
» ©Bordeaux
Burgundy
CabernetFranc

Y

Californiawine
Chardonnay
CheninBlanc

» ©Dessertwine

» ©DryWine

EarlyHarvest

FrenchWine

FullBodiedWine

Gamay

GermanWwine

ItalianWine

LateHarvest

Loire

Ly vy

D

Figure 1. Invoking NaturalowL within Protégé. An English
description of an individual has been generated.

Different NLG systems often adopt different lin-
guistic theories, generation algorithms, and user
models, thus requiring different domain-dependent
generation resources. There is currently little con-
sensus on exactly what information the domain-
dependent generation resources should capture, or
how this information should be represented. In the
spirit of the Semantic Web, however, it seems rea-
sonable to expect that when generating texts from
OWL ontologies, the domain-dependent generation
resources themselves should be instances of other
OWL ontologies, with each ontology of the latter
kind defining the types of resources required by
a particular NLG system. To avoid confusion, we
hereafter use the term domain ontology to refer to
the ontology whose individuals and classes are de-
scribed, as opposed to the generation resources on-
tology that defines the types of domain-dependent
generation resources a particular NLG system, in our
case NaturalowL, requires.® By representing the
domain-dependent generation resources in OWL, it
becomes easier to publish them on the Web, reuse
them, check them for inconsistencies using OWL
reasoners etc. as with other OWL ontologies.

OWL ontologies often use English words or con-
catenations of words (e.g., manufacturedBy) as identi-
fiers of classes, properties, and individuals. Hence,
some of the domain-dependent generation resources

8 See also Cimiano et al. [34], Montiel-Ponsoda et al. [127],
and Gracia et al. [64] for discussion on associating liguistic
resources with ontologies. Mellish [119] suggests represent-
ing in OWL the abstract NLG architecture of rRAGs [123]. The
resources of every RAGS-compliant NLG system could then
be represented in OWL, using specializations of abstract con-
cepts from RAGS’s architecture. We note, however, that the
RAGS architecture is deliberatively very high level, and sub-
stantial work would be necessary to establish exactly how
the processing stages and resources of NaturalOwL or other
NLG systems relate to RAGS concepts.

can often be extracted from the domain ontologies.
For example, Sun and Mellish [159,160] use Word-
Net [56] and some heuristics to split the identifiers
of classes and properties into English words, and to
assign them part-of-speech (POS) tags. This allows
guessing that a class identifier like Laptop in our ear-
lier example is a noun that can be used to refer to
that class, or that a statement of the form:

ObjectPropertyAssertion(:manufacturedBy X Y')

should be expressed in English as a sentence of the
form “X was manufactured by Y”. Most OWL ver-
balizers follow the same strategy.

If domain-dependent generation resources are
not provided, NaturalowL adopts a similar behav-
ior. It attempts to guess the resources from the
domain ontology, or it uses generic resources. The
resulting texts, however, are of lower quality, com-
pared to those generated with appropriate domain-
dependent generation resources, and closer to the
output of ontology verbalizers. For example, the
laptop description of page 2 becomes:

Tecra A 8 is a laptop. Tecra A 8 manufactured by Toshiba.
Tecra A 8 has processor Intel Core 2. Tecra A 8 has
memory in GB 2. Tecra A 8 has hard disk in GB 110. Tecra
A 8 has speed in GHz 2. Tecra A 8 has price in Euro 850.

The sentences are now less fluent, because they are
based on templates (e.g., “X has price in Euro Y”)
extracted directly from the domain ontology, instead
of better sentence plans that would have been spec-
ified by a domain author (e.g., “X costs Y Euro”).
Sentences with the same subject and verb are no
longer aggregated, because NaturalowL does not
know which words are verbs, information that would
be present in the sentence plans and lexicon entries
provided by the author. Without appropriate lexi-
con entries, the system also no longer knows the gen-
der of laptops; hence, it refrains from using personal
pronouns (e.g., “it”). Furthermore, Greek texts can-
not be generated, because the domain ontology’s
identifiers are English-like.

Extracting domain-dependent generation re-
sources from the domain ontology reduces the
effort needed to configure NaturalowL for a new
domain; hence, this approach is appealing when
the texts do not need to be particularly fluent,
coherent, nor personalized, and a single language
suffices. On the other hand, most of NaturalowL’s
domain-dependent generation resources are asso-
ciated with classes and properties of the domain
ontology (TBox), rather than individuals (ABox);

consequently, when there are relatively few classes
and properties, many more individuals, and the
texts need to be fluent, coherent, personalized, or
in multiple languages, authoring domain-dependent
generation resources may be preferable. There is a
tradeoff between investing less effort to construct
domain-dependent generation resources and ob-
taining higher-quality texts in multiple languages.
To the best of our knowledge, this article is the
first detailed description of a complete general-
purpose NLG system for OWL, excluding simpler
ontology verbalizers. The article also discusses trials
we conducted with two independently created OWL
domain ontologies to assess our system’s porta-
bility to ontologies created by others, the effort
that is required to construct NaturalowL’s domain-
dependent generation resources, and the gain in
text quality, as opposed to using a verbalizer or
NaturalowL without domain-dependent generation
resources. We believe these trials are also novel.
Overall, the main contributions of this article
are: (i) it is the first (excluding verbalizers) de-
tailed description of a complete, general-purpose,
open-source NLG system for OWL domain ontolo-
gies; (ii) it shows how the same system can produce
rough-quality texts for end-users directly from OWL
domain ontologies, but also how additional domain-
dependent generation resources can improve the
quality of the texts, help personalize them, and gen-
erate them in multiple languages; (iii) it shows how
the domain-dependent generation resources them-
selves can be represented in OWL; (iv) it reports on
trials with two independently created OWL domain
ontologies, where the texts of our system, with and
without domain-dependent generation resources,
were compared against those of a simpler verbalizer.
The article does not present novel algorithms from
a theoretical NLG perspective. In fact, some of the
algorithms that NaturalowL employs are of a much
narrower scope, compared to more fully-fledged NLG
algorithms. Nevertheless, the trials show that the
system produces texts of reasonable quality, espe-
cially when domain-dependent generation resources
are provided. We hope that if NaturalowL con-
tributes towards a wider adoption of NLG methods
on the Semantic Web, other researchers may wish to
develop improved components of the system, based
on more elaborate algorithms.® To this end, we

9 A collaborative source code repository for NaturalowL is
available at http://naturalowl.sourceforge.net/.

propose several ways to extend the current system,
also pointing to the prominent relevant literature.
Section 2 below explains how NaturalowL gener-
ates texts; it also discusses the domain-dependent
generation resources. Section 3 presents related
work. Section 4 describes the trials we performed.
Section 5 concludes and proposes future work.

