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Diagnostic Captioning

" Thessaloniki

e Challenging research problem — Helpful only as an assistive tool, not a replacement of the medical
staff.

e More experienced clinicians — improve throughput and accuracy.

e Less experienced clinicians — consider the generated medical report & reduce the possibility of a

clinical error.
Suggested DL-based pipeline for the diagnosis of a given
medical image:
Medical Images Generated report from DL system Doctor considers the generated report And composes the final report!

A () MEDICAL REPORT

Related Concepts:
Plain X-Ray, Bronchoscopy

Related Concepts:
X-Ray Computed Tomography,
Anterior-Posterior
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Task #1: Concept Detection

" Thessaloniki

Goal: given a radiology image; predict relevant biomedical concepts — multi-class, multi-
label classification task.

Desired answer from our Diagnostic Captioning deep learning
system: C0041618;C0238207;C0030797;
C0022646;C0006736;C0549186

¢

This image is associated with the following biomedical concepts:
CC BY [Khougali et al. (2021)] Ultrasonography, Ectopic kidney, Pelvis, Kidney, Calculi, Obstructed
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System #1: CNN + FFNN

" Thessaloniki

e CNN: in charge of encoding the image into numeric vectors. FFNN: responsible for yielding a
probability distribution over the medical concepts.

e Simple, yet effective idea.

Input Image

Pooling Pooling [ ] _ Sigmoid Probabilistic
L Input Layer Hidden Layer OutputLayer Function Distribution
[—— % Ho
|| . _, o4
—. [ — oo
- L/ _, o2
Convolution Convolution Convolution
CC BY [Kaler et + + + I
L :
2 o)l RelLU RelLU ReLU -
Kernel
T [wao-w;, [bo- by] [Woo-Wy], [Ba- By
Trained by trying to minimize the BCE loss. Flatten Layer Feed-Forward

A concept is assigned to the image if p(concept) >t, Neural Network
where t is a tunable threshold value.
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System #2: Contrastive Learning-based
Tagger

" Thessaloniki

Goal: Train a multi-modal model w.r.t a contrastive objective; bring representations of true pairings
closer in the vector space, while pushing the representations of mismatching pairs far away.

Ideal scenario |«-..

Plain X-Ray

X-Ray Computed
Tomography
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System #2: Contrastive Learning-based
Tagger

" Thessaloniki

Goal: Train a multi-modal model w.r.t a contrastive objective; bring representations of true pairings
closer in the vector space, while pushing the representations of mismatching pairs far away.

] Pre-trained model from

. . —~ : )

1 Q) HuggingFace:
. |Blo Q@  cambridaelty/BioRedditBERT- l l l l l
Angiography | BERT uncased Features J¥.. -
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- Text Encoder
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[¢
Con
MBConv,

MBConvs,
MBConvé,
MBConvé,
MBConvé,
MBConve,
MBConv6,
MBCon

Image Encoder
I, 1.C, | 1sCo | 1sCs | ... | IsCs
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System #2:. Contrastive Learning-based
Tagger

" Thessaloniki

Goal: Train a multi-modal model w.r.t a contrastive objective; bring representations of true pairings
closer in the vector space, while pushing the representations of mismatching pairs far away.

e

Plain X-Ray

Inference ..

Chest X- Ray
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Task #1: Caption Prediction

" Thessaloniki

Generate
caption...
P Chest X-ray showing
| > bilateral clavicular
hypoplasia.
Generate Abdominopelvic ultrasound scan showed
caption... ectopic kidneys at the hemi-pelvis, fused in

the kidneys with normal corticomedullary
differentiation, no stones or obstructive
changes.

> their upper poles, normal size and texture of
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" Thessaloniki

System #1: CNN-RNN (Show&Tell)

e Well-known Image Captioning architecture — SotA before the introduction of Transformers.

e CNN: in charge of encoding the image and extracting visual features. RNN: generates the diagnostic caption based on the
visual features.

log P1(OUT1) log P2(OUT?2) log Pn-1(OUTN)
o t t

. Special
p1 p2 PN-1 stop word

Convolution
Input Pooling____---~~ T T T
EI“—R_

Joiooee- G G G G
R N R : R _> LI _> R
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J
Feature Extraction
* A ry

| Cspecial | WexOUTo | | WexOUT1 | Iﬁl
maqge | ly fed start word
g [ once at ime t = -1 } +{_OuUTo_| A ouTi |
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" Thessaloniki

