Extractive Multi-Document Summarization with Integer Linear Programming and Support Vector Regression

Dimitrios Galanis, Gerasimos Lampouras and Ion Androutsopoulos
We aim to produce summaries that are:
- relevant to the query,
- diverse (do not repeat information),
- grammatical,
- and up to a certain length.

An extractive summarization system
- includes only un-altered sentences.

An abstractive summarization system
- may alter (shorten, paraphrase, etc.) sentences,
- requires more processing time,
- usually requires specialized resources (parsers, paraphrasing rules etc.),
- is in practice, marginally better than an extractive system.
Many extractive summarization systems use a **greedy approach**. They maximize the **importance** of the summary’s **sentences**. Importance can be estimated via **statistics**, **machine learning** etc.

Sentence diversity can be achieved by discarding any sentence that is **too similar** to the sentences already in the summary. **Similarity measures** (e.g., cosine similarity) are often employed.

We use the **greedy approach** as a **baseline**. We present a **non-greedy** approach, based on **global optimization**.
Recent work shows that global optimization approaches produce better (or comparable) summaries, compared to greedy approaches.

- Take into account the entire search space to find an optimal solution.

We jointly optimize sentence importance and diversity to find an optimal summary.

- Respecting the maximum summary length.

We do extractive summarization, we do not alter the source sentences.

- But optimization models can be easily extended.
- Sentence compression, sentence aggregation etc.
We use **Integer Linear Programming** (ILP).
- **Binary LP**: all the variables are binary (0/1).

We **maximize** the summary’s \(\text{Imp}(S) + \text{Div}(S)\).
- \(\text{Imp}(S)\): Sum of importance scores of sentences in summary \(S\).
- \(\text{Div}(S)\): Sum of distinct selected **word bigrams** in summary \(S\).
 - Following previous work, we assume that **bigrams** roughly **correspond** to concepts/things.

Sentence Variables

<table>
<thead>
<tr>
<th>Sentence</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>0.8</td>
</tr>
<tr>
<td>(x_2)</td>
<td>0.7</td>
</tr>
<tr>
<td>(x_3)</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Word Bigram Variables

<table>
<thead>
<tr>
<th>Importance</th>
<th>Diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>4</td>
</tr>
</tbody>
</table>
ILP Objective function

\[\max \lambda_1 \cdot \text{imp}(S) + \lambda_2 \cdot \text{div}(S) = \]

\[\max \lambda_1 \cdot \sum_{i=1}^{n} a_i \cdot \frac{l_i}{L_{\text{max}}} \cdot x_i + \lambda_2 \cdot \sum_{i=1}^{B} \frac{b_i}{n} \]

Sentence importance score, ranges in \([0, 1]\).

Normalized sentence length: Rewards **longer** sentences.

Sentence variable (0/1)

Bigram variable (0/1)

Number of input sentences

Sentence importance score, ranges in \([0, 1]\).
subject to $\sum_{i=1}^{n} l_i \cdot x_i \leq L_{\text{max}}$

and $\sum_{g_j \in B_i} b_j \geq |B_i| \cdot x_i$, for $i = 1 \ldots n$

and $\sum_{s_i \in S_j} x_i \geq b_j$, for $j = 1 \ldots |B|$

The summary length must not exceed the maximum allowed length.

Constrains to ensure consistency between sentences and bigrams.

If a sentence is included, all the bigrams it contains must also be included.

If a bigram is included, at least one sentence that contains it must also be included.
SVR Model of Sentence Importance

- **SVR – Support Vector Regression**
 - Regression equivalent of **Support Vector Machines**.
 - Rather than **classification**, it aims to learn a **function** with **real values**.

Feature vector, one per candidate sentence:
- **sentence position** in the original document,
- number of **named entities**,
- **Levenshtein** distance between query and sentence,
- **word overlap** between query and sentence,
- content **word** and **document frequencies**.

Target sentence importance score:
- The **SVR** learns to **predict** this value.
- Similarity between sentence and **human-written** summaries.

Estimated as the average of **ROUGE-2** and **ROUGE-SU4** scores.
- **Bigram** similarity measures.
- Highly correlated with human judgments in **summarization**.
Evaluation Setup

- We experimented with the following systems and baselines:
 - ILP system.
 - GREEDY system.
 - Uses the same SVR (for importance scores) as the ILP system.
 - GREEDY-RED system.
 - Includes redundancy checks via cosine similarity.

 - Each dataset contains queries and corresponding sets of relevant documents.
 - For each query, multiple reference (human-authored) summaries are also provided.
Our ILP method is a generalization of 0-1 Knapsack (NP-Hard).

- But we input only the top 100 sentences with the highest SVR scores.
- We also ignore in the ILP model bigrams that consist exclusively of stop words or occur only once.
- The steps above reduce the ILP variables to the order of hundreds.
- The ILP variables grow approximately linearly to the number and length of the input sentences.

0.9 - 1.25 seconds are required for an off-the-shelf solver to find the optimal solution per summary.

If we include preprocessing of input documents and formulation of the ILP program, it takes 10-11 seconds to produce a summary.
In all cases, we trained the SVR on DUC 2006 data.