2. Processing stages and resources

NaturalowL adopts a pipeline architecture, which
is common in NLG [145], though the number and ex-
act purpose of the pipelined components often vary
[123]. Our system generates texts in three stages,
document planning, micro-planning, and surface re-
alization, discussed in the following sections.

2.1. Document planning

Document planning consists of two sub-stages:
content selection, where the system selects the logi-
cal facts to convey, and text planning, where it plans
the structure of the text to be generated.

2.1.1. Content selection

In content selection, the system retrieves from the
domain ontology candidate facts, it converts them
to message triples, which are easier to express as
sentences, and it then selects among the candidate
message triples the ones to be expressed.

Candidate facts for individual targets

Let us first consider content selection when Natu-
ralOwL is asked to describe an individual (an entity),
and let us call target the individual being described.
The system scans the OWL statements of the domain
ontology, looking for statements of the forms listed
in Table 1, which are considered candidate facts, i.e.,
facts that could be mentioned. ' We have already
used most kinds of statements of Table 1 in the
laptop example of page 2; SameIndividual(Xx Y) and
DifferentIndividuals(X ¥) signal that x and v denote
the same or different individuals. ! Negative prop-
erty assertions (e.g., stating that a particular lap-
top is not manufactured by a particular company)

10NaturalowL scans the domain ontology using OWL API;
consult http://owlapi.sourceforge.net/.

1 These statements and some others that we show as having
two arguments can actually have more arguments, but they
can be converted to binary statements.

\/ ClassAssertion(Class target)

v/ ObjectPropertyAssertion(objProp target indiv)
+/ DataPropertyAssertion(dataProp target dataValue)
X negative property assertions

v/ DifferentIndividuals(target indiv)

v/ DifferentIndividuals(indiv target)

v/ SameIndividual(target indiv)

v/ SameIndividual(indiv target)
Table 1

OWL statements used (y/) or not (x) as candidate facts,
when generating a text for an individual whose identifier

is target. Class is either a class identifier or an expression
constructing an unnamed class using the operators of Ta-
ble 2; objProp and dataProp stand for object and datatype
properties, respectively; indiv is the identifier of an individ-
ual; and dataValue is a datatype value.

are also allowed in OWL2, but they are currently not

supported by NaturalowL; they are also rarely used.
We note that ClassAssertion(Class target) state-

ments may be quite complex, because Class is not

necessarily a class name. It may also be an expres-

sion that constructs a new, unnamed class using op-

erators from Table 2, as in the following example.
ClassAssertion(

ObjectIntersectionOf (:Wine
ObjectHasValue(:locatedIn :stEmilionRegion)
ObjectHasValue(:hasColor :red)
ObjectHasValue(:hasFlavor :strong)
ObjectHasValue (:madeFromGrape

:cabernetSauvignonGrape)
ObjectMaxCardinality(1 :madeFromGrape))
:chateauTeyssier2007)

The statement above says that chateauTeyssier2007
is an individual wine with the same characteris-
tics as the StEmilion wines of page 2, except that it
is not necessarily a Bordeaux. Notice that here the
statement mentions the broader class wine, instead
of its subclass Bordeaux; it also uses an unnamed
class as the first argument of the classAssertion. As-
suming that the target is chateauTeyssier2007, Natu-
ralowL could express the OWL statement above by
generating a text like the following. The exact text
would depend on the domain-dependent generation
resources.

The 2007 Chateau Teyssier is a wine from the Saint-
Emilion region. It has red color and strong flavor. It is
made from exactly one grape variety: Cabernet Sauvignon
grapes.

Notice that a single ClassAssertion gives rise to mul-

tiple sentences. The order of the sentences is not nec-
essarily the same as that of the corresponding OWL

(i) Multi-class operators (MultiClassOper):
v/ ObjectIntersectionOf (

{NamedClass | SingleClassOper}™)
X ObjectIntersectionOf (... MultiClassOper ...)
v/ ObjectUnion0f ({NamedClass | SingleClassOper}t)
X ObjectUnionO0f (... MultiClassOper ...)
(i) Single-class operators (SingleClassOper):
v/ ObjectComplement0f (NamedClass)
X ObjectComplementOf (UnnamedClass)
/ ObjectOneOf (indivt)
v/ ObjectHasValue (objProp indiv)
v/ ObjectHasValue(dataProp dataValue)
v/ ObjectHasSelf (objProp)
v/ ObjectMaxCardinality (number prop [NamedClass])
X ObjectMaxCardinality (number prop UnnamedClass)
v/ ObjectMinCardinality (number prop [NamedClass])
X ObjectMinCardinality(number prop UnnamedClass)
v/ ObjectExactCardinality(number prop [NamedClass])
X ObjectExactCardinality(number prop UnnamedClass)
v/ ObjectSomeValuesFrom(objProp NamedClass)
X ObjectSomeValuesFrom(objProp UnnamedClass)
v/ ObjectAllValuesFrom(objProp NamedClass)

X ObjectAllValuesFrom(objProp UnnamedClass)
Table 2

OWL operators that may (y/) or may not (x) be used to
construct unnamed classes when using NaturalowL. Ex-
pressions marked with ‘*’ may be repeated, ‘|’ denotes a dis-
junction, and square brackets indicate optional arguments.
NamedClass is a class identifier; UnnamedClass is an expres-
sion constructing an unnamed class; MultiClassOper and

SingleClassOper are expressions starting with operators of
the corresponding types; objProp is an object property,
dataProp a datatype property, prop any property, indiv an
individual’s identifier, and dataValue a datatype value.

expressions inside the ClassAssertion; sentences are
ordered during text planning.