System #2: ViT-GPT2

e Transformer-based model (w.r.t both the image encoding and text generationside). | Wi p=========~ !
e  AVision Transformer (ViT) extracts meaningful image encodings. These are subsequently i
fed to the Encoder-Decoder Self-Attention layer of all 12 GPT2 decoding blocks. [ MLP + Softmax ] !
2 X
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Encoder > Decoder :
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System #3: 2xE-D: Captioning Model +
SquSeq denoiser

" Thessaloniki

3 Captlonlng Component

[ Draft Caption ]

| Encgder Dect)der | :
x L .S : « M —>
| Encoder | Decoder |
| Enc%der | Dec;Jder |
[ Encoder | Decoder |

; Den0|smg Component

[ Reformulated Caption ]

5 Encgder Decoder ]
ix L . *
4 L5 xM
| Enc;)der | Decgder |
| Encgder | Deci)der |
| Encoder | Decoder |

Experimented with two pre-trained denoising models, BART and T5. BART is
a denoising autoencoder model. It is trained by reconstructing text that has

been distorted by an arbitrary noise function.

We fine-tuned BART towards the goal of correcting
our model’s common grammatical, syntactical and

also diagnostic mistakes.

How?

By feeding it (draft generated caption, ground truth
caption) pairs, enabling it to learn common mistake
patterns in the corpus generated from the initial

captioning model.

Alternative

Idea

—

/ ClinicalBAR

Qg draft diagnostic captions derived from

T
(or ClefBART)

Further pre-trained a BART-large instance on
a held-out set of the ImageCLEFmedical
dataset — following the original text
corruption processes.

Then applied as a denoising component to

OD

captioning systems.
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Results & Future
Work

" Thessaloniki

e In this year's ImageCLEFmedical competition (Caption Task), the AUEB NLP Group
ranked 1st in the Concept Detection and 3rd in the Caption Prediction sub-tasks,

according to the competition’s primary evaluation metrics.

- Our best performing Concept Detection system was an ensemble ---------»

system consisted of three CNN+FFNN (Concept Detection System #1)
instances.

- Our best performing Caption Prediction system was a BART (Caption
Prediction System #3) instance applied on top of our CNN-RNN
(Caption Prediction System #1) captioning component, namely
BART@CNN-RNN.

e Future Work:

- Explore instruction-tuning techniques in conjunction with state-of-the-art

[=] ¥ [m]
LLMs in order to enhance the accuracy and interpretability of the generated :;:%,63

diagnostic captions.

- Experiment with few-shot, as well as prominent in-context learning

techniques, as restricted data is a common problem, especially in the

biomedical domain.

Ensemble: combination
(Union or Intersection) of
two or more instances
predictions’.
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Thanks for attending!
Any gquestions?

You can find out more on our work here: nlp.cs.aueb.qgr/
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" Thessaloniki

(Tagging) System #2: CNN+FFNN-based
Multi-task Classifier

Task-specific Layers Task-specific

o Predictions
InputLayer Hidden Layer QutputLayer SOﬁm_aX PFOb_abII!Stlc
Function Distribution

Motivation: There are four main medical

modalities in the dataset: X-Ray, Computed
Tomography, MRI and Ultrasonography which y,
almost never occur concurrently. ) | o o Mo
’ TS vy, o —p 087 /7
P o1/
Shared backbone e ‘r!!f,’v'i #—'—% II Trained by trying to
o =Y ||/ I minimize the CCE
A i —» 0.06 loss.
S N
1 ! . WGV, . The concept that
| N ‘,' % —t - \ - / ' corresponds tg the
npu . . S A maximum pro
| P POOllng POO'-Ing h / R e ’ 0.02 value is assigned to
mage R ! the image.
[ 2 [i > I " [wao-wj]. [bo- by] [Woo-Wy], [Bo- Bl
B n ‘I
- ; i
| Lt g — 1 . . e e
el . £ ! / InputLayer Hidden Layer Output Layer Slgmqld P'_’Ob.abll!StI\
. - I Function Distribution .
.. B e ! Modality-
- \ ) _ L specific
o] \ ,/ ’ Tag
. . . . \ e
Convolution  Convolution Convolution - | | N . —» 045/
+ + + B \ § — I' Trained by trying to
- 1™ P minimize the BCE
RelLU RelLU RelLU B . . 0.01 loss.
’ ' A concept is
Flatten ’ o : assigned to the
Layer : g/ —» 0.26 image if p(concept)
X —* . >t, where tisa
’ tunable threshold
value.
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