We used DUC 2007 as a development set for parameter tuning.
- Best results are achieved for $\lambda_1 = 0.4$, $\lambda_2 = 0.6$.
- Both sentence importance and diversity contribute to the results.

<table>
<thead>
<tr>
<th>system</th>
<th>ROUGE-2</th>
<th>ROUGE-SU4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP ($\lambda_1 = 0.4$)</td>
<td>0.12517</td>
<td>0.17603</td>
</tr>
<tr>
<td>GREEDY-RED</td>
<td>0.11591</td>
<td>0.16908</td>
</tr>
<tr>
<td>GREEDY</td>
<td>0.11408</td>
<td>0.16651</td>
</tr>
<tr>
<td>Lin and Bilmes 2011</td>
<td>0.12380</td>
<td>N/A</td>
</tr>
<tr>
<td>Celikyilmaz and Hakkani-Tur 2010</td>
<td>0.11400</td>
<td>0.17200</td>
</tr>
<tr>
<td>Haghhighi and Vanderwende 2009</td>
<td>0.11800</td>
<td>0.16700</td>
</tr>
<tr>
<td>Schilder and Ravikumar 2008</td>
<td>0.11000</td>
<td>N/A</td>
</tr>
<tr>
<td>Pingali et al. 2007 (DUC 2007)</td>
<td>0.12448</td>
<td>0.17711</td>
</tr>
<tr>
<td>Toutanova et al. 2007 (DUC 2007)</td>
<td>0.12028</td>
<td>0.17074</td>
</tr>
<tr>
<td>Conroy et al. 2007 (DUC 2007)</td>
<td>0.11793</td>
<td>0.17593</td>
</tr>
<tr>
<td>Amini and Usunier 2007 (DUC 2007)</td>
<td>0.11887</td>
<td>0.16999</td>
</tr>
</tbody>
</table>

Our ILP method outperforms the baselines.

Our ILP method has the best ROUGE-2.

And the second best ROUGE-SU4 score.

But these are development set results.
Results on Test Set – TAC 2008

<table>
<thead>
<tr>
<th>System</th>
<th>ROUGE-2</th>
<th>ROUGE-SU4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP ($\lambda_1 = 0.4$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodsend and Lapata 2012 (with QSTG)</td>
<td>0.11168</td>
<td>0.14413</td>
</tr>
<tr>
<td>Woodsend and Lapata 2012 (without QSTG)</td>
<td>0.10320</td>
<td>0.13680</td>
</tr>
<tr>
<td>Berg-Kirkpatrick et al. 2011 (with subtree cuts)</td>
<td>0.11700</td>
<td>0.14380</td>
</tr>
<tr>
<td>Berg-Kirkpatrick et al. 2011 (without subtree cuts)</td>
<td>0.11050</td>
<td>0.13860</td>
</tr>
<tr>
<td>Shen and Li 2010</td>
<td>0.09012</td>
<td>0.12094</td>
</tr>
<tr>
<td>Gillick and Favre 2009 (with sentence compression)</td>
<td>0.11100</td>
<td>N/A</td>
</tr>
<tr>
<td>Gillick and Favre 2009 (without sentence compr.)</td>
<td>0.11000</td>
<td>N/A</td>
</tr>
<tr>
<td>Gillick et al. 2008 (run 43 in TAC 2008)</td>
<td>0.11140</td>
<td>0.14298</td>
</tr>
<tr>
<td>Gillick et al. 2008 (run 13 in TAC 2008)</td>
<td>0.11044</td>
<td>0.13985</td>
</tr>
<tr>
<td>Conroy and Schlesinger 2008 (run 60 in TAC 2008)</td>
<td>0.10379</td>
<td>0.14200</td>
</tr>
<tr>
<td>Conroy and Schlesinger 2008 (run 37 in TAC 2008)</td>
<td>0.10338</td>
<td>0.14277</td>
</tr>
<tr>
<td>Conroy and Schlesinger 2008 (run 06 in TAC 2008)</td>
<td>0.10133+</td>
<td>0.13977</td>
</tr>
<tr>
<td>Galanis and Malakasiotis 2008 (run 02 in TAC 2008)</td>
<td>0.10012+</td>
<td>0.13694</td>
</tr>
</tbody>
</table>

+ and - denote the existence or absence of statistical significance (t-test), respectively.

Third best results in ROUGE-2 and second best in ROUGE-SU4.

Some methods are abstractive.

Best results amongst extractive.

Better results than some abstractive.
We presented an **ILP-based** method for **multi-document extractive summarization** that **jointly maximizes**:
- sentence importance scores provided by a **Support Vector Regression (SVR)** model, and
- sentence diversity scores, computed as the number of **distinct bigrams of the input documents** that occur in the summary,
- respecting the **maximum allowed summary length**.

Experiments on widely used **benchmark datasets** show that our ILP-based method:
- achieves **state of the art results** amongst **extractive** methods,
- **outperforms** two greedy baselines that use the **same SVR model** (without ILP),
- **performs better** than some **abstractive** methods.

Future work:
- We are experimenting with an **extended form of our ILP-based method** that **includes sentence compression** (Galanis & Androutsopoulos 2010).
Thank you!

Questions?