OWL allows arbitrarily many nested objectUnion0f
(class union) and ObjectIntersection0f (class inter-
section) operators, which may lead to statements
that are very difficult to express in natural language.
To simplify text generation and to ensure that the
resulting texts are reasonably easy to comprehend,
we do not allow nested ObjectIntersection0f and
ObjectUnion0f operators in the domain ontologies
that NaturalowL is used to generate texts from. In
Table 2 (part i), this restriction is enforced by not
allowing what we call multi-class operators (opera-

tors with more than one class arguments), namely
ObjectIntersectionOf and DbjectUnioan) inside the
arguments of other multi-class operators. For the
same reasons, i.e., to simplify the generation process
and produce texts that are easier to comprehend,
we do not allow unnamed classes inside some other
operators, as shown again in Table 2 (part ii). If a
domain-ontology violates the constraints of Table 2,
it can be easily modified to comply with the con-
straints by defining new named classes for nested
unnamed classes. The OWL ontologies we have en-
countered so far did not violate the constraints.
See Power et al. [137,141] for a study of the owL
statements ontology authors use most frequently.
For the benefit of readers unfamiliar with owL,
let us quickly explain the operators of Table 2
we have not used so far. ObjectComplementOf con-
structs the class of all individuals not in the original
class. ObjectOne0f constructs a class by enumer-
ating all of its individuals. ObjectHasValue(objProp
indiv) denotes the class of individuals that have
indiv among the values of their objProp property;
recall that OWL’s properties are generally many-
valued. As a special case, ObjectHasSelf (objProp)
is the class of individuals that have themselves as
one of the (possibly many) values of their objProp.
ObjectMaxCardinality(number prop) denotes the class
of individuals that have (each) no more than number
values in their prop property. ObjectMinCardinality
and ObjectExactCardinality are similar, but they
specify the minimum or exact number of values.
In all three cardinality operators, an optional third
argument specifying a class may be present; then
the restriction refers to values from the third ar-
gument’s class. For example, the following is the
class of individuals that are made from at most one
Italian grape and any number of other grapes.

ObjectMaxCardinality(1 :madeFromGrape :ItalianGrape)

Finally, objectSomeValuesFrom(objProp Class) is the
class of individuals that have at least one member
of class among the values of their objProp. For ex-
ample, the following is the class of individuals that
manufacture (each) at least one laptop.

ObjectSomeValuesFrom(:manufactures :Laptop)

Similarly, ObjectAllValuesFrom(objProp Class) is the
class of individuals that do not have values out-
side Class in their objProp, including individuals that
have no values at all in objProp.

Recall that NaturalOwL’s texts are intended to be
read by end-users. Hence, we prefer to generate texts
that may not emphasize enough, from a knowledge

representation point of view, some of the subtleties
of OWL’s statements, in order to produce more read-
able texts. An OWL expert might prefer, for ex-
ample, the following natural language description
of chateauTeyssier2007, which mirrors more closely
the corresponding OWL statements, than the text of
page 6. The text below also makes it clearer that,
in the absence of other information, nothing rules
out the possibility that chateauTeyssier2007 may, for
example, have both a strong and another flavor.

The 2007 Chateau Teyssier is a member of the intersec-
tion of the following classes: (a) the class of wines, (b) the
class of individuals from (not necessarily exclusively) the
St. Emilion region, (c) the class of individuals that have
(not necessarily exclusively) red color, (d) the class of in-
dividuals that have (not necessarily exclusively) strong
flavor, (e) the class of individuals that are made exclu-

sively from Cabernet Sauvignon grapes.

Stricter texts of this kind, however, seem inappro-
priate for end-users. In fact, it could be argued that
mentioning that the 2007 Chateau Teyssier is made
from exactly one grape variety in the text of page 6
is also inappropriate for end-users. NaturalOWL can
be instructed to avoid mentioning this information
via user modeling annotations, discussed below.

Candidate facts for class targets

We have so far discussed how NaturalowL se-
lects candidate facts when asked to describe an in-
dividual. If the system is asked to describe a class,
it scans the domain ontology for statements of the
forms of Table 3; the class to be described must be a
named one, meaning that it must have an OWL iden-
tifier, and Target is its identifier. 2 A statement of
the form DisjointClasses(Classi Class2) signals that
Class? and Class2 can never have a common individ-
ual. Again, to simplify the generation process and to
avoid producing complicated texts, we require both
arguments of DisjointClasses to be named classes.
Statements violating this restriction can be trans-
formed by defining new named classes.

In texts describing classes, it is difficult to express
informally the difference between EquivalentClasses
and SubClassOf. EquivalentClasses(Class! Class2)

125ubClass0f (NamedClass Target) statements could also be
selected as candidate facts. They would lead to sentences
naming subclasses of Target, as in the following text where
the target is the class of vases: “A vase was used to store food
or liquids. Known types of vases are: hydriae, amphorae, and
lekythoi.” Similarly, known individuals of a target class (or
some of them) could be mentioned.

v/ EquivalentClasses(Target Class)

v/ EquivalentClasses(Class Target)

v/ SubClass0f (Target Class)
\/DisjointClasses(Target NamedClass)

X DisjointClasses(Target UnnamedClass)

v/ DisjointClasses(NamedClass Target)

X DisjointClasses(UnnamedClass Target)

Table 3

OWL statements used (/) or not (x) as candidate facts when
generating a text for a class whose identifier is Target. Class
can be either a class identifier or an unnamed class con-
structed with the operators of Table 2. Statements marked
with ‘X’ can be tranformed to use named classes.

means that any individual of ciassz also belongs in
Class2, and vice versa. By contrast, SubClass0f (Class1
Class2) means that any member of classz also be-
longs in ciassz, but the reverse is not necessarily
true. If we replace EquivalentClasses by SubClassOf
in the definition of stEmilion of page 2, as shown
below, then any member of StEmilion is still neces-
sarily also a member of the intersection, but a wine
with all the characteristics of the intersection is not
necessarily a member of StEmilion.
SubClassOf (:StEmilion
ObjectIntersectionOf (:Bordeaux
ObjectHasValue(:locatedIn :stEmilionRegion)
ObjectHasValue(:hasColor :red)
ObjectHasValue(:hasFlavor :strong)
ObjectHasValue (:madeFromGrape

:cabernetSauvignonGrape)
ObjectMaxCardinality (1 :madeFromGrape)))

Consequently, one should perhaps add sentences like
the ones shown in italics below, when expressing
EquivalentClasses and SubClassOf, respectively. 13

St. Emilion is a kind of Bordeaux from the St. Emilion
region. It has red color and strong flavor. It is made from
exactly one grape variety: Cabernet Sauvignon grapes.
Every St. Emilion has these properties, and anything that

has these properties is a St. Emilion.

St. Emilion is a kind of Bordeaux from the St. Emilion
region. It has red color and strong flavor. It is made from
exactly one grape variety: Cabernet Sauvignon grapes.
Every St. Emilion has these properties, but something may

have these properties without being a St. Emilion.

BPower and Third [141] use “X is defined as” with
EquivalentClasses, and presumably expressions like “every
X is a” with SubClass0f. Cregan et al. [36] use “is fully de-
fined as” and “is partly defined as”, respectively. We suspect
that the difference would still be unclear to end-users.

Although it is trivial to add the sentences shown
in italics, NaturalowL currently produces the same
texts, without the sentences in italics, for both
EquivalentClasses and SubClassOf, in order to avoid
generating texts that sound too formal. Further-
more, the system may not mention some of the
domain ontology’s information about a target class
(e.g., that a St. Emilion has strong flavor), when
user modeling indicates that this information is
already known or that the text should not exceed
a particular length. Hence, strictly speaking the
resulting texts generally express necessary, not suf-
ficient conditions for individuals to belong in the
target class. This behavior is consistent with the
fact that when asked to describe an individual,
rather than a class, the system does not necessarily
convey all the information it knows about the in-
dividual, in order to comply with space constraints
and other user modeling requirements.

Additional candidate facts
In some applications, expressing additional facts
that are indirectly related to the target may be desir-
able. Let us assume, for example, that the target is
an individual whose identifier is exhibit24, and that
the content selection mechanisms discussed above
have retrieved the following candidate facts from the
domain ontology. NaturalowL would express them
by generating a text like the one below.
ClassAssertion(:Aryballos :exhibit24)
ObjectPropertyAssertion(:locationFound
:exhibit24 :heraionOfDelos)
ObjectPropertyAssertion(:creationPeriod
:exhibit24 :archaicPeriod)
ObjectPropertyAssertion(:paintingTechniqueUsed
:exhibit24 :blackFigureTechnique)
ObjectPropertyAssertion(:currentMuseum
:exhibit24 :delosMuseum)
This is an aryballos, found at the Heraion of Delos. It
was created during the archaic period and it was deco-

rated with the black-figure technique. It is currently in

the Museum of Delos.

The natural language names of classes and individ-
uals can be shown as hyperlinks to indicate that
they can be used as subsequent targets. Clicking
on a hyperlink would be a request to describe the
corresponding class or individual. '* Alternatively,
we may retrieve the candidate facts of these possi-

14 Similar hyperlinks were used, for example, in demonstra-
tors of ILEX and M-PIRO [132,82,4], the system described by
Dale et al. [38], and that of Halaschek-Wiener et al. [69].
They are also used by some OWL verbalizers [178].

ble subsequent targets in advance and add them to
those of the current target.

More precisely, assuming that the target is an
individual, the subsequent possible targets, called
second-level targets, are taken to be the target’s
class, provided that it is a named one, and the
individuals the target is directly linked to via ob-
ject properties. NaturalowL considers second-level
targets only when the current target is an individ-
ual, because expressing information about possible
subsequent targets when the current target is a
class often leads to complicated texts. The system
can be set to retrieve candidate facts for both the
current and the second-level targets (when applica-
ble), or only for the current target; we say that the
maximum fact distance is two or one, respectively.

Returning to exhibit24, let us assume that the
maximum fact distance is two and that only the fol-
lowing candidate facts for second-level targets are
available; we explain the OWL statements below.

SubClassOf (:Aryballos :Vase)

SubClassO0f (:Aryballos

ObjectHasValue(:exhibitTypeCannedDescription
"An aryballos was a small spherical vase with a
narrow neck, in which the athletes kept the oil
they spread their bodies with"~“xsd:string))

DatatypePropertyAssertion(:periodDuration

rarchaicPeriod "700 BC to 480 BC"~"xsd:string)

DatatypePropertyAssertion(:periodCannedDescription

rarchaicPeriod "The archaic period was when the

Greek ancient city-states developed"”"xsd:string)

DataPropertyAssertion(:techniqueCannedDescription

:blackFigureTechnique "In the black-figure

technique, the silhouetes are rendered in black

on the pale surface of the clay, and details are

engraved"”“xsd:string)

Notice that we associated the Aryballos class with
the string “An aryballos. ..bodies with” by using
an ObjectHasValue inside a SubClass0f statement; in
effect, the statement says that every individual of
the Aryballos class has that string as the value of its
exhibitTypeCannedDescription property. We could not
have associated the class directly with the string via
a property assertion, as we did with the archaicPeriod
and blackFigureTechnique individuals, because OWL’s
properties map only from individuals, not classes,
to datatype values or other individuals.

To express all the candidate facts, NaturalowL
would now generate a text like the following, which
may be preferable, if this is the first time the user
encounters an aryballos and archaic exhibits.

15 Consult http://www.w3.org/TR/owl-time/ for more prin-
cipled representations of time in OWL.

This is an aryballos, a kind of vase. An aryballos was
a small spherical vase with a narrow neck, in which the
athletes kept the oil they spread their bodies with. This
particular aryballos was found at the Heraion of Delos
and it was created during the archaic period. The archaic
period was when the Greek ancient city-states developed
and it spans from 700 BC to 480 Bc. This aryballos was
decorated with the black-figure technique. In the black-
figure technique, the silhouetes are rendered in black on
the pale surface of the clay, and details are engraved. This

aryballos is currently in the Museum of Delos.

We note that in many domain ontologies it is im-
practical to represent all the information in purely
logical terms. In our example, it is much easier
to store the information that “An aryballos was
a small...spread their bodies with” directly as a
string, i.e., as a canned sentence in NLG terminol-
ogy, as opposed to defining classes, properties, and
individuals for spreading actions, bodies, athletes,
etc. and generating the sentence from a logical
meaning representation. Similar comments apply to
the other canned sentences in the example above. A
disadvantage of using canned sentences is that they
may have to be entered in multiple versions, if sev-
eral languages or user types need to be supported.
Some of the advantages of NLG are still available,
however, when the canned sentences are property
values of the domain ontology as above. For exam-
ple, the canned sentences can still be placed at ap-
propriate positions in the overall text, as with sen-
tences generated from purely logical facts, and some
of their referring expressions (e.g., pronouns) can
be automatically produced, as we discuss below. 16

Limitations of content selection

Apart from the restrictions of Tables 1-3, a fur-
ther limitation of NaturalOwL’s content selection is
that it only retrieves information that is explicit in
the domain ontology. It cannot deduce additional in-
formation about the target from other statements
in the domain ontology; see Mellish et al. [122] for
mechanisms to deduce facts in content selection.

161n NaturalowL, canned texts can also be entered as natural
language names (see Section 2.2.1) of pseudo-individuals; the
pseudo-individuals can then be used instead of the canned
texts in the domain ontology, provided that the correspond-
ing string-valued properties are converted to object proper-
ties. This way, canned texts can be entered (in the domain-
dependent generation resources) in multiple versions (for dif-
ferent languages and user types) as different versions of the
natural language names of the pseudo-individuals, without
cluttering up the domain ontology with multiple strings.

We also note that OWL allows one to define the
broadest possible domain and range of a particular
property, using statements like the following.

ObjectPropertyDomain (:madeFromGrape :Wine)

ObjectPropertyRange (:madeFromGrape :Grape)

In practice, more specific range restrictions are then
imposed for particular subclasses of the domain. For
example, the following statements specify that when
madeFromGrape is used with individuals from the sub-
class Greekwine of wine, the range (possible values)
of madeFromGrape should be restricted to individuals
from the subclass GreekGrape of Grape.

SubClassOf (:GreekWine :Wine)

SubClassOf (:GreekGrape :Grape)

SubClass0f (:GreekWine
AllValuesFrom(:madeFromGrape :GreekGrape))

NaturalOWL considers Al1valuesFrom and similar re-
strictions, but it ignores ObjectPropertyDomain and
ObjectPropertyRange statements.'” Considering the
latter statements as well would be easy, but they
typically provide too general and, hence, uninterest-
ing information from the perspective of end-users.

More generally, NaturalowL does not consider
OWL statements that express axioms about proper-
ties, meaning statements declaring that a property
is symmetric, asymmetric, reflexive, irreflexive,
transitive, functional, that its inverse is functional,
that a property is the inverse of, or disjoint with
another property, that it is subsumed by a chain of
other properties, or that it is a subproperty (more
specific) of another property. Statements of this
kind are mostly useful in consistency checks, in de-
duction, or when generating texts describing the
properties themselves (e.g., what being a grandpar-
ent of somebody means), cases that are not directly
relevant to the work of this article. 18

Converting candidate facts to message triples
Tables 4 and 5 list more exhaustively all the forms
of candidate facts that are considered when describ-
ing a target individual or class, i.e., all the candidate
facts that are admitted by Tables 1-3. Tables 4 and
5 also show how the candidate facts can be rewrit-
ten as triples of the form (S, P, O), where S is always
the target or a second-level target; O is an individ-
ual, a datatype value, a class, or a set of individuals,

17 The only exception is when it expresses cardinality restric-
tions; see Table 7 of Section 2.2.1 below.

18 Subproperties without sentence plans, discussed below,
could inherit sentence plans from their super-properties, but
in that case we automatically extract sentence plans from
the domain ontology instead.

10

“An aryballos was a...”

:exhibitTypeCannedDescription

:blackFigureTechnique

:paintingTechniqueUsed

:heraionOfDelos

instanceOf

sexhibit24

:locationFound . .
:creationPeriod

:archaicPeriod

:periodCanned
Description

“The archaic period
was when...”

Figure 2. Graph view of message triples corresponding to
candidate facts. The target is the individual exhibit24.

:periodDuration

“700 to 480 BC”

:currentMuseu

:delosMuseum

datatype values, or classes that S is mapped to; P
specifies the kind of mapping. We call S the seman-
tic subject or owner of the triple, and O the seman-
tic object or filler; the triple can also be viewed as a
field named P, owned by S, and filled by O. For ex-
ample, the candidate facts about exhibit24 on page
8, including the additional facts about the second-
level targets, are converted to the following triples.
<:exhibit24, instance0f, :Aryballos>
<:exhibit24, :locationFound, :heraionOfDelos>
<:exhibit24, :creationPeriod, :archaicPeriod>
<:exhibit24, :paintingTechniqueUsed,
:blackFigureTechnique>
<:exhibit24, :currentMuseum, :delosMuseum>
<:Aryballos, isA, :Vase>
<:Aryballos, :exhibitTypeCannedDescription,
"An aryballos was a small spherical vase with a
narrow neck, in which the athletes kept the oil
they spread their bodies with"”"xsd:string>
<:archaicPeriod, :periodDuration,
"700 BC to 480 BC"""xsd:string>
<:archaicPeriod, :periodCannedDescription,
"The archaic period was when the Greek ancient
city-states developed"”"xsd:string>
<:blackFigureTechnique,
:techniqueCannedDescription,
"In the black-figure technique, the silhouetes
are rendered in black on the pale surface of the
clay, and details are engraved"~“xsd:string>

More precisely, P can be: (i) a property of the do-
main ontology; (ii) one of the keywords instance0t,
one0f, differentIndividuals, sameIndividuals, isA; Or
(iii) an expression of the form modifier(p), where
modifier may be not, maxCardinality etc. (see Tables
4 and 5) and p is a property of the domain ontol-
ogy. We hereafter call properties all three types of P,
though types (ii) and (iii) are strictly not properties
in OWL’s terminology. When we need to distinguish
between the three types, we use the terms property
of the domain ontology, domain-independent prop-
erty, and modified property, respectively.

For readers familiar with RDF, we note that the

candidate facts (for an individual target) as OWL statements

candidate facts as message triples

ClassAssertion(NamedClass target)

<target, instance0f, NamedClass>

ClassAssertion(ObjectComplementOf (NamedClass) target)

<target, not(instance0f), NamedClass>

ClassAssertion(ObjectOneOf (indivl indiv2 ...) target)

<target, oneOf, or(indivi, indive, ...)>

ClassAssertion(ObjectHasValue(objProp indiv) target) <target, objProp, indiv>
ClassAssertion(ObjectHasValue(dataProp dataValue) target) |<target, dataProp, dataValue>
ClassAssertion(ObjectHasSelf (objProp) target) <target, objProp, target>

ClassAssertion(

ObjectMaxCardinality(number prop [NamedClass]) target)

<target, maxCardinality(prop),

number [: NamedClass1>

ClassAssertion(

ObjectMinCardinality(number prop [NamedClass]) target)

<target, minCardinality(prop),

number [: NamedClass]>

ClassAssertion(

ObjectExactCardinality(number prop [NamedClass]) target)

<target, exactCardinality(prop),

number [: NamedClass]>

ClassAssertion(

ObjectSomeValuesFrom(objProp NamedClass) target)

<target, someValuesFrom(objProp),

NamedClass>

ClassAssertion(

ObjectAllValuesFrom(objProp NamedClass) target)

<target, allValuesFrom(objProp),

NamedClass >

ClassAssertion(ObjectIntersection0f(C1 C2 ...) target) convert (ClassAssertion(C1 target))
convert (ClassAssertion(C2 target)) ...
ClassAssertion(ObjectUnion0f(C1 C2 ...) target) or(convert (ClassAssertion(C! target)),

convert (ClassAssertion(C2 target)), ...)

ObjectPropertyAssertion(objProp target indiv)

<target, objProp, indiv>

DataPropertyAssertion(dataProp target dataValue) <target, dataProp, dataValue>
DifferentIndividuals(target %indiv) <target, differentIndividuals, %ndiv>
DifferentIndividuals(indiv target) <target, differentIndividuals, %ndiv>
SameIndividual (target indiv) <target, samelIndividual, indiv>

SameIndividual (indiv target)

<target, samelIndividual, indiv>

Table 4

Candidate facts when generating a text for an individual (see also Tables 1 and 2), and how they can be converted to message
triples. Square brackets indicate optional arguments, and convert (§) denotes a recursive application of the conversion to &.

triples of Tables 4 and 5 are not exactly RDF triples.
Most notably, expressions of the form modifier(p)
cannot be used as P in RDF triples. Overall, each
triple produced by Tables 4 and 5 is intended to
be easily expressible as a single sentence, which is
not always the case with RDF triples representing
OWL statements. To avoid confusion, we use the
term message triples to refer to the triples that Ta-
bles 4 and 5 generate, as opposed to RDF triples. 1Y
As with RDF triples, message triples can be viewed
as a graph, which is very similar to ILEX’s con-

19 Message triples correspond to Reiter and Dale’s [145] mes-
sages. Message triples can be converted to RDF triples.

11

tent potential [132]. Figure 2 shows a graph for the
message triples of exhibit24; to save space, we ex-
clude the triple that links blackFigureTechnique to a
canned sentence. The second-level targets are the
nodes of classes and individuals at distance one from
exhibit24. The graph for the RDF triples would be
more complex, and second-level targets would not
always be at distance one from the current target.
Notice that Table 5 converts EquivalentClasses and
SubClass0f statements to identical triples, where P is
isA, since NaturalOwL produces the same texts from
both kinds of statements, as already discussed. As a
further example, OWL statements like the following
two are mapped to identical message triples, apart

candidate fact (for a class target) as OWL statements

candidate facts as message triples

EquivalentClasses(Target Class) convert (SubClass0f (Target Class))

EquivalentClasses(Class Target) convert (SubClass0f (Target Class))

SubClassO0f (Target NamedClass) <Target, isA, NamedClass>

SubClassO0f (Target ObjectComplementOf (NamedClass)) <Target, not(isA), NamedClass>

SubClassO0f (Target ObjectOneOf (indivi indivd ...)) <Target, one0f, or(indivi, indiv2, ...)>

SubClass0f (Target ObjectHasValue(objProp indiv)) <Target, objProp, indiv>

SubClass0f (Target ObjectHasValue(dataProp dataValue))|<Target, dataProp, dataValue>

SubClass0f (Target ObjectHasSelf (objProp)) <Target, objProp, Target>

SubClassO0f (Target <Target, maxCardinality(prop),
ObjectMaxCardinality(number prop [NamedClass]l)) number [: NamedClass 1>

SubClassO0f (Target <Target, minCardinality(prop),
ObjectMinCardinality (number prop [NamedClassl)) number [: NamedClass]>

SubClassO0f (Target <Target, exactCardinality(objProp),
ObjectExactCardinality(number prop [NamedClass])) number [: NamedClass 1>

SubClassOf (Target <Target, someValuesFrom(objProp),
ObjectSomeValuesFrom(objProp NamedClass)) NamedClass >

SubClassO0f (Target <Target, allValuesFrom(objProp),
ObjectAllValuesFrom(objProp NamedClass)) NamedClass>

SubClassO0f (Target ObjectIntersection0f(C1 C2 ...)) convert (SubClass0£f(C1 Target))

convert (SubClass0f (C2 Target)) ...
SubClassO0f (Target ObjectUnion0f(C1 C2 ...)) or (convert (SubClass0£f(C1 Target)),
convert (SubClass0f (C2 Target)), ...)
DisjointClasses(Target NamedClass) <Target, not(isA), NamedClass>
DisjointClasses(NamedClass Target) <Target, not(isA), NamedClass>

Table 5

Candidate facts when generating a text for a class (see also Tables 2 and 3), and how they can be converted to message
triples. Square brackets indicate optional arguments, and convert (§) denotes a recursive application of the conversion to &.

from the identifiers of the individual and the class.

ClassAssertion(
ObjectMaxCardinality(1l :madeFromGrape)
:product145)

SubClassOf (:StEmilion
ObjectMaxCardinality (1 :madeFromGrape))

The resulting message triples, shown below, are in-
tended to reflect the similarity of the corresponding
sentences that NaturalowL would generate.

<:product145, maxCardinality(:madeFromGrape), 1>
Product 145 is made from at most one grape.
<:StEmilion, maxCardinality(:madeFromGrape), 1>

St. Emilion is made from at most one grape.

Tables 4 and 5 also discard ObjectIntersection0f Op-

12

erators, producing multiple message triples instead.
For example, the subClass0f for StEmilion on page 8
would be converted to the following triples.

<:StEmilion, isA, :Bordeaux>

<:StEmilion, :locatedIn, :stEmilionRegion>
<:StEmilion, :hasColor, :red>
<:StEmilion, :hasFlavor, :strong>
<:StEmilion, :madeFromGrape,

:cabernetSauvignonGrape>

<:StEmilion, maxCardinality(:madeFromGrape), 1>
The triples correspond to the sentences below,
where subsequent references to StEmilion have been
replaced by pronouns. The sentences could be ag-
gregated into longer ones as discussed below.

St. Emilion is a kind of Bordeaux. It is from the St.

Emilion region. It has red color. It has strong flavor. It

is made from Cabernet Sauvignon grape. It is made from

at most one grape variety.

Tables 4 and 5 also replace ObjectUnion0f operators
by disjunctions of message triples. The assertion:
ClassAssertion(
UnionOf (
ObjectHasValue(:hasFlavor :strong)
ObjectHasValue(:hasFlavor :medium))
:houseWine)

becomes:

or(<:houseWine, :hasFlavor, :strong>,
<:houseWine, :hasFlavor, :medium>)

which corresponds to the following setence.

The house wine has strong flavor or it has medium flavor.

The need for interest scores

Conveying to an end-user all the message triples
of all the candidate facts is not always appropriate.
Let us assume, for example, that the maximum fact
distance is 2 and that a description of exhibit24 of
Figure 2 has been requested by a museum visitor.
It may be the case that the visitor has already en-
countered other exhibits of the archaic period, and
that the duration of that period was mentioned in
the previous descriptions. Repeating the archaic pe-
riod’s duration may, thus, be undesirable. We may
also want to exclude candidate facts that are unin-
teresting to particular types of users. For example,
there may be message triples providing bibliographic
references; archaeologists may find them interesting,
but children would probably not. Therefore, mecha-
nisms are needed to determine which candidate mes-
sage triples should be conveyed to each user.

Following ILEX and M-PIRO, each message triple
is assigned an interest score, possibly different per
user type. The score is a non-negative integer indi-
cating how interesting a user of the corresponding
type will presumably find the triple’s information,
if the information has not already been conveyed to
the user. 2% Furthermore, personal user models, to
be discussed, keep track of the message triples the
system has expressed to each particular user.

In the museum projects NaturalowL was origi-
nally developed for, the interest scores ranged from
0 (completely uninteresting) to 3 (very interesting);
a different maximum score can also be used. The
scores were set by consulting museum curators,

201Ex distinguishes between interest and importance, the
latter being the educational value of each fact, which may be
different from its interest [132]. We use only interest scores.

13

who were shown a list of all the properties of the
domain ontology (e.g., locationFound) that applied
to targets (exhibits) or second-level targets (e.g.,
historical periods), along with sample sentences
expressing message triples involving each property.
The curators were asked to specify how interesting
the information expressed by each property would
generally be per user type.2! Each message triple
was then assigned the interest score of its prop-
erty. The user types (e.g., non-expert adult, expert
adult, child) were also suggested by the curators.
The curators later examined the generated texts
and suggested further refinements of the interest
score assignments, which would occasionally apply
to (S, P,O) message triples with a particular in-
dividual or class as their S, rather than to all the
messages triples that involved a particular property
P. Hence, we had to allow refinements of this kind.
We note that when large numbers of human-
authored texts describing individuals and classes
of the domain ontology are available, along with
the corresponding logical facts expressed by each
text, statistical and machine learning methods can
be employed to learn to automatically select or
assign interest scores to logical facts (or message
triples) [52,10,91,93,5]. Another possibility would
be to compute the interest scores with centrality
algorithms. Algorithms of this kind assign higher or
lower importance to a graph’s nodes by considering
how well connected they are and how important
their neighbors are. Demir et al. [45], for example,
applied a version of PageRank [29] to a graph that
had nodes standing for candidate logical facts, and
edges corresponding to relations between facts (e.g.,
showing that two facts share individuals, or that
they should or should not be selected together).
Let us now explain how message triples (S, P, O)
are (manually) assigned interest scores in Natu-
ralowL. Three types of annotations of the domain
ontology can be used; we discuss them in turn.

Assigning interest scores by specifying P only

An annotation of this type applies to all the mes-
sage triples involving a particular P, regardless of S
and O. For example, let us assume that any triple
whose P is currentMuseum, like the one below, should
have an interest score of 1 when generating texts for
children; by contrast, the interest score should be 3
when generating texts for experts.

21 Consult Reiter et al. [146] for a discussion of knowledge
acquisition methods that can be used in NLG.

instanceOf

lowl:UserType

Figure 3. Graph view of annotations providing interest
scores. Message triples involving the currentMuseum property
are assigned an interest of 1 for children and 3 for experts.

instanceOf

<:exhibit24, :currentMuseum, :delosMuseum>

The following annotations can be used. The annota-
tions themselves are also OWL statements, and Fig-
ure 3 shows them as a graph.
AnnotationAssertion(nlowl:forProperty
_:nodel :currentMuseum)
ObjectPropertyAssertion(nlowl:forUserType
_:nodel dgr:child)
ObjectPropertyAssertion(nlowl:hasInterest
_:nodel "1"""xsd:nonNegativeInteger)

AnnotationAssertion(nlowl:forProperty
_:node2 :currentMuseum)

ObjectPropertyAssertion(nlowl:forUserType
_:node2 dgr:expert)

ObjectPropertyAssertion(nlowl:hasInterest
_:node2 "3"""xsd:nonNegativeInteger)

Intuitively, the statements above introduce two an-
notation events. The first one (nodet) concerns chil-
dren and annotates the property currentMuseum with
an interest score of 1. The second event (node2) con-
cerns experts and annotates the same property with
an interest score of 3. If the forUserType of an an-
notation event is left unspecified, the interest score
applies to all the user types.

For simplicity, we use the default namespace
(a colon without a prefix) with properties (e.g.,
:currentMuseun), classes etc. of the domain ontology.
The nlowl namespace prefix is used with domain-
independent properties, classes etc. that are defined
in NaturalOWL’s generation resources ontology
(e.g.7 nlowlzforProperty); and the dgr preﬁx is used
with domain-dependent instances (e.g., individu-
als) of NaturaloOwL’s generation resources ontology.
The user types child and expert in the example
above would be declared to be individuals of the
class UserType (as shown below), which is defined in
NaturaloOwL’s generation resources ontology.

ClassAssertion(dgr:child nlowl:UserType)
ClassAssertion(dgr:expert nlowl:UserType)

Since we may wish to use different user types with
different domain ontologies, child and expert are

14

considered domain-dependent, which is why they
have the dgr prefix.?? Individuals whose prefixes
are underscores (e.g., _:nodel, _:node2) are considered
anonymous in OWL; strictly speaking, they should
be shown as nodes without labels in the graphs.

Statements of the form AnnotationAssertion(anProp
element value) are used in OWL to map any element
(e.g., class, property, individual) of an ontology to
any wvalue (e.g., individual, datatype value) via an
annotation property anProp in order to express meta-
information that is not considered part of the on-
tology’s conceptualization. For example, annotation
properties are commonly used to associate elements
with comments. We use annotation properties when
linking elements of the domain ontology to elements
of the generation resources ontology, or vice versa,
but we use ordinary properties when linking (inter-
nally) elements of the domain ontology or when link-
ing (internally) elements of the generation resources
ontology. The AnnotationAssertion statements that
we use can be thought of as annotations of the do-
main ontology that associate it with linguistic and
user modeling resources, which are not part of the
domain ontology’s conceptual model. 23 Like object
and datatype properties, annotation properties can
express directly only binary relations. Hence, we fol-
low common practice and use anonymous individ-
uals (e.g., -:node1) that stand for reified events to
express relations of more than two arguments.

Recall that the P of a message triple (S, P,O) is
not always a property of the domain ontology (see
Tables 4 and 5). It may be a modified property,
like maxCardinality(currentMuseum), in which case we
say that maxCardinality is a modifier of currentMuseum.
The statements below specify that message triples
whose P is exactCardinality(currentMuseun) have an
interest score of zero when interacting with children;
users are never told zero interest facts.

AnnotationAssertion(nlowl:forProperty

_:node3 :currentMuseum)
ObjectPropertyAssertion(nlowl:forModifier
_:node3 nlowl:exactCardinality)

ObjectPropertyAssertion(nlowl:forUserType
_:node3 dgr:child)

221n practice, dgr would be an abbreviation of a namespace
other than that of the domain ontology and NaturalowL’s
generation resources ontology, to avoid name clashes. A
complete definition (in oWL) of NaturalowL’s generation re-
sources ontology is included in the system’s software.

23 Annotation properties have the additional advantage that
they can map classes or properties, not just individuals, to
values, and the values themselves can also be properties; this
turns out to be useful in some of NaturalowL’s annotations.

ObjectPropertyAssertion(nlowl:hasInterest
_:node3 "0"""xsd:nonNegativeInteger)

By omitting the forProperty, we can also specify,
for example, that triples with an exactCardinality
should never be expressed to children, regardless
of the property the modifier applies to. When
there are conflicting interest scores (e.g., for
exactCardinality(currentMuseun) and exactCardinality
in general), the most specific one prevails. 24

In practice, the user modeling annotations are en-
tered by using NaturalowL’s Protégé plug-in, in-
stead of writing OWL statements. The annotation
events are automatically generated by the plug-in,
and they are not shown to the domain author.

Assigning interest scores by specifying both S and P

Most message triples (S, P, O) are assigned inter-
est scores by using annotations that specify a par-
ticular P (and/or possibly a modifier), an interest
score, and possib